/usr/include/boost/random/inversive_congruential.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | /* boost random/inversive_congruential.hpp header file
*
* Copyright Jens Maurer 2000-2001
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id: inversive_congruential.hpp 60755 2010-03-22 00:45:06Z steven_watanabe $
*
* Revision history
* 2001-02-18 moved to individual header files
*/
#ifndef BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP
#define BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP
#include <iostream>
#include <cassert>
#include <stdexcept>
#include <boost/config.hpp>
#include <boost/static_assert.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/const_mod.hpp>
namespace boost {
namespace random {
// Eichenauer and Lehn 1986
/**
* Instantiations of class template @c inversive_congruential model a
* \pseudo_random_number_generator. It uses the inversive congruential
* algorithm (ICG) described in
*
* @blockquote
* "Inversive pseudorandom number generators: concepts, results and links",
* Peter Hellekalek, In: "Proceedings of the 1995 Winter Simulation
* Conference", C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman
* (editors), 1995, pp. 255-262. ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps
* @endblockquote
*
* The output sequence is defined by x(n+1) = (a*inv(x(n)) - b) (mod p),
* where x(0), a, b, and the prime number p are parameters of the generator.
* The expression inv(k) denotes the multiplicative inverse of k in the
* field of integer numbers modulo p, with inv(0) := 0.
*
* The template parameter IntType shall denote a signed integral type large
* enough to hold p; a, b, and p are the parameters of the generators. The
* template parameter val is the validation value checked by validation.
*
* @xmlnote
* The implementation currently uses the Euclidian Algorithm to compute
* the multiplicative inverse. Therefore, the inversive generators are about
* 10-20 times slower than the others (see section"performance"). However,
* the paper talks of only 3x slowdown, so the Euclidian Algorithm is probably
* not optimal for calculating the multiplicative inverse.
* @endxmlnote
*/
template<class IntType, IntType a, IntType b, IntType p, IntType val>
class inversive_congruential
{
public:
typedef IntType result_type;
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
static const bool has_fixed_range = true;
static const result_type min_value = (b == 0 ? 1 : 0);
static const result_type max_value = p-1;
#else
BOOST_STATIC_CONSTANT(bool, has_fixed_range = false);
#endif
BOOST_STATIC_CONSTANT(result_type, multiplier = a);
BOOST_STATIC_CONSTANT(result_type, increment = b);
BOOST_STATIC_CONSTANT(result_type, modulus = p);
result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return b == 0 ? 1 : 0; }
result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return p-1; }
/**
* Constructs an inversive_congruential generator with
* @c y0 as the initial state.
*/
explicit inversive_congruential(IntType y0 = 1) : value(y0)
{
BOOST_STATIC_ASSERT(b >= 0);
BOOST_STATIC_ASSERT(p > 1);
BOOST_STATIC_ASSERT(a >= 1);
if(b == 0)
assert(y0 > 0);
}
template<class It> inversive_congruential(It& first, It last)
{ seed(first, last); }
/** Changes the current state to y0. */
void seed(IntType y0 = 1) { value = y0; if(b == 0) assert(y0 > 0); }
template<class It> void seed(It& first, It last)
{
if(first == last)
throw std::invalid_argument("inversive_congruential::seed");
value = *first++;
}
IntType operator()()
{
typedef const_mod<IntType, p> do_mod;
value = do_mod::mult_add(a, do_mod::invert(value), b);
return value;
}
static bool validation(result_type x) { return val == x; }
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
template<class CharT, class Traits>
friend std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& os, inversive_congruential x)
{ os << x.value; return os; }
template<class CharT, class Traits>
friend std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& is, inversive_congruential& x)
{ is >> x.value; return is; }
#endif
friend bool operator==(inversive_congruential x, inversive_congruential y)
{ return x.value == y.value; }
friend bool operator!=(inversive_congruential x, inversive_congruential y)
{ return !(x == y); }
#else
// Use a member function; Streamable concept not supported.
bool operator==(inversive_congruential rhs) const
{ return value == rhs.value; }
bool operator!=(inversive_congruential rhs) const
{ return !(*this == rhs); }
#endif
private:
IntType value;
};
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
// A definition is required even for integral static constants
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const bool inversive_congruential<IntType, a, b, p, val>::has_fixed_range;
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const typename inversive_congruential<IntType, a, b, p, val>::result_type inversive_congruential<IntType, a, b, p, val>::min_value;
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const typename inversive_congruential<IntType, a, b, p, val>::result_type inversive_congruential<IntType, a, b, p, val>::max_value;
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const typename inversive_congruential<IntType, a, b, p, val>::result_type inversive_congruential<IntType, a, b, p, val>::multiplier;
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const typename inversive_congruential<IntType, a, b, p, val>::result_type inversive_congruential<IntType, a, b, p, val>::increment;
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const typename inversive_congruential<IntType, a, b, p, val>::result_type inversive_congruential<IntType, a, b, p, val>::modulus;
#endif
} // namespace random
/**
* The specialization hellekalek1995 was suggested in
*
* @blockquote
* "Inversive pseudorandom number generators: concepts, results and links",
* Peter Hellekalek, In: "Proceedings of the 1995 Winter Simulation
* Conference", C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman
* (editors), 1995, pp. 255-262. ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps
* @endblockquote
*/
typedef random::inversive_congruential<int32_t, 9102, 2147483647-36884165,
2147483647, 0> hellekalek1995;
} // namespace boost
#endif // BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP
|