This file is indexed.

/usr/include/boost/proto/make_expr.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
#ifndef BOOST_PP_IS_ITERATING
    ///////////////////////////////////////////////////////////////////////////////
    /// \file make_expr.hpp
    /// Definition of the \c make_expr() and \c unpack_expr() utilities for
    /// building Proto expression nodes from child nodes or from a Fusion
    /// sequence of child nodes, respectively.
    //
    //  Copyright 2008 Eric Niebler. Distributed under the Boost
    //  Software License, Version 1.0. (See accompanying file
    //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

    #ifndef BOOST_PROTO_MAKE_EXPR_HPP_EAN_04_01_2005
    #define BOOST_PROTO_MAKE_EXPR_HPP_EAN_04_01_2005

    #include <boost/config.hpp>
    #include <boost/detail/workaround.hpp>
    #include <boost/preprocessor/cat.hpp>
    #include <boost/preprocessor/arithmetic/inc.hpp>
    #include <boost/preprocessor/arithmetic/dec.hpp>
    #include <boost/preprocessor/arithmetic/sub.hpp>
    #include <boost/preprocessor/punctuation/comma_if.hpp>
    #include <boost/preprocessor/iteration/iterate.hpp>
    #include <boost/preprocessor/facilities/intercept.hpp>
    #include <boost/preprocessor/repetition/enum.hpp>
    #include <boost/preprocessor/repetition/enum_params.hpp>
    #include <boost/preprocessor/repetition/enum_binary_params.hpp>
    #include <boost/preprocessor/repetition/enum_shifted_params.hpp>
    #include <boost/preprocessor/repetition/enum_trailing_params.hpp>
    #include <boost/preprocessor/repetition/enum_trailing_binary_params.hpp>
    #include <boost/preprocessor/repetition/repeat.hpp>
    #include <boost/ref.hpp>
    #include <boost/mpl/if.hpp>
    #include <boost/mpl/assert.hpp>
    #include <boost/mpl/eval_if.hpp>
    #include <boost/utility/enable_if.hpp>
    #include <boost/type_traits/add_const.hpp>
    #include <boost/type_traits/add_reference.hpp>
    #include <boost/type_traits/remove_cv.hpp>
    #include <boost/proto/proto_fwd.hpp>
    #include <boost/proto/traits.hpp>
    #include <boost/proto/domain.hpp>
    #include <boost/proto/generate.hpp>
    #include <boost/fusion/include/begin.hpp>
    #include <boost/fusion/include/next.hpp>
    #include <boost/fusion/include/value_of.hpp>
    #include <boost/fusion/include/size.hpp>
    #include <boost/proto/detail/poly_function.hpp>
    #include <boost/proto/detail/deprecated.hpp>

    #ifdef _MSC_VER
    # pragma warning(push)
    # pragma warning(disable: 4180) // qualifier applied to function type has no meaning; ignored
    #endif

    namespace boost { namespace proto
    {
    /// INTERNAL ONLY
    ///
    #define BOOST_PROTO_AS_CHILD_TYPE(Z, N, DATA)                                                   \
        typename boost::proto::detail::protoify<                                                    \
            BOOST_PP_CAT(BOOST_PP_TUPLE_ELEM(3, 0, DATA), N)                                        \
          , BOOST_PP_TUPLE_ELEM(3, 2, DATA)                                                         \
        >::result_type                                                                              \
        /**/

    /// INTERNAL ONLY
    ///
    #define BOOST_PROTO_AS_CHILD(Z, N, DATA)                                                        \
        boost::proto::detail::protoify<                                                             \
            BOOST_PP_CAT(BOOST_PP_TUPLE_ELEM(3, 0, DATA), N)                                        \
          , BOOST_PP_TUPLE_ELEM(3, 2, DATA)                                                         \
        >()(BOOST_PP_CAT(BOOST_PP_TUPLE_ELEM(3, 1, DATA), N))                                       \
        /**/

    /// INTERNAL ONLY
    ///
    #define BOOST_PROTO_FUSION_NEXT_ITERATOR_TYPE(Z, N, DATA)                                       \
        typedef typename fusion::result_of::next<                                                   \
            BOOST_PP_CAT(fusion_iterator, N)>::type                                                 \
                BOOST_PP_CAT(fusion_iterator, BOOST_PP_INC(N));                                     \
        /**/

