This file is indexed.

/usr/include/openbabel-2.0/openbabel/forcefield.h is in libopenbabel-dev 2.3.0+dfsg-3ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
/**********************************************************************
forcefield.h - Handle OBForceField class.

Copyright (C) 2006-2007 by Tim Vandermeersch <tim.vandermeersch@gmail.com>

This file is part of the Open Babel project.
For more information, see <http://openbabel.org/>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
***********************************************************************/

#ifndef OB_FORCEFIELD_H
#define OB_FORCEFIELD_H

#include <vector>
#include <string>
#include <map>

#include <list>
#include <set>
#include <openbabel/babelconfig.h>
#include <openbabel/base.h>
#include <openbabel/mol.h>
#include <openbabel/plugin.h>
#include <openbabel/grid.h>
#include <openbabel/griddata.h>
#include <float.h>

namespace OpenBabel
{
  // log levels
#define OBFF_LOGLVL_NONE	0   //!< no output
#define OBFF_LOGLVL_LOW		1   //!< SteepestDescent progress... (no output from Energy())
#define OBFF_LOGLVL_MEDIUM	2   //!< individual energy terms
#define OBFF_LOGLVL_HIGH	3   //!< individual calculations and parameters

  // terms
#define OBFF_ENERGY		(1 << 0)   //!< all terms
#define OBFF_EBOND		(1 << 1)   //!< bond term
#define OBFF_EANGLE		(1 << 2)   //!< angle term
#define OBFF_ESTRBND		(1 << 3)   //!< strbnd term
#define OBFF_ETORSION		(1 << 4)   //!< torsion term
#define OBFF_EOOP		(1 << 5)   //!< oop term
#define OBFF_EVDW		(1 << 6)   //!< vdw term
#define OBFF_EELECTROSTATIC	(1 << 7)   //!< electrostatic term

  // constraint types
#define OBFF_CONST_IGNORE	(1 << 0)   //!< ignore the atom while setting up calculations
#define OBFF_CONST_ATOM		(1 << 1)   //!< fix the atom position
#define OBFF_CONST_ATOM_X	(1 << 2)   //!< fix the x coordinate of the atom position
#define OBFF_CONST_ATOM_Y	(1 << 3)   //!< fix the y coordinate of the atom position
#define OBFF_CONST_ATOM_Z	(1 << 4)   //!< fix the z coordinate of the atom position
#define OBFF_CONST_DISTANCE	(1 << 5)   //!< constrain distance length
#define OBFF_CONST_ANGLE	(1 << 6)   //!< constrain angle
#define OBFF_CONST_TORSION	(1 << 7)   //!< constrain torsion
#define OBFF_CONST_CHIRAL	(1 << 8)   //!< constrain chiral volume

  // mode arguments for SteepestDescent, ConjugateGradients, ...
#define OBFF_NUMERICAL_GRADIENT  	(1 << 0)  //!< use numerical gradients
#define OBFF_ANALYTICAL_GRADIENT	(1 << 1)  //!< use analytical gradients

#define KCAL_TO_KJ	4.1868

  // inline if statements for logging.
#define IF_OBFF_LOGLVL_LOW    if(_loglvl >= OBFF_LOGLVL_LOW)
#define IF_OBFF_LOGLVL_MEDIUM if(_loglvl >= OBFF_LOGLVL_MEDIUM)
#define IF_OBFF_LOGLVL_HIGH   if(_loglvl >= OBFF_LOGLVL_HIGH)

  //! The type of line search to be used for optimization -- simple or Newton numeric
  struct LineSearchType
  {
    enum {
      Simple, Newton2Num
    };
  };
  /*
  struct ConstraintType
  {
    enum {
      Ignore, Atom, AtomX, AtomY, AtomZ, Distance, Angle, Torsion, Chiral
    };
  };
  */

  //! \class OBFFParameter forcefield.h <openbabel/forcefield.h>
  //! \brief Internal class for OBForceField to hold forcefield parameters
  class OBFPRT OBFFParameter {
  public:
    //! Used to store integer atom types
    int         a, b, c, d;
    //! used to store string atom types
    std::string _a, _b, _c, _d;

    //! Used to store integer type parameters (bondtypes, multiplicity, ...)
    std::vector<int>    _ipar;
    //! Used to store double type parameters (force constants, bond lengths, angles, ...)
    std::vector<double> _dpar;

