/usr/include/cln/rational.h is in libcln-dev 1.3.2-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | // Public rational number operations.
#ifndef _CL_RATIONAL_H
#define _CL_RATIONAL_H
#include "cln/number.h"
#include "cln/rational_class.h"
#include "cln/integer_class.h"
#include "cln/exception.h"
namespace cln {
CL_DEFINE_AS_CONVERSION(cl_RA)
// numerator(r) liefert den Zähler der rationalen Zahl r.
extern const cl_I numerator (const cl_RA& r);
// denominator(r) liefert den Nenner (> 0) der rationalen Zahl r.
extern const cl_I denominator (const cl_RA& r);
// Liefert (- r), wo r eine rationale Zahl ist.
extern const cl_RA operator- (const cl_RA& r);
// (+ r s), wo r und s rationale Zahlen sind.
extern const cl_RA operator+ (const cl_RA& r, const cl_RA& s);
// Dem C++-Compiler muß man auch das Folgende sagen:
inline const cl_RA operator+ (const int x, const cl_RA& y)
{ return cl_I(x) + y; }
inline const cl_RA operator+ (const unsigned int x, const cl_RA& y)
{ return cl_I(x) + y; }
inline const cl_RA operator+ (const long x, const cl_RA& y)
{ return cl_I(x) + y; }
inline const cl_RA operator+ (const unsigned long x, const cl_RA& y)
{ return cl_I(x) + y; }
#ifdef HAVE_LONGLONG
inline const cl_RA operator+ (const long long x, const cl_RA& y)
{ return cl_I(x) + y; }
inline const cl_RA operator+ (const unsigned long long x, const cl_RA& y)
{ return cl_I(x) + y; }
#endif
inline const cl_RA operator+ (const cl_RA& x, const int y)
{ return x + cl_I(y); }
inline const cl_RA operator+ (const cl_RA& x, const unsigned int y)
{ return x + cl_I(y); }
inline const cl_RA operator+ (const cl_RA& x, const long y)
{ return x + cl_I(y); }
inline const cl_RA operator+ (const cl_RA& x, const unsigned long y)
{ return x + cl_I(y); }
#ifdef HAVE_LONGLONG
inline const cl_RA operator+ (const cl_RA& x, const long long y)
{ return x + cl_I(y); }
inline const cl_RA operator+ (const cl_RA& x, const unsigned long long y)
{ return x + cl_I(y); }
#endif
// (- r s), wo r und s rationale Zahlen sind.
extern const cl_RA operator- (const cl_RA& r, const cl_RA& s);
// Dem C++-Compiler muß man auch das Folgende sagen:
inline const cl_RA operator- (const int x, const cl_RA& y)
{ return cl_I(x) - y; }
inline const cl_RA operator- (const unsigned int x, const cl_RA& y)
{ return cl_I(x) - y; }
inline const cl_RA operator- (const long x, const cl_RA& y)
{ return cl_I(x) - y; }
inline const cl_RA operator- (const unsigned long x, const cl_RA& y)
{ return cl_I(x) - y; }
#ifdef HAVE_LONGLONG
inline const cl_RA operator- (const long long x, const cl_RA& y)
{ return cl_I(x) - y; }
inline const cl_RA operator- (const unsigned long long x, const cl_RA& y)
{ return cl_I(x) - y; }
#endif
inline const cl_RA operator- (const cl_RA& x, const int y)
{ return x - cl_I(y); }
inline const cl_RA operator- (const cl_RA& x, const unsigned int y)
{ return x - cl_I(y); }
inline const cl_RA operator- (const cl_RA& x, const long y)
{ return x - cl_I(y); }
inline const cl_RA operator- (const cl_RA& x, const unsigned long y)
{ return x - cl_I(y); }
#ifdef HAVE_LONGLONG
inline const cl_RA operator- (const cl_RA& x, const long long y)
{ return x - cl_I(y); }
inline const cl_RA operator- (const cl_RA& x, const unsigned long long y)
{ return x - cl_I(y); }
#endif
// (1+ r), wo r eine rationale Zahl ist.
extern const cl_RA plus1 (const cl_RA& r);
// (1- r), wo r eine rationale Zahl ist.
extern const cl_RA minus1 (const cl_RA& r);
// (abs r), wo r eine rationale Zahl ist.
extern const cl_RA abs (const cl_RA& r);
// equal(r,s) vergleicht zwei rationale Zahlen r und s auf Gleichheit.
extern bool equal (const cl_RA& r, const cl_RA& s);
// equal_hashcode(r) liefert einen equal-invarianten Hashcode für r.
extern uint32 equal_hashcode (const cl_RA& r);
// compare(r,s) vergleicht zwei rationale Zahlen r und s.