    /// INTERNAL ONLY
    ///
    #define BOOST_PROTO_FUSION_ITERATORS_TYPE(N)                                                    \
        typedef                                                                                     \
            typename fusion::result_of::begin<Sequence const>::type                                 \
        fusion_iterator0;                                                                           \
        BOOST_PP_REPEAT(BOOST_PP_DEC(N), BOOST_PROTO_FUSION_NEXT_ITERATOR_TYPE, fusion_iterator)    \
        /**/

    /// INTERNAL ONLY
    ///
    #define BOOST_PROTO_FUSION_AT_TYPE(Z, N, DATA)                                                  \
        typename add_const<                                                                         \
            typename fusion::result_of::value_of<                                                   \
                BOOST_PP_CAT(fusion_iterator, N)                                                    \
            >::type                                                                                 \
        >::type                                                                                     \
        /**/

    /// INTERNAL ONLY
    ///
    #define BOOST_PROTO_FUSION_NEXT_ITERATOR(Z, N, DATA)                                            \
        BOOST_PP_CAT(fusion_iterator, BOOST_PP_INC(N)) BOOST_PP_CAT(it, BOOST_PP_INC(N)) =          \
            fusion::next(BOOST_PP_CAT(it, N));                                                      \
        /**/

    /// INTERNAL ONLY
    ///
    #define BOOST_PROTO_FUSION_ITERATORS(N)                                                         \
        fusion_iterator0 it0 = fusion::begin(sequence);                                             \
        BOOST_PP_REPEAT(BOOST_PP_DEC(N), BOOST_PROTO_FUSION_NEXT_ITERATOR, fusion_iterator)         \
        /**/

    /// INTERNAL ONLY
    ///
    #define BOOST_PROTO_FUSION_AT(Z, N, DATA)                                                       \
        *BOOST_PP_CAT(it, N)                                                                        \
        /**/

    /// INTERNAL ONLY
    ///
    #define BOOST_PROTO_FUSION_AS_CHILD_AT_TYPE(Z, N, DATA)                                         \
        typename detail::protoify<                                                                  \
            BOOST_PROTO_FUSION_AT_TYPE(Z, N, DATA)                                                  \
          , Domain                                                                                  \
        >::result_type                                                                              \
        /**/

    /// INTERNAL ONLY
    ///
    #define BOOST_PROTO_FUSION_AS_CHILD_AT(Z, N, DATA)                                              \
        detail::protoify<                                                                           \
            BOOST_PROTO_FUSION_AT_TYPE(Z, N, DATA)                                                  \
          , Domain                                                                                  \
        >()(BOOST_PROTO_FUSION_AT(Z, N, DATA))                                                      \
        /**/

        namespace detail
        {
            template<typename T, typename Domain>
            struct protoify
              : Domain::template as_expr<T>
            {};

            template<typename T, typename Domain>
            struct protoify<T &, Domain>
              : Domain::template as_child<T>
            {};

            template<typename T, typename Domain>
            struct protoify<boost::reference_wrapper<T>, Domain>
              : Domain::template as_child<T>
            {};

            template<typename T, typename Domain>
            struct protoify<boost::reference_wrapper<T> const, Domain>
              : Domain::template as_child<T>
            {};

            template<typename Tag, typename Domain, typename Sequence, std::size_t Size>
            struct unpack_expr_
            {};

            template<typename Domain, typename Sequence>
            struct unpack_expr_<tag::terminal, Domain, Sequence, 1u>
            {
                typedef
                    typename add_const<
                        typename fusion::result_of::value_of<
                            typename fusion::result_of::begin<Sequence>::type
                        >::type
                    >::type
                terminal_type;

                typedef
                    typename proto::detail::protoify<
                        terminal_type
                      , Domain
                    >::result_type
                type;

                static type const call(Sequence const &sequence)
                {
                    return proto::detail::protoify<terminal_type, Domain>()(fusion::at_c<0>(sequence));
                }
            };

            template<typename Sequence>
            struct unpack_expr_<tag::terminal, deduce_domain, Sequence, 1u>
              : unpack_expr_<tag::terminal, default_domain, Sequence, 1u>
            {};

            template<
                typename Tag
              , typename Domain
                BOOST_PP_ENUM_TRAILING_BINARY_PARAMS(
                    BOOST_PROTO_MAX_ARITY
                  , typename A
                  , = void BOOST_PP_INTERCEPT
                )
              , typename _ = void
            >
            struct make_expr_
            {};

            template<typename Domain, typename A>
            struct make_expr_<tag::terminal, Domain, A
                BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, void BOOST_PP_INTERCEPT)>
            {
                typedef typename proto::detail::protoify<A, Domain>::result_type result_type;

                result_type operator()(typename add_reference<A>::type a) const
                {
                    return proto::detail::protoify<A, Domain>()(a);
                }
            };

            template<typename A>
            struct make_expr_<tag::terminal, deduce_domain, A
                BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, void BOOST_PP_INTERCEPT)>
              : make_expr_<tag::terminal, default_domain, A>
            {};

