This file is indexed.

/usr/include/gxsys/hashtable.hxx is in libgccxml-dev 0.9.0+cvs20111013-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
/*============================================================================
  KWSys - Kitware System Library
  Copyright 2000-2009 Kitware, Inc., Insight Software Consortium

  Distributed under the OSI-approved BSD License (the "License");
  see accompanying file Copyright.txt for details.

  This software is distributed WITHOUT ANY WARRANTY; without even the
  implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  See the License for more information.
============================================================================*/
/*
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 */
#ifdef __BORLANDC__
# pragma warn -8027 /* 'for' not inlined.  */
# pragma warn -8026 /* 'exception' not inlined.  */
#endif 

#ifndef gxsys_hashtable_hxx
#define gxsys_hashtable_hxx

#include <gxsys/Configure.hxx>

#include <gxsys/cstddef>        // size_t
#include <gxsys/stl/algorithm>  // lower_bound
#include <gxsys/stl/functional> // unary_function
#include <gxsys/stl/iterator>   // iterator_traits
#include <gxsys/stl/memory>     // allocator
#include <gxsys/stl/utility>    // pair
#include <gxsys/stl/vector>     // vector

#if defined(_MSC_VER)
# pragma warning (push)
# pragma warning (disable:4284)
# pragma warning (disable:4786)
# pragma warning (disable:4512) /* no assignment operator for class */
#endif
#if defined(__sgi) && !defined(__GNUC__)
# pragma set woff 3970 /* pointer to int conversion */ 3321 3968
#endif

#if gxsys_STL_HAS_ALLOCATOR_TEMPLATE
# define gxsys_HASH_DEFAULT_ALLOCATOR(T) gxsys_stl::allocator< T >
#elif gxsys_STL_HAS_ALLOCATOR_NONTEMPLATE
# define gxsys_HASH_DEFAULT_ALLOCATOR(T) gxsys_stl::allocator
#else
# define gxsys_HASH_DEFAULT_ALLOCATOR(T) gxsys_stl::alloc
#endif

#if gxsys_STL_HAS_ALLOCATOR_OBJECTS
# define gxsys_HASH_BUCKETS_INIT(__a) _M_buckets(__a)
# define gxsys_HASH_BUCKETS_GET_ALLOCATOR(__b) , __b.get_allocator()
#else
# define gxsys_HASH_BUCKETS_INIT(__a) _M_buckets()
# define gxsys_HASH_BUCKETS_GET_ALLOCATOR(__b)
#endif

namespace gxsys
{

//----------------------------------------------------------------------------
// Define an allocator adaptor for platforms that do not provide an
// allocator with the rebind member.
#if !gxsys_STL_HAS_ALLOCATOR_REBIND

// Utility functions to convert item counts.
inline size_t hash_sizeof(void*) { return sizeof(char); }
inline size_t hash_sizeof(const void*) { return sizeof(char); }
template <class TPtr> inline size_t hash_sizeof(TPtr p)
{
  static_cast<void>(p);
  return sizeof(*p);
}
template <class POut, class PIn, class TSize>
inline TSize hash_allocator_n(POut out, PIn in, TSize n)
{
  return n*(hash_sizeof(out)/hash_sizeof(in) +
            (hash_sizeof(out)%hash_sizeof(in)>0));
}

// Define an allocation method to use the native allocator with
// the proper signature.  The following signatures of the allocate
// method are used on various STL implementations:
//   pointer allocate(size_type, const void* hint)
//   pointer allocate(size_type)
//   static pointer allocate(size_type, const void* hint)
//   static pointer allocate(size_type)
// Where pointer might be a real type or void*.
// This set of overloads decodes the signature for a particular STL.
// The extra three int/long arguments will favor certain signatures
// over others in the case that multiple are present to avoid
// ambiguity errors.
template <class TAlloc, class PIn, class TSize, class THint, class POut>
inline void hash_allocate(TAlloc* a, PIn (TAlloc::*allocate)(TSize, THint),
                          TSize n_out, const void* hint, POut& out,
                          int, int, int)
{
  TSize n_in = hash_allocator_n(POut(), PIn(), n_out);
  void* vout = (a->*allocate)(n_in, const_cast<THint>(hint));
  out = static_cast<POut>(vout);
}

template <class TAlloc, class PIn, class TSize, class POut>
inline void hash_allocate(TAlloc* a, PIn (TAlloc::*allocate)(TSize),
                          TSize n_out, const void*, POut& out,
                          int, int, long)
{
  TSize n_in = hash_allocator_n(POut(), PIn(), n_out);
  void* vout = (a->*allocate)(n_in);
  out = static_cast<POut>(vout);
}

template <class PIn, class TSize, class THint, class POut>
inline void hash_allocate(void*, PIn (*allocate)(TSize, THint),
                          TSize n_out, const void* hint, POut& out,
                          int, long, long)
{
  TSize n_in = hash_allocator_n(POut(), PIn(), n_out);
  void* vout = allocate(n_in, const_cast<THint>(hint));
  out = static_cast<POut>(vout);
}

template <class PIn, class TSize, class POut>
inline void hash_allocate(void*, PIn (*allocate)(TSize),
                          TSize n_out, const void*, POut& out,
                          long, long, long)
{
  TSize n_in = hash_allocator_n(POut(), PIn(), n_out);
  void* vout = allocate(n_in);
  out = static_cast<POut>(vout);
}