// Ergebnis: 0 falls r=s, +1 falls r>s, -1 falls r<s.
extern cl_signean compare (const cl_RA& r, const cl_RA& s);
inline bool operator== (const cl_RA& x, const cl_RA& y)
{ return equal(x,y); }
inline bool operator!= (const cl_RA& x, const cl_RA& y)
{ return !equal(x,y); }
inline bool operator<= (const cl_RA& x, const cl_RA& y)
{ return compare(x,y)<=0; }
inline bool operator< (const cl_RA& x, const cl_RA& y)
{ return compare(x,y)<0; }
inline bool operator>= (const cl_RA& x, const cl_RA& y)
{ return compare(x,y)>=0; }
inline bool operator> (const cl_RA& x, const cl_RA& y)
{ return compare(x,y)>0; }
// minusp(x) == (< x 0)
extern bool minusp (const cl_RA& x);
// zerop(x) stellt fest, ob eine rationale Zahl = 0 ist.
extern bool zerop (const cl_RA& x);
// plusp(x) == (> x 0)
extern bool plusp (const cl_RA& x);
// Kehrwert (/ r), wo r eine rationale Zahl ist.
extern const cl_RA recip (const cl_RA& r);
// Liefert (* r s), wo r und s rationale Zahlen sind.
extern const cl_RA operator* (const cl_RA& r, const cl_RA& s);
// Dem C++-Compiler muß man auch das Folgende sagen:
inline const cl_RA operator* (const int x, const cl_RA& y)
{ return cl_I(x) * y; }
inline const cl_RA operator* (const unsigned int x, const cl_RA& y)
{ return cl_I(x) * y; }
inline const cl_RA operator* (const long x, const cl_RA& y)
{ return cl_I(x) * y; }
inline const cl_RA operator* (const unsigned long x, const cl_RA& y)
{ return cl_I(x) * y; }
#ifdef HAVE_LONGLONG
inline const cl_RA operator* (const long long x, const cl_RA& y)
{ return cl_I(x) * y; }
inline const cl_RA operator* (const unsigned long long x, const cl_RA& y)
{ return cl_I(x) * y; }
#endif
inline const cl_RA operator* (const cl_RA& x, const int y)
{ return x * cl_I(y); }
inline const cl_RA operator* (const cl_RA& x, const unsigned int y)
{ return x * cl_I(y); }
inline const cl_RA operator* (const cl_RA& x, const long y)
{ return x * cl_I(y); }
inline const cl_RA operator* (const cl_RA& x, const unsigned long y)
{ return x * cl_I(y); }
#ifdef HAVE_LONGLONG
inline const cl_RA operator* (const cl_RA& x, const long long y)
{ return x * cl_I(y); }
inline const cl_RA operator* (const cl_RA& x, const unsigned long long y)
{ return x * cl_I(y); }
#endif
// Quadrat (* r r), wo r eine rationale Zahl ist.
extern const cl_RA square (const cl_RA& r);
// Liefert (/ r s), wo r und s rationale Zahlen sind.