        #define BOOST_PP_ITERATION_PARAMS_1                                                         \
            (4, (1, BOOST_PROTO_MAX_ARITY, <boost/proto/make_expr.hpp>, 1))                         \
            /**/

        #include BOOST_PP_ITERATE()
        }

        namespace result_of
        {
            /// \brief Metafunction that computes the return type of the
            /// \c make_expr() function, with a domain deduced from the
            /// domains of the children.
            ///
            /// Use the <tt>result_of::make_expr\<\></tt> metafunction to
            /// compute the return type of the \c make_expr() function.
            ///
            /// In this specialization, the domain is deduced from the
            /// domains of the child types. (If
            /// <tt>is_domain\<A0\>::value</tt> is \c true, then another
            /// specialization is selected.)
            template<
                typename Tag
              , BOOST_PP_ENUM_PARAMS(BOOST_PROTO_MAX_ARITY, typename A)
              , typename Void1  // = void
              , typename Void2  // = void
            >
            struct make_expr
            {
                /// Same as <tt>result_of::make_expr\<Tag, D, A0, ... AN\>::type</tt>
                /// where \c D is the deduced domain, which is calculated as follows:
                ///
                /// For each \c x in <tt>[0,N)</tt> (proceeding in order beginning with
                /// <tt>x=0</tt>), if <tt>domain_of\<Ax\>::type</tt> is not
                /// \c default_domain, then \c D is <tt>domain_of\<Ax\>::type</tt>.
                /// Otherwise, \c D is \c default_domain.
                typedef
                    typename detail::make_expr_<
                        Tag
                      , deduce_domain
                        BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, A)
                    >::result_type
                type;
            };

            /// \brief Metafunction that computes the return type of the
            /// \c make_expr() function, within the specified domain.
            ///
            /// Use the <tt>result_of::make_expr\<\></tt> metafunction to compute
            /// the return type of the \c make_expr() function.
            template<
                typename Tag
              , typename Domain
                BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, typename A)
            >
            struct make_expr<
                Tag
              , Domain
                BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, A)
              , typename Domain::proto_is_domain_
            >
            {
                /// If \c Tag is <tt>tag::terminal</tt>, then \c type is a
                /// typedef for <tt>boost::result_of\<Domain(expr\<tag::terminal,
                /// term\<A0\> \>)\>::type</tt>.
                ///
                /// Otherwise, \c type is a typedef for <tt>boost::result_of\<Domain(expr\<Tag,
                /// listN\< as_child\<A0\>::type, ... as_child\<AN\>::type\>)
                /// \>::type</tt>, where \c N is the number of non-void template
                /// arguments, and <tt>as_child\<A\>::type</tt> is evaluated as
                /// follows:
                ///
                /// \li If <tt>is_expr\<A\>::value</tt> is \c true, then the
                /// child type is \c A.
                /// \li If \c A is <tt>B &</tt> or <tt>cv boost::reference_wrapper\<B\></tt>,
                /// and <tt>is_expr\<B\>::value</tt> is \c true, then the
                /// child type is <tt>B &</tt>.
                /// \li If <tt>is_expr\<A\>::value</tt> is \c false, then the
                /// child type is <tt>boost::result_of\<Domain(expr\<tag::terminal, term\<A\> \>
                /// )\>::type</tt>.
                /// \li If \c A is <tt>B &</tt> or <tt>cv boost::reference_wrapper\<B\></tt>,
                /// and <tt>is_expr\<B\>::value</tt> is \c false, then the
                /// child type is <tt>boost::result_of\<Domain(expr\<tag::terminal, term\<B &\> \>
                /// )\>::type</tt>.
                typedef
                    typename detail::make_expr_<
                        Tag
                      , Domain
                        BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, A)
                    >::result_type
                type;
            };