// Define a deallocation method to use the native allocator with
// the proper signature.  The following signatures of the deallocate
// method are used on various STL implementations:
//   void deallocate(pointer, size_type)
//   void deallocate(pointer)
//   static void deallocate(pointer, size_type)
//   static void deallocate(pointer)
// Where pointer might be a real type or void*.
// This set of overloads decodes the signature for a particular STL.
// The extra three int/long arguments will favor certain signatures
// over others in the case that multiple are present to avoid
// ambiguity errors.
template <class TAlloc, class PIn, class TSize, class PInReal, class POut>
inline void hash_deallocate(TAlloc* a, void (TAlloc::*deallocate)(PIn, TSize),
                            PInReal, POut p, TSize n_out, int, int, int)
{
  TSize n_in = hash_allocator_n(POut(), PInReal(), n_out);
  void* vout = p;
  (a->*deallocate)(static_cast<PIn>(vout), n_in);
}

template <class TAlloc, class PIn, class TSize, class PInReal, class POut>
inline void hash_deallocate(TAlloc* a, void (TAlloc::*deallocate)(PIn),
                            PInReal, POut p, TSize, int, int, long)
{
  void* vout = p;
  (a->*deallocate)(static_cast<PIn>(vout));
}

template <class PIn, class TSize, class PInReal, class POut>
inline void hash_deallocate(void*, void (*deallocate)(PIn, TSize),
                            PInReal, POut p, TSize n_out, int, long, long)
{
  TSize n_in = hash_allocator_n(POut(), PInReal(), n_out);
  void* vout = p;
  deallocate(static_cast<PIn>(vout), n_in);
}

template <class PIn, class TSize, class PInReal, class POut>
inline void hash_deallocate(void*, void (*deallocate)(PIn),
                            PInReal, POut p, TSize, long, long, long)
{
  void* vout = p;
  deallocate(static_cast<PIn>(vout));
}

// Use the same four overloads as hash_allocate to decode the type
// really used for allocation.  This is passed as PInReal to the
// deallocate functions so that hash_allocator_n has the proper size.
template <class TAlloc, class PIn, class TSize, class THint>
inline PIn hash_allocate_type(PIn (TAlloc::*)(TSize, THint),
                              int, int, int) { return 0; }
template <class TAlloc, class PIn, class TSize>
inline PIn hash_allocate_type(PIn (TAlloc::*)(TSize),
                              int, int, long) { return 0; }
template <class PIn, class TSize, class THint>
inline PIn hash_allocate_type(PIn (*)(TSize, THint),
                              int, long, long) { return 0; }
template <class PIn, class TSize>
inline PIn hash_allocate_type(PIn (*)(TSize),
                              long, long, long) { return 0; }

// Define the comparison operators in terms of a base type to avoid
// needing templated versions.
class hash_allocator_base {};
inline bool operator==(const hash_allocator_base&,
                const hash_allocator_base&) throw() { return true; }
inline bool operator!=(const hash_allocator_base&,
                const hash_allocator_base&) throw() { return false; }

// Define the allocator template.
template <class T, class Alloc>
class hash_allocator: public hash_allocator_base
{
private:
  // Store the real allocator privately.
  typedef Alloc alloc_type;
  alloc_type alloc_;

public:
  // Standard allocator interface.
  typedef size_t size_type;
  typedef ptrdiff_t difference_type;
  typedef T* pointer;
  typedef const T* const_pointer;
  typedef T& reference;
  typedef const T& const_reference;
  typedef T value_type;

  hash_allocator() throw(): alloc_() {}
  hash_allocator(const hash_allocator_base&) throw() : alloc_() {}
  hash_allocator(const hash_allocator& a) throw() : alloc_(a.alloc_) {}
  hash_allocator(const alloc_type& a) throw() : alloc_(a) {}
  ~hash_allocator() throw() {}
# if gxsys_CXX_HAS_MEMBER_TEMPLATES
  template <class U>
  struct rebind { typedef hash_allocator<U, alloc_type> other; };
# endif
  pointer address(reference x) const { return &x; }
  const_pointer address(const_reference x) const { return &x; }
  typedef void* void_pointer;
  typedef const void* const_void_pointer;
  pointer allocate(size_type n=1, const_void_pointer hint = 0)
    {
    if(n)
      {
      pointer p;
      hash_allocate(&alloc_, &alloc_type::allocate, n, hint, p, 1, 1, 1);
      return p;
      }
    else
      {
      return 0;
      }
    }
  void deallocate(pointer p, size_type n=1)
    {
    if(n)
      {
      hash_deallocate(&alloc_, &alloc_type::deallocate,
                      hash_allocate_type(&alloc_type::allocate, 1, 1, 1),
                      p, n, 1, 1, 1);
      }
    }
#if gxsys_STL_HAS_ALLOCATOR_MAX_SIZE_ARGUMENT
  size_type max_size(size_type s) const throw()
    {
    return alloc_.max_size(s);
    }
#else
  size_type max_size() const throw()
    {
    size_type n = alloc_.max_size() / sizeof(value_type);
    return n>0? n:1;
    }
#endif
  void construct(pointer p, const value_type& val) { new (p) value_type(val); }
  void destroy(pointer p) { (void)p; p->~value_type(); }
};
#endif