extern const cl_RA operator/ (const cl_RA& r, const cl_RA& s);
// Dem C++-Compiler muß man auch das Folgende sagen:
inline const cl_RA operator/ (const int x, const cl_RA& y)
{ return cl_I(x) / y; }
inline const cl_RA operator/ (const unsigned int x, const cl_RA& y)
{ return cl_I(x) / y; }
inline const cl_RA operator/ (const long x, const cl_RA& y)
{ return cl_I(x) / y; }
inline const cl_RA operator/ (const unsigned long x, const cl_RA& y)
{ return cl_I(x) / y; }
#ifdef HAVE_LONGLONG
inline const cl_RA operator/ (const long long x, const cl_RA& y)
{ return cl_I(x) / y; }
inline const cl_RA operator/ (const unsigned long long x, const cl_RA& y)
{ return cl_I(x) / y; }
#endif
inline const cl_RA operator/ (const cl_RA& x, const int y)
{ return x / cl_I(y); }
inline const cl_RA operator/ (const cl_RA& x, const unsigned int y)
{ return x / cl_I(y); }
inline const cl_RA operator/ (const cl_RA& x, const long y)
{ return x / cl_I(y); }
inline const cl_RA operator/ (const cl_RA& x, const unsigned long y)
{ return x / cl_I(y); }
#ifdef HAVE_LONGLONG
inline const cl_RA operator/ (const cl_RA& x, const long long y)
{ return x / cl_I(y); }
inline const cl_RA operator/ (const cl_RA& x, const unsigned long long y)
{ return x / cl_I(y); }
#endif
// Return type for rounding operators.
// x / y --> (q,r) with x = y*q+r.
struct cl_RA_div_t {
cl_I quotient;
cl_RA remainder;
// Constructor.
cl_RA_div_t () {}
cl_RA_div_t (const cl_I& q, const cl_RA& r) : quotient(q), remainder(r) {}
};
// Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl.
// (q,r) := (floor x)
// floor2(x)
// > x: rationale Zahl
// < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl
extern const cl_RA_div_t floor2 (const cl_RA& x);
extern const cl_I floor1 (const cl_RA& x);
// Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl.
// (q,r) := (ceiling x)
// ceiling2(x)
// > x: rationale Zahl
// < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl
extern const cl_RA_div_t ceiling2 (const cl_RA& x);
extern const cl_I ceiling1 (const cl_RA& x);
// Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl.
// (q,r) := (truncate x)
// truncate2(x)
// > x: rationale Zahl
// < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl
extern const cl_RA_div_t truncate2 (const cl_RA& x);
extern const cl_I truncate1 (const cl_RA& x);
// Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl.
// (q,r) := (round x)
// round2(x)
// > x: rationale Zahl
// < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl
extern const cl_RA_div_t round2 (const cl_RA& x);
extern const cl_I round1 (const cl_RA& x);
// floor2(x,y) liefert (floor x y).
extern const cl_RA_div_t floor2 (const cl_RA& x, const cl_RA& y);
extern const cl_I floor1 (const cl_RA& x, const cl_RA& y);
// ceiling2(x,y) liefert (ceiling x y).
extern const cl_RA_div_t ceiling2 (const cl_RA& x, const cl_RA& y);
extern const cl_I ceiling1 (const cl_RA& x, const cl_RA& y);
// truncate2(x,y) liefert (truncate x y).
extern const cl_RA_div_t truncate2 (const cl_RA& x, const cl_RA& y);
extern const cl_I truncate1 (const cl_RA& x, const cl_RA& y);
// round2(x,y) liefert (round x y).
extern const cl_RA_div_t round2 (const cl_RA& x, const cl_RA& y);
extern const cl_I round1 (const cl_RA& x, const cl_RA& y);
// max(x,y) liefert (max x y), wo x und y rationale Zahlen sind.
extern const cl_RA max (const cl_RA& x, const cl_RA& y);
// min(x,y) liefert (min x y), wo x und y rationale Zahlen sind.
extern const cl_RA min (const cl_RA& x, const cl_RA& y);
// signum(x) liefert (signum x), wo x eine rationale Zahl ist.
extern const cl_RA signum (const cl_RA& x);
// (expt x y), wo x eine rationale Zahl und y ein Integer >0 ist.
extern const cl_RA expt_pos (const cl_RA& x, uintL y);
extern const cl_RA expt_pos (const cl_RA& x, const cl_I& y);
// (expt x y), wo x eine rationale Zahl und y ein Integer ist.
extern const cl_RA expt (const cl_RA& x, sintL y);
extern const cl_RA expt (const cl_RA& x, const cl_I& y);
// Stellt fest, ob eine rationale Zahl >=0 das Quadrat einer rationalen Zahl
// ist.