            /// \brief Metafunction that computes the return type of the
            /// \c unpack_expr() function, with a domain deduced from the
            /// domains of the children.
            ///
            /// Use the <tt>result_of::unpack_expr\<\></tt> metafunction to
            /// compute the return type of the \c unpack_expr() function.
            ///
            /// \c Sequence is a Fusion Forward Sequence.
            ///
            /// In this specialization, the domain is deduced from the
            /// domains of the child types. (If
            /// <tt>is_domain\<Sequence>::value</tt> is \c true, then another
            /// specialization is selected.)
            template<
                typename Tag
              , typename Sequence
              , typename Void1  // = void
              , typename Void2  // = void
            >
            struct unpack_expr
            {
                /// Let \c S be the type of a Fusion Random Access Sequence
                /// equivalent to \c Sequence. Then \c type is the
                /// same as <tt>result_of::make_expr\<Tag,
                /// fusion::result_of::value_at_c\<S, 0\>::type, ...
                /// fusion::result_of::value_at_c\<S, N-1\>::type\>::type</tt>,
                /// where \c N is the size of \c S.
                typedef
                    typename detail::unpack_expr_<
                        Tag
                      , deduce_domain
                      , Sequence
                      , fusion::result_of::size<Sequence>::type::value
                    >::type
                type;
            };

            /// \brief Metafunction that computes the return type of the
            /// \c unpack_expr() function, within the specified domain.
            ///
            /// Use the <tt>result_of::make_expr\<\></tt> metafunction to compute
            /// the return type of the \c make_expr() function.
            template<typename Tag, typename Domain, typename Sequence>
            struct unpack_expr<Tag, Domain, Sequence, typename Domain::proto_is_domain_>
            {
                /// Let \c S be the type of a Fusion Random Access Sequence
                /// equivalent to \c Sequence. Then \c type is the
                /// same as <tt>result_of::make_expr\<Tag, Domain,
                /// fusion::result_of::value_at_c\<S, 0\>::type, ...
                /// fusion::result_of::value_at_c\<S, N-1\>::type\>::type</tt>,
                /// where \c N is the size of \c S.
                typedef
                    typename detail::unpack_expr_<
                        Tag
                      , Domain
                      , Sequence
                      , fusion::result_of::size<Sequence>::type::value
                    >::type
                type;
            };
        }

        namespace functional
        {
            /// \brief A callable function object equivalent to the
            /// \c proto::make_expr() function.
            ///
            /// In all cases, <tt>functional::make_expr\<Tag, Domain\>()(a0, ... aN)</tt>
            /// is equivalent to <tt>proto::make_expr\<Tag, Domain\>(a0, ... aN)</tt>.
            ///
            /// <tt>functional::make_expr\<Tag\>()(a0, ... aN)</tt>
            /// is equivalent to <tt>proto::make_expr\<Tag\>(a0, ... aN)</tt>.
            template<typename Tag, typename Domain  /* = deduce_domain*/>
            struct make_expr
            {
                BOOST_PROTO_CALLABLE()
                BOOST_PROTO_POLY_FUNCTION()

                template<typename Sig>
                struct result;

                template<typename This, typename A0>
                struct result<This(A0)>
                {
                    typedef
                        typename result_of::make_expr<
                            Tag
                          , Domain
                          , A0
                        >::type
                    type;
                };

                /// Construct an expression node with tag type \c Tag
                /// and in the domain \c Domain.
                ///
                /// \return <tt>proto::make_expr\<Tag, Domain\>(a0,...aN)</tt>
                template<typename A0>
                typename result_of::make_expr<
                    Tag
                  , Domain
                  , A0 const
                >::type const
                operator ()(A0 const &a0) const
                {
                    return proto::detail::make_expr_<
                        Tag
                      , Domain
                      , A0 const
                    >()(a0);
                }

                // Additional overloads generated by the preprocessor ...