template <class _Val>
struct _Hashtable_node
{
  _Hashtable_node* _M_next;
  _Val _M_val;
};

template <class _Val, class _Key, class _HashFcn,
          class _ExtractKey, class _EqualKey,
          class _Alloc = gxsys_HASH_DEFAULT_ALLOCATOR(char) >
class hashtable;

template <class _Val, class _Key, class _HashFcn,
          class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_iterator;

template <class _Val, class _Key, class _HashFcn,
          class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_const_iterator;

template <class _Val, class _Key, class _HashFcn,
          class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_iterator {
  typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
          _Hashtable;
  typedef _Hashtable_iterator<_Val, _Key, _HashFcn,
                              _ExtractKey, _EqualKey, _Alloc>
          iterator;
  typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn,
                                    _ExtractKey, _EqualKey, _Alloc>
          const_iterator;
  typedef _Hashtable_node<_Val> _Node;

  typedef gxsys_stl::forward_iterator_tag iterator_category;
  typedef _Val value_type;
  typedef ptrdiff_t difference_type;
  typedef size_t size_type;
  typedef _Val& reference;
  typedef _Val* pointer;

  _Node* _M_cur;
  _Hashtable* _M_ht;

  _Hashtable_iterator(_Node* __n, _Hashtable* __tab)
    : _M_cur(__n), _M_ht(__tab) {}
  _Hashtable_iterator() {}
  reference operator*() const { return _M_cur->_M_val; }
  pointer operator->() const { return &(operator*()); }
  iterator& operator++();
  iterator operator++(int);
  bool operator==(const iterator& __it) const
    { return _M_cur == __it._M_cur; }
  bool operator!=(const iterator& __it) const
    { return _M_cur != __it._M_cur; }
};


template <class _Val, class _Key, class _HashFcn,
          class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_const_iterator {
  typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
          _Hashtable;
  typedef _Hashtable_iterator<_Val,_Key,_HashFcn,
                              _ExtractKey,_EqualKey,_Alloc>
          iterator;
  typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn,
                                    _ExtractKey, _EqualKey, _Alloc>
          const_iterator;
  typedef _Hashtable_node<_Val> _Node;

  typedef gxsys_stl::forward_iterator_tag iterator_category;
  typedef _Val value_type;
  typedef ptrdiff_t difference_type;
  typedef size_t size_type;
  typedef const _Val& reference;
  typedef const _Val* pointer;

  const _Node* _M_cur;
  const _Hashtable* _M_ht;

  _Hashtable_const_iterator(const _Node* __n, const _Hashtable* __tab)
    : _M_cur(__n), _M_ht(__tab) {}
  _Hashtable_const_iterator() {}
  _Hashtable_const_iterator(const iterator& __it)
    : _M_cur(__it._M_cur), _M_ht(__it._M_ht) {}
  reference operator*() const { return _M_cur->_M_val; }
  pointer operator->() const { return &(operator*()); }
  const_iterator& operator++();
  const_iterator operator++(int);
  bool operator==(const const_iterator& __it) const
    { return _M_cur == __it._M_cur; }
  bool operator!=(const const_iterator& __it) const
    { return _M_cur != __it._M_cur; }
};

// Note: assumes long is at least 32 bits.
enum { _stl_num_primes = 31 };

// create a function with a static local to that function that returns
// the static
inline const unsigned long* get_stl_prime_list() {

static const unsigned long _stl_prime_list[_stl_num_primes] =
{
  5ul,          11ul,         23ul,
  53ul,         97ul,         193ul,       389ul,       769ul,
  1543ul,       3079ul,       6151ul,      12289ul,     24593ul,
  49157ul,      98317ul,      196613ul,    393241ul,    786433ul,
  1572869ul,    3145739ul,    6291469ul,   12582917ul,  25165843ul,
  50331653ul,   100663319ul,  201326611ul, 402653189ul, 805306457ul,
  1610612741ul, 3221225473ul, 4294967291ul
};

return &_stl_prime_list[0]; }

inline size_t _stl_next_prime(size_t __n)
{
  const unsigned long* __first = get_stl_prime_list();
  const unsigned long* __last = get_stl_prime_list() + (int)_stl_num_primes;
  const unsigned long* pos = gxsys_stl::lower_bound(__first, __last, __n);
  return pos == __last ? *(__last - 1) : *pos;
}

// Forward declaration of operator==.

