/usr/include/boost/python/slice.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | #ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP
#define BOOST_PYTHON_SLICE_JDB20040105_HPP
// Copyright (c) 2004 Jonathan Brandmeyer
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/python/detail/prefix.hpp>
#include <boost/config.hpp>
#include <boost/python/object.hpp>
#include <boost/python/extract.hpp>
#include <boost/python/converter/pytype_object_mgr_traits.hpp>
#include <boost/iterator/iterator_traits.hpp>
#include <iterator>
#include <algorithm>
namespace boost { namespace python {
namespace detail
{
class BOOST_PYTHON_DECL slice_base : public object
{
public:
// Get the Python objects associated with the slice. In principle, these
// may be any arbitrary Python type, but in practice they are usually
// integers. If one or more parameter is ommited in the Python expression
// that created this slice, than that parameter is None here, and compares
// equal to a default-constructed boost::python::object.
// If a user-defined type wishes to support slicing, then support for the
// special meaning associated with negative indicies is up to the user.
object start() const;
object stop() const;
object step() const;
protected:
explicit slice_base(PyObject*, PyObject*, PyObject*);
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object)
};
}
class slice : public detail::slice_base
{
typedef detail::slice_base base;
public:
// Equivalent to slice(::)
slice() : base(0,0,0) {}
// Each argument must be slice_nil, or implicitly convertable to object.
// They should normally be integers.
template<typename Integer1, typename Integer2>
slice( Integer1 start, Integer2 stop)
: base( object(start).ptr(), object(stop).ptr(), 0 )
{}
template<typename Integer1, typename Integer2, typename Integer3>
slice( Integer1 start, Integer2 stop, Integer3 stride)
: base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() )
{}
// The following algorithm is intended to automate the process of
// determining a slice range when you want to fully support negative
// indicies and non-singular step sizes. Its functionallity is simmilar to
// PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users.
// This template returns a slice::range struct that, when used in the
// following iterative loop, will traverse a slice of the function's
// arguments.
// while (start != end) {
// do_foo(...);
// std::advance( start, step);
// }
// do_foo(...); // repeat exactly once more.
// Arguments: a [begin, end) pair of STL-conforming random-access iterators.
// Return: slice::range, where start and stop define a _closed_ interval
// that covers at most [begin, end-1] of the provided arguments, and a step
// that is non-zero.
// Throws: error_already_set() if any of the indices are neither None nor
// integers, or the slice has a step value of zero.
// std::invalid_argument if the resulting range would be empty. Normally,
// you should catch this exception and return an empty sequence of the
// appropriate type.
// Performance: constant time for random-access iterators.
// Rationale:
// closed-interval: If an open interval were used, then for a non-singular
// value for step, the required state for the end iterator could be
// beyond the one-past-the-end postion of the specified range. While
// probably harmless, the behavior of STL-conforming iterators is
// undefined in this case.
// exceptions on zero-length range: It is impossible to define a closed
// interval over an empty range, so some other form of error checking
// would have to be used by the user to prevent undefined behavior. In
// the case where the user fails to catch the exception, it will simply
// be translated to Python by the default exception handling mechanisms.
template<typename RandomAccessIterator>
struct range
{
RandomAccessIterator start;
RandomAccessIterator stop;
typename iterator_difference<RandomAccessIterator>::type step;
};
template<typename RandomAccessIterator>
slice::range<RandomAccessIterator>
get_indicies( const RandomAccessIterator& begin,
const RandomAccessIterator& end) const
{
// This is based loosely on PySlice_GetIndicesEx(), but it has been
// carefully crafted to ensure that these iterators never fall out of
// the range of the container.
slice::range<RandomAccessIterator> ret;
typedef typename iterator_difference<RandomAccessIterator>::type difference_type;
difference_type max_dist = boost::detail::distance(begin, end);
object slice_start = this->start();
object slice_stop = this->stop();
object slice_step = this->step();
// Extract the step.
if (slice_step == object()) {
ret.step = 1;
}
else {
ret.step = extract<long>( slice_step);
if (ret.step == 0) {
PyErr_SetString( PyExc_IndexError, "step size cannot be zero.");
throw_error_already_set();
}
}
// Setup the start iterator.
if (slice_start == object()) {
if (ret.step < 0) {
ret.start = end;
--ret.start;
}
else
ret.start = begin;
}
else {
difference_type i = extract<long>( slice_start);
if (i >= max_dist && ret.step > 0)
throw std::invalid_argument( "Zero-length slice");
if (i >= 0) {
ret.start = begin;
BOOST_USING_STD_MIN();
std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1));
}
else {
if (i < -max_dist && ret.step < 0)
throw std::invalid_argument( "Zero-length slice");
ret.start = end;
// Advance start (towards begin) not farther than begin.
std::advance( ret.start, (-i < max_dist) ? i : -max_dist );
}
}
// Set up the stop iterator. This one is a little trickier since slices
// define a [) range, and we are returning a [] range.
if (slice_stop == object()) {
if (ret.step < 0) {
ret.stop = begin;
}
else {
ret.stop = end;
std::advance( ret.stop, -1);
}
}
else {
difference_type i = extract<long>(slice_stop);
// First, branch on which direction we are going with this.
if (ret.step < 0) {
if (i+1 >= max_dist || i == -1)
throw std::invalid_argument( "Zero-length slice");
if (i >= 0) {
ret.stop = begin;
std::advance( ret.stop, i+1);
}
else { // i is negative, but more negative than -1.
ret.stop = end;
std::advance( ret.stop, (-i < max_dist) ? i : -max_dist);
}
}
else { // stepping forward
if (i == 0 || -i >= max_dist)
throw std::invalid_argument( "Zero-length slice");
if (i > 0) {
ret.stop = begin;
std::advance( ret.stop, (std::min)( i-1, max_dist-1));
}
else { // i is negative, but not more negative than -max_dist
ret.stop = end;
std::advance( ret.stop, i-1);
}
}
}
// Now the fun part, handling the possibilites surrounding step.
// At this point, step has been initialized, ret.stop, and ret.step
// represent the widest possible range that could be traveled
// (inclusive), and final_dist is the maximum distance covered by the
// slice.
typename iterator_difference<RandomAccessIterator>::type final_dist =
boost::detail::distance( ret.start, ret.stop);
// First case, if both ret.start and ret.stop are equal, then step
// is irrelevant and we can return here.
if (final_dist == 0)
return ret;
// Second, if there is a sign mismatch, than the resulting range and
// step size conflict: std::advance( ret.start, ret.step) goes away from
// ret.stop.
if ((final_dist > 0) != (ret.step > 0))
throw std::invalid_argument( "Zero-length slice.");
// Finally, if the last step puts us past the end, we move ret.stop
// towards ret.start in the amount of the remainder.
// I don't remember all of the oolies surrounding negative modulii,
// so I am handling each of these cases separately.
if (final_dist < 0) {
difference_type remainder = -final_dist % -ret.step;
std::advance( ret.stop, remainder);
}
else {
difference_type remainder = final_dist % ret.step;
std::advance( ret.stop, -remainder);
}
return ret;
}
public:
// This declaration, in conjunction with the specialization of
// object_manager_traits<> below, allows C++ functions accepting slice
// arguments to be called from from Python. These constructors should never
// be used in client code.
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base)
};
namespace converter {
template<>
struct object_manager_traits<slice>
: pytype_object_manager_traits<&PySlice_Type, slice>
{
};
} // !namesapce converter
} } // !namespace ::boost::python
#endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP
|