    //! Assignment
    OBFFParameter& operator=(const OBFFParameter &ai)
      {
        if (this != &ai) {
          a = ai.a;
          b = ai.b;
          c = ai.c;
          d = ai.d;
          _a = ai._a;
          _b = ai._b;
          _c = ai._c;
          _d = ai._d;
          _ipar = ai._ipar;
          _dpar = ai._dpar;
        }

        return *this;
      }

    //! Reset the atom types and set all parameters to zero
    void clear ()
    {
      a = b = c = d = 0;
      _ipar.clear();
      _dpar.clear();
    }
  }; // class OBFFParameter

  // specific class introductions in forcefieldYYYY.cpp (for YYYY calculations)

  //! \class OBFFCalculation2 forcefield.h <openbabel/forcefield.h>
  //! \brief Internal class for OBForceField to hold energy and gradient calculations on specific force fields
  class OBFPRT OBFFCalculation2
  {
  public:
    //! Used to store the energy for this OBFFCalculation
    double energy;
    //! Used to store the atoms for this OBFFCalculation
    OBAtom *a, *b;
    //! Used to store the index of atoms for this OBFFCalculation
    int idx_a, idx_b;
    //! Pointer to atom coordinates as double[3]
    double *pos_a, *pos_b;
    //! Pointer to atom forces
    double force_a[3], force_b[3];
    //! Destructor
    virtual ~OBFFCalculation2()
    {
    }
    //! \return Setup pointers to atom positions and forces (To be called
    //!  while setting up calculations). Sets optimized to true.
    virtual void SetupPointers()
    {
      if (!a || !b) return;
      pos_a = a->GetCoordinate();
      idx_a = a->GetIdx();
      pos_b = b->GetCoordinate();
      idx_b = b->GetIdx();
    }
  };

  //! \class OBFFCalculation3 forcefield.h <openbabel/forcefield.h>
  //! \brief Internal class for OBForceField to hold energy and gradient calculations on specific force fields
  class OBFPRT OBFFCalculation3: public OBFFCalculation2
  {
  public:
    //! Used to store the atoms for this OBFFCalculation
    OBAtom *c;
    //! Used to store the index of atoms for this OBFFCalculation
    int idx_c;
    //! Pointer to atom coordinates as double[3]
    double *pos_c;
    //! Pointer to atom forces
    double force_c[3];
    //! Destructor
    virtual ~OBFFCalculation3()
    {
    }
    //! \return Setup pointers to atom positions and forces (To be called
    //!  while setting up calculations). Sets optimized to true.
    virtual void SetupPointers()
    {
      if (!a || !b || !c) return;
      pos_a = a->GetCoordinate();
      idx_a = a->GetIdx();
      pos_b = b->GetCoordinate();
      idx_b = b->GetIdx();
      pos_c = c->GetCoordinate();
      idx_c = c->GetIdx();
    }
  };

  //! \class OBFFCalculation4 forcefield.h <openbabel/forcefield.h>
  //! \brief Internal class for OBForceField to hold energy and gradient calculations on specific force fields
  class OBFPRT OBFFCalculation4: public OBFFCalculation3
  {
  public:
    //! Used to store the atoms for this OBFFCalculation
    OBAtom *d;
    //! Used to store the index of atoms for this OBFFCalculation
    int idx_d;
    //! Pointer to atom coordinates as double[3]
    double *pos_d;
    //! Pointer to atom forces
    double force_d[3];
    //! Destructor
    virtual ~OBFFCalculation4()
    {
    }
    //! \return Setup pointers to atom positions and forces (To be called
    //!  while setting up calculations). Sets optimized to true.
    void SetupPointers()
    {
      if (!a || !b || !c || !d) return;
      pos_a = a->GetCoordinate();
      idx_a = a->GetIdx();
      pos_b = b->GetCoordinate();
      idx_b = b->GetIdx();
      pos_c = c->GetCoordinate();
      idx_c = c->GetIdx();
      pos_d = d->GetCoordinate();
      idx_d = d->GetIdx();
    }
  };

  //! \class OBFFConstraint forcefield.h <openbabel/forcefield.h>
  //! \brief Internal class for OBForceField to hold constraints
  //! \since version 2.2
  class OBFPRT OBFFConstraint
  {
  public:
    //! Used to store the contraint energy for this OBFFConstraint
    double factor, constraint_value;
    double rab0, rbc0;
    //! Used to store the contraint type for this OBFFConstraint
    int type, ia, ib, ic, id;
    //! Used to store the atoms for this OBFFCostraint
    OBAtom *a, *b, *c, *d;
    //! Used to store the gradients for this OBFFCalculation
    vector3 grada, gradb, gradc, gradd;