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
class hashtable;

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
                const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2);

// Hashtables handle allocators a bit differently than other containers
//  do.  If we're using standard-conforming allocators, then a hashtable
//  unconditionally has a member variable to hold its allocator, even if
//  it so happens that all instances of the allocator type are identical.
// This is because, for hashtables, this extra storage is negligible.
//  Additionally, a base class wouldn't serve any other purposes; it
//  wouldn't, for example, simplify the exception-handling code.

template <class _Val, class _Key, class _HashFcn,
          class _ExtractKey, class _EqualKey, class _Alloc>
class hashtable {
public:
  typedef _Key key_type;
  typedef _Val value_type;
  typedef _HashFcn hasher;
  typedef _EqualKey key_equal;

  typedef size_t            size_type;
  typedef ptrdiff_t         difference_type;
  typedef value_type*       pointer;
  typedef const value_type* const_pointer;
  typedef value_type&       reference;
  typedef const value_type& const_reference;

  hasher hash_funct() const { return _M_hash; }
  key_equal key_eq() const { return _M_equals; }

private:
  typedef _Hashtable_node<_Val> _Node;

#if gxsys_STL_HAS_ALLOCATOR_REBIND
public:
  typedef typename _Alloc::template rebind<_Val>::other allocator_type;
  allocator_type get_allocator() const { return _M_node_allocator; }
private:
  typedef typename _Alloc::template rebind<_Node>::other _M_node_allocator_type;
  typedef typename _Alloc::template rebind<_Node*>::other _M_node_ptr_allocator_type;
  typedef gxsys_stl::vector<_Node*,_M_node_ptr_allocator_type> _M_buckets_type;
#else
public:
  typedef hash_allocator<_Val, _Alloc> allocator_type;
  allocator_type get_allocator() const { return allocator_type(); }
private:
  typedef hash_allocator<_Node, _Alloc> _M_node_allocator_type;
# if gxsys_STL_HAS_ALLOCATOR_OBJECTS
  typedef hash_allocator<_Node*, _Alloc> _M_node_ptr_allocator_type;
# else
  typedef _Alloc _M_node_ptr_allocator_type;
# endif
  typedef gxsys_stl::vector<_Node*,_M_node_ptr_allocator_type> _M_buckets_type;
#endif

private:
  _M_node_allocator_type _M_node_allocator;
  hasher                 _M_hash;
  key_equal              _M_equals;
  _ExtractKey            _M_get_key;
  _M_buckets_type        _M_buckets;
  size_type              _M_num_elements;

  _Node* _M_get_node() { return _M_node_allocator.allocate(1); }
  void _M_put_node(_Node* __p) { _M_node_allocator.deallocate(__p, 1); }

public:
  typedef _Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
          iterator;
  typedef _Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,
                                    _Alloc>
          const_iterator;

  friend struct
  _Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>;
  friend struct
  _Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>;

public:
  hashtable(size_type __n,
            const _HashFcn&    __hf,
            const _EqualKey&   __eql,
            const _ExtractKey& __ext,
            const allocator_type& __a = allocator_type())
    : _M_node_allocator(__a),
      _M_hash(__hf),
      _M_equals(__eql),
      _M_get_key(__ext),
      gxsys_HASH_BUCKETS_INIT(__a),
      _M_num_elements(0)
  {
    _M_initialize_buckets(__n);
  }

  hashtable(size_type __n,
            const _HashFcn&    __hf,
            const _EqualKey&   __eql,
            const allocator_type& __a = allocator_type())
    : _M_node_allocator(__a),
      _M_hash(__hf),
      _M_equals(__eql),
      _M_get_key(_ExtractKey()),
      gxsys_HASH_BUCKETS_INIT(__a),
      _M_num_elements(0)
  {
    _M_initialize_buckets(__n);
  }

  hashtable(const hashtable& __ht)
    : _M_node_allocator(__ht.get_allocator()),
      _M_hash(__ht._M_hash),
      _M_equals(__ht._M_equals),
      _M_get_key(__ht._M_get_key),
      gxsys_HASH_BUCKETS_INIT(__ht.get_allocator()),
      _M_num_elements(0)
  {
    _M_copy_from(__ht);
  }

  hashtable& operator= (const hashtable& __ht)
  {
    if (&__ht != this) {
      clear();
      _M_hash = __ht._M_hash;
      _M_equals = __ht._M_equals;
      _M_get_key = __ht._M_get_key;
      _M_copy_from(__ht);
    }
    return *this;
  }