            #define BOOST_PP_ITERATION_PARAMS_1                                                     \
                (4, (2, BOOST_PROTO_MAX_ARITY, <boost/proto/make_expr.hpp>, 2))                     \
                /**/

            #include BOOST_PP_ITERATE()

                /// INTERNAL ONLY
                ///
                template<
                    BOOST_PP_ENUM_BINARY_PARAMS(
                        BOOST_PROTO_MAX_ARITY
                      , typename A
                      , = void BOOST_PP_INTERCEPT
                    )
                >
                struct impl
                  : detail::make_expr_<
                      Tag
                    , Domain
                      BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, A)
                    >
                {};
            };

            /// \brief A callable function object equivalent to the
            /// \c proto::unpack_expr() function.
            ///
            /// In all cases, <tt>functional::unpack_expr\<Tag, Domain\>()(seq)</tt>
            /// is equivalent to <tt>proto::unpack_expr\<Tag, Domain\>(seq)</tt>.
            ///
            /// <tt>functional::unpack_expr\<Tag\>()(seq)</tt>
            /// is equivalent to <tt>proto::unpack_expr\<Tag\>(seq)</tt>.
            template<typename Tag, typename Domain /* = deduce_domain*/>
            struct unpack_expr
            {
                BOOST_PROTO_CALLABLE()

                template<typename Sig>
                struct result;

                template<typename This, typename Sequence>
                struct result<This(Sequence)>
                {
                    typedef
                        typename result_of::unpack_expr<
                            Tag
                          , Domain
                          , typename remove_reference<Sequence>::type
                        >::type
                    type;
                };

                /// Construct an expression node with tag type \c Tag
                /// and in the domain \c Domain.
                ///
                /// \param sequence A Fusion Forward Sequence
                /// \return <tt>proto::unpack_expr\<Tag, Domain\>(sequence)</tt>
                template<typename Sequence>
                typename result_of::unpack_expr<Tag, Domain, Sequence const>::type const
                operator ()(Sequence const &sequence) const
                {
                    return proto::detail::unpack_expr_<
                        Tag
                      , Domain
                      , Sequence const
                      , fusion::result_of::size<Sequence>::type::value
                    >::call(sequence);
                }
            };

        } // namespace functional

        /// \brief Construct an expression of the requested tag type
        /// with a domain and with the specified arguments as children.
        ///
        /// This function template may be invoked either with or without
        /// specifying a \c Domain argument. If no domain is specified,
        /// the domain is deduced by examining in order the domains of
        /// the given arguments and taking the first that is not
        /// \c default_domain, if any such domain exists, or
        /// \c default_domain otherwise.
        ///
        /// Let \c wrap_(x) be defined such that:
        /// \li If \c x is a <tt>boost::reference_wrapper\<\></tt>,
        /// \c wrap_(x) is equivalent to <tt>as_child\<Domain\>(x.get())</tt>.
        /// \li Otherwise, \c wrap_(x) is equivalent to
        /// <tt>as_expr\<Domain\>(x)</tt>.
        ///
        /// Let <tt>make_\<Tag\>(b0,...bN)</tt> be defined as
        /// <tt>expr\<Tag, listN\<C0,...CN\> \>::make(c0,...cN)</tt>
        /// where \c Bx is the type of \c bx.
        ///
        /// \return <tt>Domain()(make_\<Tag\>(wrap_(a0),...wrap_(aN)))</tt>.
        template<typename Tag, typename A0>
        typename lazy_disable_if<
            is_domain<A0>
          , result_of::make_expr<
                Tag
              , A0 const
            >
        >::type const
        make_expr(A0 const &a0)
        {
            return proto::detail::make_expr_<
                Tag
              , deduce_domain
              , A0 const
            >()(a0);
        }

        /// \overload
        ///
        template<typename Tag, typename Domain, typename C0>
        typename result_of::make_expr<
            Tag
          , Domain
          , C0 const
        >::type const
        make_expr(C0 const &c0)
        {
            return proto::detail::make_expr_<
                Tag
              , Domain
              , C0 const
            >()(c0);
        }

        // Additional overloads generated by the preprocessor...

    #define BOOST_PP_ITERATION_PARAMS_1                                                             \
        (4, (2, BOOST_PROTO_MAX_ARITY, <boost/proto/make_expr.hpp>, 3))                             \
        /**/

    #include BOOST_PP_ITERATE()