    //! Constructor
    OBFFConstraint()
      {
        a = b = c = d = NULL;
        ia = ib = ic = id = 0;
        constraint_value = 0.0;
        factor = 0.0;
      }
    //! Destructor
    ~OBFFConstraint()
      {
      }

    vector3 GetGradient(int a)
    {
      if (a == ia)
        return grada;
      else if (a == ib)
        return gradb;
      else if (a == ic)
        return gradc;
      else if (a == id)
        return gradd;
      else
        return  VZero;
    }
  };

  //! \class OBFFConstraints forcefield.h <openbabel/forcefield.h>
  //! \brief Internal class for OBForceField to handle constraints
  //! \since version 2.2
  class OBFPRT OBFFConstraints
  {
  public:
    //! Constructor
    OBFFConstraints();
    //! Destructor
    ~OBFFConstraints()
      {
        _constraints.clear();
        _ignored.Clear();
        _fixed.Clear();
        _Xfixed.Clear();
        _Yfixed.Clear();
        _Zfixed.Clear();
      }
    //! Clear all constraints
    void Clear();
    //! Get the constraint energy
    double GetConstraintEnergy();
    //! Get the constraint gradient for atom with index a
    vector3 GetGradient(int a);
    //! Get the constrain gradient for the atom
    OBFFConstraints& operator=(const OBFFConstraints &ai)
      {
        if (this != &ai) {
          _constraints = ai._constraints;
          _ignored = ai._ignored;
          _fixed = ai._fixed;
          _Xfixed = ai._Xfixed;
          _Yfixed = ai._Yfixed;
          _Zfixed = ai._Zfixed;
        }
        return *this;
      }

    /*! Translate indices to OBAtom* objects, this function is called from OBForceField::Setup,
     *  this function doesn't have to be called from anywhere else.
     */
    void Setup(OBMol &mol);

    /////////////////////////////////////////////////////////////////////////
    // Set Constraints                                                     //
    /////////////////////////////////////////////////////////////////////////
    //! \name Methods to set constraints
    //@{
    //! Set Constraint factor
    void SetFactor(double factor);
    //! Ignore the atom while setting up calculations
    void AddIgnore(int a);
    //! Fix the position of an atom
    void AddAtomConstraint(int a);
    //! Fix the x coordinate of the atom position
    void AddAtomXConstraint(int a);
    //! Fix the y coordinate of the atom position
    void AddAtomYConstraint(int a);
    //! Fix the z coordinate of the atom position
    void AddAtomZConstraint(int a);
    //! Constrain the bond length a-b
    void AddDistanceConstraint(int a, int b, double length);
    //! Constrain the angle a-b-c
    void AddAngleConstraint(int a, int b, int c, double angle);
    //! Constrain the torsion angle a-b-c-d
    void AddTorsionConstraint(int a, int b, int c, int d, double torsion);
    //! Delete a constraint
    //! \par index constraint index
    void DeleteConstraint(int index);
    //@}
    /////////////////////////////////////////////////////////////////////////
    // Get Constraints                                                     //
    /////////////////////////////////////////////////////////////////////////
    //! \name Methods to get information about set constraints
    //@{
    //! Get Constraint factor
    double GetFactor();
    //! \returns the number of set constraints
    int Size() const;
    /*! The following constraint types are known: OBFF_CONST_IGNORE (ignore
     *  the atom while setting up calculations, forcefield implementations
     *  need to check this value in their setup function), OBFF_CONST_ATOM
     *  (fix atom position), OBFF_CONST_ATOM_X (fix x coordinate),
     *  OBFF_CONST_ATOM_Y (fix y coordinate), OBFF_CONST_ATOM_Z (fix z
     *  coordinate), OBFF_CONST_BOND (constrain bond length), OBFF_CONST_ANGLE
     *  (constrain angle), OBFF_CONST_TORSION (constrain torsion angle)
     *  \return the constraint type
     */
    int GetConstraintType(int index) const;
    /*! \return The constraint value, this can be a bond length, angle or
     *   torsion angle depending on the constraint type.
     */
    double GetConstraintValue(int index) const;
    //! \return The constraint atom a (or fixed atom)
    //! \par index constraint index
    int GetConstraintAtomA(int index) const;
    //! \return The constraint atom b
    //! \par index constraint index
    int GetConstraintAtomB(int index) const;
    //! \return The constraint atom c
    //! \par index constraint index
    int GetConstraintAtomC(int index) const;
    //! \return The constraint atom d
    //! \par index constraint index
    int GetConstraintAtomD(int index) const;
    //! \return true if this atom is ignored
    //! \par a atom index
    bool IsIgnored(int a);
    //! \return true if this atom is fixed
    //! \par a atom index
    bool IsFixed(int a);
    //! \return true if the x coordinate for this atom is fixed
    //! \par a atom index
    bool IsXFixed(int a);
    //! \return true if the y coordinate for this atom is fixed
    //! \par a atom index
    bool IsYFixed(int a);
    //! \return true if the z coordinate for this atom is fixed
    //! \par a atom index
    bool IsZFixed(int a);
    //! \return the ignored atom indexes as bitvec. (used in
    //! OBForceField::Setup() to determine if a call to
    //! OBForceField::SetupCalculations() is needed)
    OBBitVec GetIgnoredBitVec() { return _ignored; }
    //! \return the fixed atom indexes as bitvec. (used in
    //! OBForceField::SystematicRotorSearch() and similar)
    OBBitVec GetFixedBitVec() { return _fixed; }
    //@}