  ~hashtable() { clear(); }

  size_type size() const { return _M_num_elements; }
  size_type max_size() const { return size_type(-1); }
  bool empty() const { return size() == 0; }

  void swap(hashtable& __ht)
  {
    gxsys_stl::swap(_M_hash, __ht._M_hash);
    gxsys_stl::swap(_M_equals, __ht._M_equals);
    gxsys_stl::swap(_M_get_key, __ht._M_get_key);
    _M_buckets.swap(__ht._M_buckets);
    gxsys_stl::swap(_M_num_elements, __ht._M_num_elements);
  }

  iterator begin()
  {
    for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
      if (_M_buckets[__n])
        return iterator(_M_buckets[__n], this);
    return end();
  }

  iterator end() { return iterator(0, this); }

  const_iterator begin() const
  {
    for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
      if (_M_buckets[__n])
        return const_iterator(_M_buckets[__n], this);
    return end();
  }

  const_iterator end() const { return const_iterator(0, this); }

  friend bool operator==gxsys_CXX_NULL_TEMPLATE_ARGS(const hashtable&,
                                                                 const hashtable&);

public:

  size_type bucket_count() const { return _M_buckets.size(); }

  size_type max_bucket_count() const
    { return get_stl_prime_list()[(int)_stl_num_primes - 1]; }

  size_type elems_in_bucket(size_type __bucket) const
  {
    size_type __result = 0;
    for (_Node* __cur = _M_buckets[__bucket]; __cur; __cur = __cur->_M_next)
      __result += 1;
    return __result;
  }

  gxsys_stl::pair<iterator, bool> insert_unique(const value_type& __obj)
  {
    resize(_M_num_elements + 1);
    return insert_unique_noresize(__obj);
  }

  iterator insert_equal(const value_type& __obj)
  {
    resize(_M_num_elements + 1);
    return insert_equal_noresize(__obj);
  }

  gxsys_stl::pair<iterator, bool> insert_unique_noresize(const value_type& __obj);
  iterator insert_equal_noresize(const value_type& __obj);

#if gxsys_STL_HAS_ITERATOR_TRAITS
# define gxsys_HASH_ITERATOR_CATEGORY(T,I) \
  typename gxsys_stl::iterator_traits< T >::iterator_category()
#elif gxsys_STL_HAS_ITERATOR_CATEGORY
# define gxsys_HASH_ITERATOR_CATEGORY(T,I) \
  gxsys_stl::iterator_category( I )
#elif gxsys_STL_HAS___ITERATOR_CATEGORY
# define gxsys_HASH_ITERATOR_CATEGORY(T,I) \
  gxsys_stl::__iterator_category( I )
#endif

#if gxsys_CXX_HAS_MEMBER_TEMPLATES && defined(gxsys_HASH_ITERATOR_CATEGORY)
  template <class _InputIterator>
  void insert_unique(_InputIterator __f, _InputIterator __l)
  {
    insert_unique(__f, __l,
      gxsys_HASH_ITERATOR_CATEGORY(_InputIterator, __f));
  }

  template <class _InputIterator>
  void insert_equal(_InputIterator __f, _InputIterator __l)
  {
    insert_equal(__f, __l,
      gxsys_HASH_ITERATOR_CATEGORY(_InputIterator, __f));
  }

  template <class _InputIterator>
  void insert_unique(_InputIterator __f, _InputIterator __l,
                     gxsys_stl::input_iterator_tag)
  {
    for ( ; __f != __l; ++__f)
      insert_unique(*__f);
  }

  template <class _InputIterator>
  void insert_equal(_InputIterator __f, _InputIterator __l,
                    gxsys_stl::input_iterator_tag)
  {
    for ( ; __f != __l; ++__f)
      insert_equal(*__f);
  }

  template <class _ForwardIterator>
  void insert_unique(_ForwardIterator __f, _ForwardIterator __l,
                     gxsys_stl::forward_iterator_tag)
  {
    size_type __n = 0;
    gxsys_stl::distance(__f, __l, __n);
    resize(_M_num_elements + __n);
    for ( ; __n > 0; --__n, ++__f)
      insert_unique_noresize(*__f);
  }

  template <class _ForwardIterator>
  void insert_equal(_ForwardIterator __f, _ForwardIterator __l,
                    gxsys_stl::forward_iterator_tag)
  {
    size_type __n = 0;
    gxsys_stl::distance(__f, __l, __n);
    resize(_M_num_elements + __n);
    for ( ; __n > 0; --__n, ++__f)
      insert_equal_noresize(*__f);
  }

#else
  void insert_unique(const value_type* __f, const value_type* __l)
  {
    size_type __n = __l - __f;
    resize(_M_num_elements + __n);
    for ( ; __n > 0; --__n, ++__f)
      insert_unique_noresize(*__f);
  }

  void insert_equal(const value_type* __f, const value_type* __l)
  {
    size_type __n = __l - __f;
    resize(_M_num_elements + __n);
    for ( ; __n > 0; --__n, ++__f)
      insert_equal_noresize(*__f);
  }

  void insert_unique(const_iterator __f, const_iterator __l)
  {
    size_type __n = 0;
    gxsys_stl::distance(__f, __l, __n);
    resize(_M_num_elements + __n);
    for ( ; __n > 0; --__n, ++__f)
      insert_unique_noresize(*__f);
  }