        /// \brief Construct an expression of the requested tag type
        /// with a domain and with childres from the specified Fusion
        /// Forward Sequence.
        ///
        /// This function template may be invoked either with or without
        /// specifying a \c Domain argument. If no domain is specified,
        /// the domain is deduced by examining in order the domains of the
        /// elements of \c sequence and taking the first that is not
        /// \c default_domain, if any such domain exists, or
        /// \c default_domain otherwise.
        ///
        /// Let \c s be a Fusion Random Access Sequence equivalent to \c sequence.
        /// Let <tt>wrap_\<N\>(s)</tt>, where \c s has type \c S, be defined
        /// such that:
        /// \li If <tt>fusion::result_of::value_at_c\<S,N\>::type</tt> is a reference,
        /// <tt>wrap_\<N\>(s)</tt> is equivalent to
        /// <tt>as_child\<Domain\>(fusion::at_c\<N\>(s))</tt>.
        /// \li Otherwise, <tt>wrap_\<N\>(s)</tt> is equivalent to
        /// <tt>as_expr\<Domain\>(fusion::at_c\<N\>(s))</tt>.
        ///
        /// Let <tt>make_\<Tag\>(b0,...bN)</tt> be defined as
        /// <tt>expr\<Tag, listN\<B0,...BN\> \>::make(b0,...bN)</tt>
        /// where \c Bx is the type of \c bx.
        ///
        /// \param sequence a Fusion Forward Sequence.
        /// \return <tt>Domain()(make_\<Tag\>(wrap_\<0\>(s),...wrap_\<N-1\>(s)))</tt>,
        /// where N is the size of \c Sequence.
        template<typename Tag, typename Sequence>
        typename lazy_disable_if<
            is_domain<Sequence>
          , result_of::unpack_expr<Tag, Sequence const>
        >::type const
        unpack_expr(Sequence const &sequence)
        {
            return proto::detail::unpack_expr_<
                Tag
              , deduce_domain
              , Sequence const
              , fusion::result_of::size<Sequence>::type::value
            >::call(sequence);
        }

        /// \overload
        ///
        template<typename Tag, typename Domain, typename Sequence2>
        typename result_of::unpack_expr<Tag, Domain, Sequence2 const>::type const
        unpack_expr(Sequence2 const &sequence2)
        {
            return proto::detail::unpack_expr_<
                Tag
              , Domain
              , Sequence2 const
              , fusion::result_of::size<Sequence2>::type::value
            >::call(sequence2);
        }

        /// INTERNAL ONLY
        ///
        template<typename Tag, typename Domain>
        struct is_callable<functional::make_expr<Tag, Domain> >
          : mpl::true_
        {};

        /// INTERNAL ONLY
        ///
        template<typename Tag, typename Domain>
        struct is_callable<functional::unpack_expr<Tag, Domain> >
          : mpl::true_
        {};

    }}

    #ifdef _MSC_VER
    # pragma warning(pop)
    #endif

    #undef BOOST_PROTO_FUSION_AT
    #undef BOOST_PROTO_FUSION_AT_TYPE
    #undef BOOST_PROTO_FUSION_AS_CHILD_AT
    #undef BOOST_PROTO_FUSION_AS_CHILD_AT_TYPE
    #undef BOOST_PROTO_FUSION_NEXT_ITERATOR
    #undef BOOST_PROTO_FUSION_NEXT_ITERATOR_TYPE
    #undef BOOST_PROTO_FUSION_ITERATORS
    #undef BOOST_PROTO_FUSION_ITERATORS_TYPE

    #endif // BOOST_PROTO_MAKE_EXPR_HPP_EAN_04_01_2005

#elif BOOST_PP_ITERATION_FLAGS() == 1

    #define N BOOST_PP_ITERATION()
    #define M BOOST_PP_SUB(BOOST_PROTO_MAX_ARITY, N)

        template<typename Tag, typename Domain BOOST_PP_ENUM_TRAILING_PARAMS(N, typename A)>
        struct make_expr_<Tag, Domain BOOST_PP_ENUM_TRAILING_PARAMS(N, A)
            BOOST_PP_ENUM_TRAILING_PARAMS(M, void BOOST_PP_INTERCEPT), void>
        {
            typedef
                BOOST_PP_CAT(list, N)<
                    BOOST_PP_ENUM(N, BOOST_PROTO_AS_CHILD_TYPE, (A, ~, Domain))
                >
            proto_args;

            typedef typename base_expr<Domain, Tag, proto_args>::type expr_type;
            typedef typename Domain::proto_generator proto_generator;
            typedef typename proto_generator::template result<proto_generator(expr_type)>::type result_type;

            result_type operator()(BOOST_PP_ENUM_BINARY_PARAMS(N, typename add_reference<A, >::type a)) const
            {
                expr_type const that = {
                    BOOST_PP_ENUM(N, BOOST_PROTO_AS_CHILD, (A, a, Domain))
                };
                return proto_generator()(that);
            }
        };