  private:
    std::vector<OBFFConstraint> _constraints;
    OBBitVec	_ignored;
    OBBitVec	_fixed;
    OBBitVec	_Xfixed;
    OBBitVec	_Yfixed;
    OBBitVec	_Zfixed;
    double _factor;
  };

  // Class OBForceField
  // class introduction in forcefield.cpp
  class OBFPRT OBForceField : public OBPlugin
  {
    MAKE_PLUGIN(OBForceField)

    protected:

      /*!
      Get the correct OBFFParameter from a OBFFParameter vector.

      \code vector<OBFFParameter> parameters; \endcode

      this vector is filled with entries (as OBFFParameter) from
      a parameter file. This happens in the Setup() function.

      \code GetParameter(a, 0, 0, 0, parameters); \endcode

      returns the first OBFFParameter from vector<OBFFParameter>
      parameters where: pa = a (pa = parameter.a)

      use: vdw parameters, ...

      \code GetParameter(a, b, 0, 0, parameters); \endcode

      returns the first OBFFParameter from vector<OBFFParameter>
      parameters where: pa = a & pb = b      (ab)
      or: pa = b & pb = a      (ba)

      use: bond parameters, vdw parameters (pairs), ...

      \code GetParameter(a, b, c, 0, parameters); \endcode

      returns the first OBFFParameter from vector<OBFFParameter>
      parameters where: pa = a & pb = b & pc = c     (abc)
      or: pa = c & pb = b & pc = a     (cba)

      use: angle parameters, ...

      \code GetParameter(a, b, c, d, parameters); \endcode

      returns the first OBFFParameter from vector<OBFFParameter>
      parameters where: pa = a & pb = b & pc = c & pd = d    (abcd)
      or: pa = d & pb = b & pc = c & pd = a    (dbca)
      or: pa = a & pb = c & pc = b & pd = d    (acbd)
      or: pa = d & pb = c & pc = b & pd = a    (dcba)

      use: torsion parameters, ...
    */
    OBFFParameter* GetParameter(int a, int b, int c, int d, std::vector<OBFFParameter> &parameter);
    //! see GetParameter(int a, int b, int c, int d, std::vector<OBFFParameter> &parameter)
    OBFFParameter* GetParameter(const char* a, const char* b, const char* c, const char* d,
        std::vector<OBFFParameter> &parameter);
    //! Get index for vector<OBFFParameter> ...
    int GetParameterIdx(int a, int b, int c, int d, std::vector<OBFFParameter> &parameter);

    /*! Calculate the potential energy function derivative numerically with
     *  repect to the coordinates of atom with index a (this vector is the gradient)
     *
     * \param a  provides coordinates
     * \param terms OBFF_ENERGY, OBFF_EBOND, OBFF_EANGLE, OBFF_ESTRBND, OBFF_ETORSION,
     * OBFF_EOOP, OBFF_EVDW, OBFF_ELECTROSTATIC
     * \return the negative gradient of atom a
     */
    vector3 NumericalDerivative(OBAtom *a, int terms = OBFF_ENERGY);
    //! OB 3.0
    vector3 NumericalSecondDerivative(OBAtom *a, int terms = OBFF_ENERGY);

    /*
     *   NEW gradients functions
     */

    /*! Set the gradient for atom with index idx to grad
     */
    void SetGradient(double *grad, int idx)
    {
      const int coordIdx = (idx - 1) * 3;
      for (unsigned int i = 0; i < 3; ++i) {
        _gradientPtr[coordIdx + i] = grad[i];
      }
    }