// sqrtp(x,&w)
// > x: eine rationale Zahl >=0
// < w: rationale Zahl (sqrt x) falls x Quadratzahl
// < ergebnis: true ..................., false sonst
extern bool sqrtp (const cl_RA& x, cl_RA* w);
// Stellt fest, ob eine rationale Zahl >=0 die n-te Potenz einer rationalen Zahl
// ist.
// rootp(x,n,&w)
// > x: eine rationale Zahl >=0
// > n: ein Integer >0
// < w: exakte n-te Wurzel (expt x (/ n)) falls x eine n-te Potenz
// < ergebnis: true ........................, false sonst
extern bool rootp (const cl_RA& x, uintL n, cl_RA* w);
extern bool rootp (const cl_RA& x, const cl_I& n, cl_RA* w);
// Liefert zu Integers a>0, b>1 den Logarithmus log(a,b),
// falls er eine rationale Zahl ist.
// logp(a,b,&l)
// > a: ein Integer >0
// > b: ein Integer >1
// < l: log(a,b) falls er eine exakte rationale Zahl ist
// < ergebnis: true ......................................., false sonst
extern bool logp (const cl_I& a, const cl_I& b, cl_RA* l);
// Liefert zu rationalen Zahlen a>0, b>0 den Logarithmus log(a,b),
// falls er eine rationale Zahl ist.
// logp(a,b,&l)
// > a: eine rationale Zahl >0
// > b: eine rationale Zahl >0, /=1
// < l: log(a,b) falls er eine exakte rationale Zahl ist
// < ergebnis: true ......................................., false sonst
extern bool logp (const cl_RA& a, const cl_RA& b, cl_RA* l);
// Konversion zu einem C "float".
extern float float_approx (const cl_RA& x);
// Konversion zu einem C "double".
extern double double_approx (const cl_RA& x);
// This could be optimized to use in-place operations.
inline cl_RA& operator+= (cl_RA& x, const cl_RA& y) { return x = x + y; }
inline cl_RA& operator+= (cl_RA& x, const int y) { return x = x + y; }
inline cl_RA& operator+= (cl_RA& x, const unsigned int y) { return x = x + y; }
inline cl_RA& operator+= (cl_RA& x, const long y) { return x = x + y; }
inline cl_RA& operator+= (cl_RA& x, const unsigned long y) { return x = x + y; }
#ifdef HAVE_LONGLONG
inline cl_RA& operator+= (cl_RA& x, const long long y) { return x = x + y; }
inline cl_RA& operator+= (cl_RA& x, const unsigned long long y) { return x = x + y; }
#endif
inline cl_RA& operator++ /* prefix */ (cl_RA& x) { return x = plus1(x); }
inline void operator++ /* postfix */ (cl_RA& x, int dummy) { (void)dummy; x = plus1(x); }
inline cl_RA& operator-= (cl_RA& x, const cl_RA& y) { return x = x - y; }
inline cl_RA& operator-= (cl_RA& x, const int y) { return x = x - y; }
inline cl_RA& operator-= (cl_RA& x, const unsigned int y) { return x = x - y; }
inline cl_RA& operator-= (cl_RA& x, const long y) { return x = x - y; }
inline cl_RA& operator-= (cl_RA& x, const unsigned long y) { return x = x - y; }
#ifdef HAVE_LONGLONG
inline cl_RA& operator-= (cl_RA& x, const long long y) { return x = x - y; }
inline cl_RA& operator-= (cl_RA& x, const unsigned long long y) { return x = x - y; }
#endif
inline cl_RA& operator-- /* prefix */ (cl_RA& x) { return x = minus1(x); }
inline void operator-- /* postfix */ (cl_RA& x, int dummy) { (void)dummy; x = minus1(x); }
inline cl_RA& operator*= (cl_RA& x, const cl_RA& y) { return x = x * y; }
inline cl_RA& operator/= (cl_RA& x, const cl_RA& y) { return x = x / y; }
// Runtime typing support.
extern cl_class cl_class_ratio;
// Debugging support.
#ifdef CL_DEBUG
extern int cl_RA_debug_module;
CL_FORCE_LINK(cl_RA_debug_dummy, cl_RA_debug_module)
#endif
} // namespace cln
#endif /* _CL_RATIONAL_H */
|