  void insert_equal(const_iterator __f, const_iterator __l)
  {
    size_type __n = 0;
    gxsys_stl::distance(__f, __l, __n);
    resize(_M_num_elements + __n);
    for ( ; __n > 0; --__n, ++__f)
      insert_equal_noresize(*__f);
  }
#endif

  reference find_or_insert(const value_type& __obj);

  iterator find(const key_type& __key)
  {
    size_type __n = _M_bkt_num_key(__key);
    _Node* __first;
    for ( __first = _M_buckets[__n];
          __first && !_M_equals(_M_get_key(__first->_M_val), __key);
          __first = __first->_M_next)
      {}
    return iterator(__first, this);
  }

  const_iterator find(const key_type& __key) const
  {
    size_type __n = _M_bkt_num_key(__key);
    const _Node* __first;
    for ( __first = _M_buckets[__n];
          __first && !_M_equals(_M_get_key(__first->_M_val), __key);
          __first = __first->_M_next)
      {}
    return const_iterator(__first, this);
  }

  size_type count(const key_type& __key) const
  {
    const size_type __n = _M_bkt_num_key(__key);
    size_type __result = 0;

    for (const _Node* __cur = _M_buckets[__n]; __cur; __cur = __cur->_M_next)
      if (_M_equals(_M_get_key(__cur->_M_val), __key))
        ++__result;
    return __result;
  }

  gxsys_stl::pair<iterator, iterator>
  equal_range(const key_type& __key);

  gxsys_stl::pair<const_iterator, const_iterator>
  equal_range(const key_type& __key) const;

  size_type erase(const key_type& __key);
  void erase(const iterator& __it);
  void erase(iterator __first, iterator __last);

  void erase(const const_iterator& __it);
  void erase(const_iterator __first, const_iterator __last);

  void resize(size_type __num_elements_hint);
  void clear();

private:
  size_type _M_next_size(size_type __n) const
    { return _stl_next_prime(__n); }

  void _M_initialize_buckets(size_type __n)
  {
    const size_type __n_buckets = _M_next_size(__n);
    _M_buckets.reserve(__n_buckets);
    _M_buckets.insert(_M_buckets.end(), __n_buckets, (_Node*) 0);
    _M_num_elements = 0;
  }

  size_type _M_bkt_num_key(const key_type& __key) const
  {
    return _M_bkt_num_key(__key, _M_buckets.size());
  }

  size_type _M_bkt_num(const value_type& __obj) const
  {
    return _M_bkt_num_key(_M_get_key(__obj));
  }

  size_type _M_bkt_num_key(const key_type& __key, size_t __n) const
  {
    return _M_hash(__key) % __n;
  }

  size_type _M_bkt_num(const value_type& __obj, size_t __n) const
  {
    return _M_bkt_num_key(_M_get_key(__obj), __n);
  }

  void construct(_Val* p, const _Val& v)
    {
    new (p) _Val(v);
    }
  void destroy(_Val* p)
    {
    (void)p;
    p->~_Val();
    }

  _Node* _M_new_node(const value_type& __obj)
  {
    _Node* __n = _M_get_node();
    __n->_M_next = 0;
    try {
      construct(&__n->_M_val, __obj);
      return __n;
    }
    catch(...) {_M_put_node(__n); throw;}
  }

  void _M_delete_node(_Node* __n)
  {
    destroy(&__n->_M_val);
    _M_put_node(__n);
  }

  void _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last);
  void _M_erase_bucket(const size_type __n, _Node* __last);

  void _M_copy_from(const hashtable& __ht);

};

template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
          class _All>
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++()
{
  const _Node* __old = _M_cur;
  _M_cur = _M_cur->_M_next;
  if (!_M_cur) {
    size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val);
    while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size())
      _M_cur = _M_ht->_M_buckets[__bucket];
  }
  return *this;
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
          class _All>
inline _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int)
{
  iterator __tmp = *this;
  ++*this;
  return __tmp;
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
          class _All>
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++()
{
  const _Node* __old = _M_cur;
  _M_cur = _M_cur->_M_next;
  if (!_M_cur) {
    size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val);
    while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size())
      _M_cur = _M_ht->_M_buckets[__bucket];
  }
  return *this;
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
          class _All>
inline _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int)
{
  const_iterator __tmp = *this;
  ++*this;
  return __tmp;
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
                const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2)
{
  typedef typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::_Node _Node;
  if (__ht1._M_buckets.size() != __ht2._M_buckets.size())
    return false;
  for (int __n = 0; __n < __ht1._M_buckets.size(); ++__n) {
    _Node* __cur1 = __ht1._M_buckets[__n];
    _Node* __cur2 = __ht2._M_buckets[__n];
    for ( ; __cur1 && __cur2 && __cur1->_M_val == __cur2->_M_val;
          __cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next)
      {}
    if (__cur1 || __cur2)
      return false;
  }
  return true;
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline bool operator!=(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
                       const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2) {
  return !(__ht1 == __ht2);
}

template <class _Val, class _Key, class _HF, class _Extract, class _EqKey,
          class _All>
inline void swap(hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht1,
                 hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht2) {
  __ht1.swap(__ht2);
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
gxsys_stl::pair<gxsys_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator, bool>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
  ::insert_unique_noresize(const value_type& __obj)
{
  const size_type __n = _M_bkt_num(__obj);
  _Node* __first = _M_buckets[__n];

  for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
    if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
      return gxsys_stl::pair<iterator, bool>(iterator(__cur, this), false);