    /*! Add grad to the gradient for atom with index idx
     */
    void AddGradient(double *grad, int idx)
    {
      const int coordIdx = (idx - 1) * 3;
      for (unsigned int i = 0; i < 3; ++i) {
        _gradientPtr[coordIdx + i] += grad[i];
      }
    }

    /*! Get the pointer to the gradients
     */
    virtual vector3 GetGradient(OBAtom *a, int /*terms*/ = OBFF_ENERGY)
    {
      const int coordIdx = (a->GetIdx() - 1) * 3;
      return _gradientPtr + coordIdx;
    }

    /*! Get the pointer to the gradients
     */
    double* GetGradientPtr()
    {
      return _gradientPtr;
    }

    /*! Set all gradients to zero
     */
    virtual void ClearGradients()
    {
      // We cannot use memset because IEEE floating point representations
      // are not guaranteed by C/C++ standard, but this loop can be
      // unrolled or vectorized by compilers
      for (unsigned int i = 0; i < _ncoords; ++i)
        _gradientPtr[i] = 0.0;
      //      memset(_gradientPtr, '\0', sizeof(double)*_ncoords);
    }

    /*! Check if two atoms are in the same ring. [NOTE: this function uses SSSR,
     *  this means that not all rings are found for bridged rings. This causes
     *  some problems with the MMFF94 validation.]
     *  \param a atom a
     *  \param b atom b
     *  \return true if atom a and b are in the same ring
     */
    bool IsInSameRing(OBAtom* a, OBAtom* b);

    // general variables
    OBMol 	_mol; //!< Molecule to be evaluated or minimized
    bool 	_init; //!< Used to make sure we only parse the parameter file once, when needed
    std::string	_parFile; //! < parameter file name
    bool 	_validSetup; //!< was the last call to Setup succesfull
    double	*_gradientPtr; //!< pointer to the gradients (used by AddGradient(), minimization functions, ...)
    // logging variables
    std::ostream* _logos; //!< Output for logfile
    char 	_logbuf[BUFF_SIZE+1]; //!< Temporary buffer for logfile output
    int 	_loglvl; //!< Log level for output
    int 	_origLogLevel;
    // conformer genereation (rotor search) variables
    int 	_current_conformer; //!< used to hold i for current conformer (needed by UpdateConformers)
    std::vector<double> _energies; //!< used to hold the energies for all conformers
    // minimization variables
    double 	_econv, _e_n1; //!< Used for conjugate gradients and steepest descent(Initialize and TakeNSteps)
    int 	_cstep, _nsteps; //!< Used for conjugate gradients and steepest descent(Initialize and TakeNSteps)
    double 	*_grad1; //!< Used for conjugate gradients and steepest descent(Initialize and TakeNSteps)
    unsigned int _ncoords; //!< Number of coordinates for conjugate gradients
    int         _linesearch; //!< LineSearch type
    // molecular dynamics variables
    double 	_timestep; //!< Molecular dynamics time step in picoseconds
    double 	_temp; //!< Molecular dynamics temperature in Kelvin
    double 	*_velocityPtr; //!< pointer to the velocities
    // contraint varibles
    static OBFFConstraints _constraints; //!< Constraints
    static int _fixAtom; //!< SetFixAtom()/UnsetFixAtom()
    static int _ignoreAtom; //!< SetIgnoreAtom()/UnsetIgnoreAtom()
    // cut-off variables
    bool 	_cutoff; //!< true = cut-off enabled
    double 	_rvdw; //!< VDW cut-off distance
    double 	_rele; //!< Electrostatic cut-off distance
    OBBitVec	_vdwpairs; //!< VDW pairs that should be calculated
    OBBitVec	_elepairs; //!< Electrostatic pairs that should be calculated
    int 	_pairfreq; //!< The frequence to update non-bonded pairs
    // group variables
    std::vector<OBBitVec> _intraGroup; //!< groups for which intra-molecular interactions should be calculated
    std::vector<OBBitVec> _interGroup; //!< groups for which intra-molecular interactions should be calculated
    std::vector<std::pair<OBBitVec, OBBitVec> > _interGroups; //!< groups for which intra-molecular
                                                              //!< interactions should be calculated
  public:
    /*! Clone the current instance. May be desirable in multithreaded environments,
     *  Should be deleted after use
     */
    virtual OBForceField* MakeNewInstance()=0;

