This file is indexed.

/usr/include/cln/univpoly_rational.h is in libcln-dev 1.3.2-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Univariate Polynomials over the rational numbers.

#ifndef _CL_UNIVPOLY_RATIONAL_H
#define _CL_UNIVPOLY_RATIONAL_H

#include "cln/ring.h"
#include "cln/univpoly.h"
#include "cln/number.h"
#include "cln/rational_class.h"
#include "cln/integer_class.h"
#include "cln/rational_ring.h"

namespace cln {

// Normal univariate polynomials with stricter static typing:
// `cl_RA' instead of `cl_ring_element'.

#ifdef notyet

typedef cl_UP_specialized<cl_RA> cl_UP_RA;
typedef cl_univpoly_specialized_ring<cl_RA> cl_univpoly_rational_ring;
//typedef cl_heap_univpoly_specialized_ring<cl_RA> cl_heap_univpoly_rational_ring;

#else

class cl_heap_univpoly_rational_ring;

class cl_univpoly_rational_ring : public cl_univpoly_ring {
public:
	// Default constructor.
	cl_univpoly_rational_ring () : cl_univpoly_ring () {}
	// Copy constructor.
	cl_univpoly_rational_ring (const cl_univpoly_rational_ring&);
	// Assignment operator.
	cl_univpoly_rational_ring& operator= (const cl_univpoly_rational_ring&);
	// Automatic dereferencing.
	cl_heap_univpoly_rational_ring* operator-> () const
	{ return (cl_heap_univpoly_rational_ring*)heappointer; }
};
// Copy constructor and assignment operator.
CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_rational_ring,cl_univpoly_ring)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_rational_ring,cl_univpoly_rational_ring)

class cl_UP_RA : public cl_UP {
public:
	const cl_univpoly_rational_ring& ring () const { return The(cl_univpoly_rational_ring)(_ring); }
	// Conversion.
	CL_DEFINE_CONVERTER(cl_ring_element)
	// Destructive modification.
	void set_coeff (uintL index, const cl_RA& y);
	void finalize();
	// Evaluation.
	const cl_RA operator() (const cl_RA& y) const;
public:	// Ability to place an object at a given address.
	void* operator new (size_t size) { return malloc_hook(size); }
	void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
	void operator delete (void* ptr) { free_hook(ptr); }
};

class cl_heap_univpoly_rational_ring : public cl_heap_univpoly_ring {
	SUBCLASS_cl_heap_univpoly_ring()
	// High-level operations.
	void fprint (std::ostream& stream, const cl_UP_RA& x)
	{
		cl_heap_univpoly_ring::fprint(stream,x);
	}
	bool equal (const cl_UP_RA& x, const cl_UP_RA& y)
	{
		return cl_heap_univpoly_ring::equal(x,y);
	}
	const cl_UP_RA zero ()
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::zero());
	}
	bool zerop (const cl_UP_RA& x)
	{
		return cl_heap_univpoly_ring::zerop(x);
	}
	const cl_UP_RA plus (const cl_UP_RA& x, const cl_UP_RA& y)
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::plus(x,y));
	}
	const cl_UP_RA minus (const cl_UP_RA& x, const cl_UP_RA& y)
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::minus(x,y));
	}
	const cl_UP_RA uminus (const cl_UP_RA& x)
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::uminus(x));
	}
	const cl_UP_RA one ()
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::one());
	}
	const cl_UP_RA canonhom (const cl_I& x)
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::canonhom(x));
	}
	const cl_UP_RA mul (const cl_UP_RA& x, const cl_UP_RA& y)
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::mul(x,y));
	}
	const cl_UP_RA square (const cl_UP_RA& x)
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::square(x));
	}
	const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y)
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::expt_pos(x,y));
	}
	const cl_UP_RA scalmul (const cl_RA& x, const cl_UP_RA& y)
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::scalmul(cl_ring_element(cl_RA_ring,x),y));
	}
	sintL degree (const cl_UP_RA& x)
	{
		return cl_heap_univpoly_ring::degree(x);
	}
	sintL ldegree (const cl_UP_RA& x)
	{
		return cl_heap_univpoly_ring::ldegree(x);
	}
	const cl_UP_RA monomial (const cl_RA& x, uintL e)
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_RA_ring,x),e));
	}
	const cl_RA coeff (const cl_UP_RA& x, uintL index)
	{
		return The(cl_RA)(cl_heap_univpoly_ring::coeff(x,index));
	}
	const cl_UP_RA create (sintL deg)
	{
		return The2(cl_UP_RA)(cl_heap_univpoly_ring::create(deg));
	}
	void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y)
	{
		cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_RA_ring,y));
	}
	void finalize (cl_UP_RA& x)
	{
		cl_heap_univpoly_ring::finalize(x);
	}
	const cl_RA eval (const cl_UP_RA& x, const cl_RA& y)
	{
		return The(cl_RA)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_RA_ring,y)));
	}
private:
	// No need for any constructors.
	cl_heap_univpoly_rational_ring ();
};

// Lookup of polynomial rings.
inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r)
{ return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r)); }
inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r, const cl_symbol& varname)
{ return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r,varname)); }

// Operations on polynomials.

// Add.
inline const cl_UP_RA operator+ (const cl_UP_RA& x, const cl_UP_RA& y)
	{ return x.ring()->plus(x,y); }

// Negate.
inline const cl_UP_RA operator- (const cl_UP_RA& x)
	{ return x.ring()->uminus(x); }

// Subtract.
inline const cl_UP_RA operator- (const cl_UP_RA& x, const cl_UP_RA& y)
	{ return x.ring()->minus(x,y); }

// Multiply.
inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_UP_RA& y)
	{ return x.ring()->mul(x,y); }

// Squaring.
inline const cl_UP_RA square (const cl_UP_RA& x)
	{ return x.ring()->square(x); }

// Exponentiation x^y, where y > 0.
inline const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y)
	{ return x.ring()->expt_pos(x,y); }

// Scalar multiplication.
#if 0 // less efficient
inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y)
	{ return y.ring()->mul(y.ring()->canonhom(x),y); }
inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y)
	{ return x.ring()->mul(x.ring()->canonhom(y),x); }
#endif
inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y)
	{ return y.ring()->scalmul(x,y); }
inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y)
	{ return x.ring()->scalmul(y,x); }
inline const cl_UP_RA operator* (const cl_RA& x, const cl_UP_RA& y)
	{ return y.ring()->scalmul(x,y); }
inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_RA& y)
	{ return x.ring()->scalmul(y,x); }

// Coefficient.
inline const cl_RA coeff (const cl_UP_RA& x, uintL index)
	{ return x.ring()->coeff(x,index); }

// Destructive modification.
inline void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y)
	{ x.ring()->set_coeff(x,index,y); }
inline void finalize (cl_UP_RA& x)
	{ x.ring()->finalize(x); }
inline void cl_UP_RA::set_coeff (uintL index, const cl_RA& y)
	{ ring()->set_coeff(*this,index,y); }
inline void cl_UP_RA::finalize ()
	{ ring()->finalize(*this); }

// Evaluation. (No extension of the base ring allowed here for now.)
inline const cl_RA cl_UP_RA::operator() (const cl_RA& y) const
{
	return ring()->eval(*this,y);
}

// Derivative.
inline const cl_UP_RA deriv (const cl_UP_RA& x)
	{ return The2(cl_UP_RA)(deriv((const cl_UP&)x)); }

#endif


// Returns the n-th Legendre polynomial (n >= 0).
extern const cl_UP_RA legendre (sintL n);

}  // namespace cln

#endif /* _CL_UNIVPOLY_RATIONAL_H */