  _Node* __tmp = _M_new_node(__obj);
  __tmp->_M_next = __first;
  _M_buckets[__n] = __tmp;
  ++_M_num_elements;
  return gxsys_stl::pair<iterator, bool>(iterator(__tmp, this), true);
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
  ::insert_equal_noresize(const value_type& __obj)
{
  const size_type __n = _M_bkt_num(__obj);
  _Node* __first = _M_buckets[__n];

  for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
    if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) {
      _Node* __tmp = _M_new_node(__obj);
      __tmp->_M_next = __cur->_M_next;
      __cur->_M_next = __tmp;
      ++_M_num_elements;
      return iterator(__tmp, this);
    }

  _Node* __tmp = _M_new_node(__obj);
  __tmp->_M_next = __first;
  _M_buckets[__n] = __tmp;
  ++_M_num_elements;
  return iterator(__tmp, this);
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::reference
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::find_or_insert(const value_type& __obj)
{
  resize(_M_num_elements + 1);

  size_type __n = _M_bkt_num(__obj);
  _Node* __first = _M_buckets[__n];

  for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
    if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
      return __cur->_M_val;

  _Node* __tmp = _M_new_node(__obj);
  __tmp->_M_next = __first;
  _M_buckets[__n] = __tmp;
  ++_M_num_elements;
  return __tmp->_M_val;
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
gxsys_stl::pair<gxsys_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator,
     gxsys_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::equal_range(const key_type& __key)
{
  typedef gxsys_stl::pair<iterator, iterator> _Pii;
  const size_type __n = _M_bkt_num_key(__key);

  for (_Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next)
    if (_M_equals(_M_get_key(__first->_M_val), __key)) {
      for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next)
        if (!_M_equals(_M_get_key(__cur->_M_val), __key))
          return _Pii(iterator(__first, this), iterator(__cur, this));
      for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
        if (_M_buckets[__m])
          return _Pii(iterator(__first, this),
                     iterator(_M_buckets[__m], this));
      return _Pii(iterator(__first, this), end());
    }
  return _Pii(end(), end());
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
gxsys_stl::pair<gxsys_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator,
     gxsys_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
  ::equal_range(const key_type& __key) const
{
  typedef gxsys_stl::pair<const_iterator, const_iterator> _Pii;
  const size_type __n = _M_bkt_num_key(__key);

  for (const _Node* __first = _M_buckets[__n] ;
       __first;
       __first = __first->_M_next) {
    if (_M_equals(_M_get_key(__first->_M_val), __key)) {
      for (const _Node* __cur = __first->_M_next;
           __cur;
           __cur = __cur->_M_next)
        if (!_M_equals(_M_get_key(__cur->_M_val), __key))
          return _Pii(const_iterator(__first, this),
                      const_iterator(__cur, this));
      for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
        if (_M_buckets[__m])
          return _Pii(const_iterator(__first, this),
                      const_iterator(_M_buckets[__m], this));
      return _Pii(const_iterator(__first, this), end());
    }
  }
  return _Pii(end(), end());
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::size_type
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const key_type& __key)
{
  const size_type __n = _M_bkt_num_key(__key);
  _Node* __first = _M_buckets[__n];
  size_type __erased = 0;

  if (__first) {
    _Node* __cur = __first;
    _Node* __next = __cur->_M_next;
    while (__next) {
      if (_M_equals(_M_get_key(__next->_M_val), __key)) {
        __cur->_M_next = __next->_M_next;
        _M_delete_node(__next);
        __next = __cur->_M_next;
        ++__erased;
        --_M_num_elements;
      }
      else {
        __cur = __next;
        __next = __cur->_M_next;
      }
    }
    if (_M_equals(_M_get_key(__first->_M_val), __key)) {
      _M_buckets[__n] = __first->_M_next;
      _M_delete_node(__first);
      ++__erased;
      --_M_num_elements;
    }
  }
  return __erased;
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const iterator& __it)
{
  _Node* __p = __it._M_cur;
  if (__p) {
    const size_type __n = _M_bkt_num(__p->_M_val);
    _Node* __cur = _M_buckets[__n];

    if (__cur == __p) {
      _M_buckets[__n] = __cur->_M_next;
      _M_delete_node(__cur);
      --_M_num_elements;
    }
    else {
      _Node* __next = __cur->_M_next;
      while (__next) {
        if (__next == __p) {
          __cur->_M_next = __next->_M_next;
          _M_delete_node(__next);
          --_M_num_elements;
          break;
        }
        else {
          __cur = __next;
          __next = __cur->_M_next;
        }
      }
    }
  }
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
  ::erase(iterator __first, iterator __last)
{
  size_type __f_bucket = __first._M_cur ?
    _M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size();
  size_type __l_bucket = __last._M_cur ?
    _M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size();