    //! Destructor
    virtual ~OBForceField()
    {
      if (_grad1 != NULL) {
        delete [] _grad1;
        _grad1 = NULL;
      }
      if (_gradientPtr != NULL) {
        delete [] _gradientPtr;
	_gradientPtr = NULL;
      }
    }

    //! \return Plugin type ("forcefields")
    const char* TypeID()
    {
      return "forcefields";
    }

    /*! \param ID forcefield id (Ghemical, MMFF94, UFF, ...).
     *  \return A pointer to a forcefield (the default if ID is empty), or NULL if not available.
     */
    static OBForceField* FindForceField(const std::string& ID)
    {
      return FindType(ID.c_str());
    }
    /*! \param ID forcefield id (Ghemical, MMFF94, UFF, ...).
     *  \return A pointer to a forcefield (the default if ID is empty), or NULL if not available.
     */
    static OBForceField* FindForceField(const char *ID)
    {
      return FindType(ID);
    }
    /*
     *
     */
    void SetParameterFile(const std::string &filename)
    {
      _parFile = filename;
      _init = false;
    }
    /*! \return The unit (kcal/mol, kJ/mol, ...) in which the energy is expressed as std::string.
     */
    virtual std::string GetUnit() { return std::string("au"); }
    /* Does this force field have analytical gradients defined for all
     * calculation components (bonds, angles, non-bonded, etc.)
     * If this is true, code should default to using OBFF_ANALYTICAL_GRADIENT
     * for SteepestDescent() or ConjugateGradients().
     * \return True if all analytical gradients are implemented.
     */
    virtual bool HasAnalyticalGradients() { return false; }
    /*! Setup the forcefield for mol (assigns atom types, charges, etc.). Keep current constraints.
     *  \param mol The OBMol object that contains the atoms and bonds.
     *  \return True if succesfull.
     */
    bool Setup(OBMol &mol);
    /*! Setup the forcefield for mol (assigns atom types, charges, etc.). Use new constraints.
     *  \param mol The OBMol object that contains the atoms and bonds.
     *  \param constraints The OBFFConstraints object that contains the constraints.
     *  \return True if succesfull.
     */
    bool Setup(OBMol &mol, OBFFConstraints &constraints);
    /*! Load the parameters (this function is overloaded by the individual forcefields,
     *  and is called autoamically from OBForceField::Setup()).
     */
    // move to protected in future version
    virtual bool ParseParamFile() { return false; }
    /*! Set the atom types (this function is overloaded by the individual forcefields,
     *  and is called autoamically from OBForceField::Setup()).
     */
    // move to protected in future version
    virtual bool SetTypes() { return false; }
    /*! Set the formal charges (this function is overloaded by the individual forcefields,
     *  and is called autoamically from OBForceField::Setup()).
     */
    // move to protected in future version
    virtual bool SetFormalCharges() { return false; }
    /*! Set the partial charges (this function is overloaded by the individual forcefields,
     *  and is called autoamically from OBForceField::Setup()).
     */
    // move to protected in future version
    virtual bool SetPartialCharges() { return false; }
    /*! Setup the calculations (this function is overloaded by the individual forcefields,
     *  and is called autoamically from OBForceField::Setup()).
     */
    // move to protected in future version
    virtual bool SetupCalculations() { return false; }
    /*! Setup the pointers to the atom positions in the OBFFCalculation objects. This method
     *  will iterate over all the calculations and call SetupPointers for each one. (This
     *  function should be implemented by the individual force field implementations).
     */
    // move to protected in future version
    virtual bool SetupPointers() { return false; }
    /*! Compare the internal forcefield OBMol object to mol. If the two have the
     *  same number of atoms and bonds, and all atomic numbers are the same,
     *  this function returns false, and no call to Setup is needed.
     *  \return True if Setup needs to be called.
     */
    bool IsSetupNeeded(OBMol &mol);
    /*! Get the force atom types. The atom types will be added to
     *  the atoms of mol as OBPairData. The attribute will be "FFAtomType".
     *
     *  \code
     *  ...
     *  pFF->Setup(&mol);
     *  pFF->GetAtomTypes(&mol);
     *  FOR_ATOMS_OF_MOL (atom, mol) {
     *    OBPairData *type = (OBPairData*) atom->GetData("FFAtomType");
     *    if (type)
     *      cout << "atom " << atom->GetIdx() << " : " << type->GetValue() << endl;
     *  }
     *  ...
     *  \endcode
     */
    bool GetAtomTypes(OBMol &mol);
    /*! Get the force field formal charges. The formal charges will be added to
     *  the atoms of mol as OBPairData. The attribute will be "FFPartialCharge".
     *
     *  \code
     *  ...
     *  pFF->Setup(&mol);
     *  pFF->GetPartialCharges(&mol);
     *  FOR_ATOMS_OF_MOL (atom, mol) {
     *    OBPairData *chg = (OBPairData*) atom->GetData("FFPartialCharge");
     *    if (chg)
     *      cout << "atom " << atom->GetIdx() << " : " << chg->GetValue() << endl;
     *  }
     *  ...
     *  \endcode
     */
    bool GetPartialCharges(OBMol &mol);