        template<typename Tag BOOST_PP_ENUM_TRAILING_PARAMS(N, typename A)>
        struct make_expr_<Tag, deduce_domain BOOST_PP_ENUM_TRAILING_PARAMS(N, A)
            BOOST_PP_ENUM_TRAILING_PARAMS(M, void BOOST_PP_INTERCEPT), void>
          : make_expr_<
                Tag
              , typename BOOST_PP_CAT(deduce_domain, N)<BOOST_PP_ENUM_PARAMS(N, A)>::type
                BOOST_PP_ENUM_TRAILING_PARAMS(N, A)
            >
        {};

        template<typename Tag, typename Domain, typename Sequence>
        struct unpack_expr_<Tag, Domain, Sequence, N>
        {
            BOOST_PROTO_FUSION_ITERATORS_TYPE(N)

            typedef
                BOOST_PP_CAT(list, N)<
                    BOOST_PP_ENUM(N, BOOST_PROTO_FUSION_AS_CHILD_AT_TYPE, ~)
                >
            proto_args;

            typedef typename base_expr<Domain, Tag, proto_args>::type expr_type;
            typedef typename Domain::proto_generator proto_generator;
            typedef typename proto_generator::template result<proto_generator(expr_type)>::type type;

            static type const call(Sequence const &sequence)
            {
                BOOST_PROTO_FUSION_ITERATORS(N)
                expr_type const that = {
                    BOOST_PP_ENUM(N, BOOST_PROTO_FUSION_AS_CHILD_AT, ~)
                };
                return proto_generator()(that);
            }
        };

        template<typename Tag, typename Sequence>
        struct unpack_expr_<Tag, deduce_domain, Sequence, N>
        {
            BOOST_PROTO_FUSION_ITERATORS_TYPE(N)

            typedef
                unpack_expr_<
                    Tag
                  , typename BOOST_PP_CAT(deduce_domain, N)<
                        BOOST_PP_ENUM(N, BOOST_PROTO_FUSION_AT_TYPE, ~)
                    >::type
                  , Sequence
                  , N
                >
            other;

            typedef typename other::type type;

            static type const call(Sequence const &sequence)
            {
                return other::call(sequence);
            }
        };

    #undef N
    #undef M

#elif BOOST_PP_ITERATION_FLAGS() == 2

    #define N BOOST_PP_ITERATION()

        template<typename This BOOST_PP_ENUM_TRAILING_PARAMS(N, typename A)>
        struct result<This(BOOST_PP_ENUM_PARAMS(N, A))>
        {
            typedef
                typename result_of::make_expr<
                    Tag
                  , Domain
                    BOOST_PP_ENUM_TRAILING_PARAMS(N, A)
                >::type
            type;
        };

        /// \overload
        ///
        template<BOOST_PP_ENUM_PARAMS(N, typename A)>
        typename result_of::make_expr<
            Tag
          , Domain
            BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)
        >::type const
        operator ()(BOOST_PP_ENUM_BINARY_PARAMS(N, const A, &a)) const
        {
            return proto::detail::make_expr_<
                Tag
              , Domain
                BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)
            >()(BOOST_PP_ENUM_PARAMS(N, a));
        }

    #undef N

#elif BOOST_PP_ITERATION_FLAGS() == 3

    #define N BOOST_PP_ITERATION()

        /// \overload
        ///
        template<typename Tag BOOST_PP_ENUM_TRAILING_PARAMS(N, typename A)>
        typename lazy_disable_if<
            is_domain<A0>
          , result_of::make_expr<
                Tag
                BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)
            >
        >::type const
        make_expr(BOOST_PP_ENUM_BINARY_PARAMS(N, const A, &a))
        {
            return proto::detail::make_expr_<
                Tag
              , deduce_domain
                BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)
            >()(BOOST_PP_ENUM_PARAMS(N, a));
        }

        /// \overload
        ///
        template<typename Tag, typename Domain BOOST_PP_ENUM_TRAILING_PARAMS(N, typename C)>
        typename result_of::make_expr<
            Tag
          , Domain
            BOOST_PP_ENUM_TRAILING_PARAMS(N, const C)
        >::type const
        make_expr(BOOST_PP_ENUM_BINARY_PARAMS(N, const C, &c))
        {
            return proto::detail::make_expr_<
                Tag
              , Domain
                BOOST_PP_ENUM_TRAILING_PARAMS(N, const C)
            >()(BOOST_PP_ENUM_PARAMS(N, c));
        }

    #undef N

#endif // BOOST_PP_IS_ITERATING