  if (__first._M_cur == __last._M_cur)
    return;
  else if (__f_bucket == __l_bucket)
    _M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur);
  else {
    _M_erase_bucket(__f_bucket, __first._M_cur, 0);
    for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n)
      _M_erase_bucket(__n, 0);
    if (__l_bucket != _M_buckets.size())
      _M_erase_bucket(__l_bucket, __last._M_cur);
  }
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline void
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const_iterator __first,
                                             const_iterator __last)
{
  erase(iterator(const_cast<_Node*>(__first._M_cur),
                 const_cast<hashtable*>(__first._M_ht)),
        iterator(const_cast<_Node*>(__last._M_cur),
                 const_cast<hashtable*>(__last._M_ht)));
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline void
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const const_iterator& __it)
{
  erase(iterator(const_cast<_Node*>(__it._M_cur),
                 const_cast<hashtable*>(__it._M_ht)));
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
  ::resize(size_type __num_elements_hint)
{
  const size_type __old_n = _M_buckets.size();
  if (__num_elements_hint > __old_n) {
    const size_type __n = _M_next_size(__num_elements_hint);
    if (__n > __old_n) {
      _M_buckets_type __tmp(
        __n, (_Node*)(0)
        gxsys_HASH_BUCKETS_GET_ALLOCATOR(_M_buckets));
      try {
        for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) {
          _Node* __first = _M_buckets[__bucket];
          while (__first) {
            size_type __new_bucket = _M_bkt_num(__first->_M_val, __n);
            _M_buckets[__bucket] = __first->_M_next;
            __first->_M_next = __tmp[__new_bucket];
            __tmp[__new_bucket] = __first;
            __first = _M_buckets[__bucket];
          }
        }
        _M_buckets.swap(__tmp);
      }
      catch(...) {
        for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) {
          while (__tmp[__bucket]) {
            _Node* __next = __tmp[__bucket]->_M_next;
            _M_delete_node(__tmp[__bucket]);
            __tmp[__bucket] = __next;
          }
        }
        throw;
      }
    }
  }
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
  ::_M_erase_bucket(const size_type __n, _Node* __first, _Node* __last)
{
  _Node* __cur = _M_buckets[__n];
  if (__cur == __first)
    _M_erase_bucket(__n, __last);
  else {
    _Node* __next;
    for (__next = __cur->_M_next;
         __next != __first;
         __cur = __next, __next = __cur->_M_next)
      ;
    while (__next != __last) {
      __cur->_M_next = __next->_M_next;
      _M_delete_node(__next);
      __next = __cur->_M_next;
      --_M_num_elements;
    }
  }
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
  ::_M_erase_bucket(const size_type __n, _Node* __last)
{
  _Node* __cur = _M_buckets[__n];
  while (__cur != __last) {
    _Node* __next = __cur->_M_next;
    _M_delete_node(__cur);
    __cur = __next;
    _M_buckets[__n] = __cur;
    --_M_num_elements;
  }
}

template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::clear()
{
  for (size_type __i = 0; __i < _M_buckets.size(); ++__i) {
    _Node* __cur = _M_buckets[__i];
    while (__cur != 0) {
      _Node* __next = __cur->_M_next;
      _M_delete_node(__cur);
      __cur = __next;
    }
    _M_buckets[__i] = 0;
  }
  _M_num_elements = 0;
}


template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
  ::_M_copy_from(const hashtable& __ht)
{
  _M_buckets.clear();
  _M_buckets.reserve(__ht._M_buckets.size());
  _M_buckets.insert(_M_buckets.end(), __ht._M_buckets.size(), (_Node*) 0);
  try {
    for (size_type __i = 0; __i < __ht._M_buckets.size(); ++__i) {
      const _Node* __cur = __ht._M_buckets[__i];
      if (__cur) {
        _Node* __copy = _M_new_node(__cur->_M_val);
        _M_buckets[__i] = __copy;

        for (_Node* __next = __cur->_M_next;
             __next;
             __cur = __next, __next = __cur->_M_next) {
          __copy->_M_next = _M_new_node(__next->_M_val);
          __copy = __copy->_M_next;
        }
      }
    }
    _M_num_elements = __ht._M_num_elements;
  }
  catch(...) {clear(); throw;}
}

} // namespace gxsys

// Normally the comparison operators should be found in the gxsys
// namespace by argument dependent lookup.  For compilers that do not
// support it we must bring them into the global namespace now.
#if !gxsys_CXX_HAS_ARGUMENT_DEPENDENT_LOOKUP
using gxsys::operator==;
using gxsys::operator!=;
#endif

#if defined(_MSC_VER)
# pragma warning (pop)
#endif

#endif