    /*! Get coordinates for current conformer and attach OBConformerData with energies, forces, ... to mol.
     *  \param mol The OBMol object to copy the coordinates to (from OBForceField::_mol).
     *  \return True if succesfull.
     */
    bool GetCoordinates(OBMol &mol);
    //! \deprecated Use GetCooordinates instead.
    bool UpdateCoordinates(OBMol &mol) {return GetCoordinates(mol); }
    /*! Get coordinates for all conformers and attach OBConformerData with energies, forces, ... to mol.
     *  \param mol The OBMol object to copy the coordinates to (from OBForceField::_mol).
     *  \return True if succesfull.
     */
    bool GetConformers(OBMol &mol);
    //! \deprecated Use GetConformers instead.
    bool UpdateConformers(OBMol &mol) { return GetConformers(mol); }
    /*! Set coordinates for current conformer.
     *  \param mol the OBMol object to copy the coordinates from (to OBForceField::_mol).
     *  \return true if succesfull.
     */
    bool SetCoordinates(OBMol &mol);
    /*! Set coordinates for all conformers.
     *  \param mol The OBMol object to copy the coordinates from (to OBForceField::_mol).
     *  \return True if succesfull.
     */
    bool SetConformers(OBMol &mol);
    /*! Create a grid with spacing @p step and @p padding. Place a probe atom of type probe at every grid point,
     *  calculate the energy and store it in the grid. These grids can then be used to create isosurfaces to
     *  identify locations where the probe atom has favourable interactions with the molecule.
     *  \param step The grid step size in A..
     *  \param padding The padding for the grid in A.
     *  \param type The force field atom type for the probe.
     *  \param pchg The partial charge for the probe atom.
     *  \return Pointer to the grid constaining the results.
     */
    OBGridData *GetGrid(double step, double padding, const char *type, double pchg);

    /////////////////////////////////////////////////////////////////////////
    // Interacting groups                                                  //
    /////////////////////////////////////////////////////////////////////////

    //! \name Methods for specifying interaction groups
    //@{
    /*! Enable intra-molecular interactions for group (bonds, angles, strbnd, torsions, oop).
     *  This function should be called before Setup().
     *  \param group OBBitVec with bits set for the indexes of the atoms which make up the group.
     */
    void AddIntraGroup(OBBitVec &group);
    /*! Enable inter-molecular interactions for group (non-bonded: vdw & ele).
     *  This function should be called before Setup().
     *  \param group OBBitVec with bits set for the indexes of the atoms which make up the group.
     */
    void AddInterGroup(OBBitVec &group);
    /*! Enable inter-molecular interactions between group1 and group2 (non-bonded: vdw & ele).
     *  Note that this function doesn't enable bonded interactions in either group. Non-bonded
     *  interactions in the groups itself are also not enabled.
     *  This function should be called before Setup().
     *  \param group1 OBBitVec with bits set for the indexes of the atoms which make up the first group.
     *  \param group2 OBBitVec with bits set for the indexes of the atoms which make up the second group.
     */
    void AddInterGroups(OBBitVec &group1, OBBitVec &group2);
    /*! Clear all previously specified groups.
     */
    void ClearGroups();
    /*! \return true if there are groups.
     */
    bool HasGroups();
    //@}

    /////////////////////////////////////////////////////////////////////////
    // Cut-off                                                             //
    /////////////////////////////////////////////////////////////////////////

