/usr/include/x86_64-linux-gnu/bits/cmathcalls.h is in libc6-dev 2.15-0ubuntu10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | /* Prototype declarations for complex math functions;
helper file for <complex.h>.
Copyright (C) 1997, 1998, 2001, 2007 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
/* NOTE: Because of the special way this file is used by <complex.h>, this
file must NOT be protected from multiple inclusion as header files
usually are.
This file provides prototype declarations for the math functions.
Most functions are declared using the macro:
__MATHCALL (NAME, (ARGS...));
This means there is a function `NAME' returning `double' and a function
`NAMEf' returning `float'. Each place `_Mdouble_' appears in the
prototype, that is actually `double' in the prototype for `NAME' and
`float' in the prototype for `NAMEf'. Reentrant variant functions are
called `NAME_r' and `NAMEf_r'.
Functions returning other types like `int' are declared using the macro:
__MATHDECL (TYPE, NAME, (ARGS...));
This is just like __MATHCALL but for a function returning `TYPE'
instead of `_Mdouble_'. In all of these cases, there is still
both a `NAME' and a `NAMEf' that takes `float' arguments. */
#ifndef _COMPLEX_H
#error "Never use <bits/cmathcalls.h> directly; include <complex.h> instead."
#endif
#define _Mdouble_complex_ _Mdouble_ _Complex
/* Trigonometric functions. */
/* Arc cosine of Z. */
__MATHCALL (cacos, (_Mdouble_complex_ __z));
/* Arc sine of Z. */
__MATHCALL (casin, (_Mdouble_complex_ __z));
/* Arc tangent of Z. */
__MATHCALL (catan, (_Mdouble_complex_ __z));
/* Cosine of Z. */
__MATHCALL (ccos, (_Mdouble_complex_ __z));
/* Sine of Z. */
__MATHCALL (csin, (_Mdouble_complex_ __z));
/* Tangent of Z. */
__MATHCALL (ctan, (_Mdouble_complex_ __z));
/* Hyperbolic functions. */
/* Hyperbolic arc cosine of Z. */
__MATHCALL (cacosh, (_Mdouble_complex_ __z));
/* Hyperbolic arc sine of Z. */
__MATHCALL (casinh, (_Mdouble_complex_ __z));
/* Hyperbolic arc tangent of Z. */
__MATHCALL (catanh, (_Mdouble_complex_ __z));
/* Hyperbolic cosine of Z. */
__MATHCALL (ccosh, (_Mdouble_complex_ __z));
/* Hyperbolic sine of Z. */
__MATHCALL (csinh, (_Mdouble_complex_ __z));
/* Hyperbolic tangent of Z. */
__MATHCALL (ctanh, (_Mdouble_complex_ __z));
/* Exponential and logarithmic functions. */
/* Exponential function of Z. */
__MATHCALL (cexp, (_Mdouble_complex_ __z));
/* Natural logarithm of Z. */
__MATHCALL (clog, (_Mdouble_complex_ __z));
#ifdef __USE_GNU
/* The base 10 logarithm is not defined by the standard but to implement
the standard C++ library it is handy. */
__MATHCALL (clog10, (_Mdouble_complex_ __z));
#endif
/* Power functions. */
/* Return X to the Y power. */
__MATHCALL (cpow, (_Mdouble_complex_ __x, _Mdouble_complex_ __y));
/* Return the square root of Z. */
__MATHCALL (csqrt, (_Mdouble_complex_ __z));
/* Absolute value, conjugates, and projection. */
/* Absolute value of Z. */
__MATHDECL (_Mdouble_,cabs, (_Mdouble_complex_ __z));
/* Argument value of Z. */
__MATHDECL (_Mdouble_,carg, (_Mdouble_complex_ __z));
/* Complex conjugate of Z. */
__MATHCALL (conj, (_Mdouble_complex_ __z));
/* Projection of Z onto the Riemann sphere. */
__MATHCALL (cproj, (_Mdouble_complex_ __z));
/* Decomposing complex values. */
/* Imaginary part of Z. */
__MATHDECL (_Mdouble_,cimag, (_Mdouble_complex_ __z));
/* Real part of Z. */
__MATHDECL (_Mdouble_,creal, (_Mdouble_complex_ __z));
/* Now some optimized versions. GCC has handy notations for these
functions. Recent GCC handles these as builtin functions so does
not need inlines. */
#if defined __GNUC__ && !__GNUC_PREREQ (2, 97) && defined __OPTIMIZE__ \
&& defined __extern_inline
/* Imaginary part of Z. */
__extern_inline _Mdouble_
__MATH_PRECNAME(cimag) (_Mdouble_complex_ __z) __THROW
{
return __imag__ __z;
}
/* Real part of Z. */
__extern_inline _Mdouble_
__MATH_PRECNAME(creal) (_Mdouble_complex_ __z) __THROW
{
return __real__ __z;
}
/* Complex conjugate of Z. */
__extern_inline _Mdouble_complex_
__MATH_PRECNAME(conj) (_Mdouble_complex_ __z) __THROW
{
return __extension__ ~__z;
}
#endif
|