    //! \name Methods for Cut-off distances
    //@{
    /*! Enable or disable Cut-offs. Cut-offs are disabled by default.
     *  \param enable Enable when true, disable when false.
     */
    void EnableCutOff(bool enable)
    {
      _cutoff = enable;
    }
    /*! \return True if Cut-off distances are used.
     */
    bool IsCutOffEnabled()
    {
      return _cutoff;
    }
    /*! Set the VDW cut-off distance to r. Note that this does not enable cut-off distances.
     *  \param r The VDW cut-off distance to be used in A.
     */
    void SetVDWCutOff(double r)
    {
      _rvdw = r;
    }
    /*! Get the VDW cut-off distance.
     *  \return The VDW cut-off distance in A.
     */
    double GetVDWCutOff()
    {
      return _rvdw;
    }
    /*! Set the Electrostatic cut-off distance to r. Note that this does not
     *  enable cut-off distances.
     *  \param r The electrostatic cut-off distance to be used in A.
     */
    void SetElectrostaticCutOff(double r)
    {
      _rele = r;
    }
    /*! Get the Electrostatic cut-off distance.
     *  \return The electrostatic cut-off distance in A.
     */
    double GetElectrostaticCutOff()
    {
      return _rele;
    }
    /*! Set the frequency by which non-bonded pairs are updated. Values from 10 to 20
     *  are recommended. Too low will decrease performance, too high will cause
     *  non-bonded interactions within cut-off not to be calculated.
     *  \param f The pair list update frequency.
     */
    void SetUpdateFrequency(int f)
    {
      _pairfreq = f;
    }
    /*! Get the frequency by which non-bonded pairs are updated.
     *  \return The pair list update frequency.
     */
    int GetUpdateFrequency()
    {
      return _pairfreq;
    }
    /*! Set the bits in _vdwpairs and _elepairs to 1 for interactions that
     *  are within cut-off distance. This function is called in minimizing
     *  algorithms such as SteepestDescent and ConjugateGradients.
     */
    void UpdatePairsSimple();

    //void UpdatePairsGroup(); TODO

    /*! Get the number of non-bonded pairs in _mol.
     *  \return The number of pairs currently enabled (within cut-off distance)
     */
    unsigned int GetNumPairs();
    /*! Set bits in range 0..._numpairs-1 to 1. Using this means there will
     *  be no cut-off. (not-working: see code for more information.
     */
    void EnableAllPairs()
    {
      // TODO: OBBitVec doesn't seem to be allocating it's memory correctly
      //_vdwpairs.SetRangeOn(0, _numpairs-1);
      //_elepairs.SetRangeOn(0, _numpairs-1);
    }
    //@}

    /////////////////////////////////////////////////////////////////////////
    // Energy Evaluation                                                   //
    /////////////////////////////////////////////////////////////////////////

    //! \name Methods for energy evaluation
    //@{
    /*! \param gradients Set to true when the gradients need to be calculated
     *  (needs to be done before calling GetGradient()).
     *  \return Total energy.
     *   \par Output to log:
     *    OBFF_LOGLVL_NONE:   none \n
     *    OBFF_LOGLVL_LOW:    none \n
     *    OBFF_LOGLVL_MEDIUM: energy for individual energy terms \n
     *    OBFF_LOGLVL_HIGH:   energy for individual energy interactions \n
     */
    virtual double Energy(bool UNUSED(gradients) = true) { return 0.0f; }
    /*! \param gradients Set to true when the gradients need to be calculated
     *  (needs to be done before calling GetGradient()).
     *  \return Bond stretching energy.
     *   \par Output to log:
     *    see Energy()
     */
    virtual double E_Bond(bool UNUSED(gradients) = true) { return 0.0f; }
    /*! \param gradients Set to true when the gradients need to be calculated
     *  (needs to be done before calling GetGradient()).
     *  \return Angle bending energy.
     *  \par Output to log:
     *   see Energy()
     */
    virtual double E_Angle(bool UNUSED(gradients) = true) { return 0.0f; }
    /*! \param gradients Set to true when the gradients need to be calculated
     *  (needs to be done before calling GetGradient()).
     *  \return Stretch bending energy.
     *   \par Output to log:
     *    see Energy()
     */
    virtual double E_StrBnd(bool UNUSED(gradients) = true) { return 0.0f; }
    /*! \param gradients Set to true when the gradients need to be calculated
     *  (needs to be done before calling GetGradient()).
     *  \return Torsional energy.
     *    \par Output to log:
     *	  see Energy()
     */
    virtual double E_Torsion(bool UNUSED(gradients) = true) { return 0.0f; }
    /*! \param gradients Set to true when the gradients need to be calculated
     *  (needs to be done before calling GetGradient()).
     *  \return Out-Of-Plane bending energy.
     *   \par Output to log:
     *	  see Energy()
     */
    virtual double E_OOP(bool UNUSED(gradients) = true) { return 0.0f; }
    /*! \param gradients Set to true when the gradients need to be calculated
     *  (needs to be done before calling GetGradient()).
     *  \return Van der Waals energy.
     *   \par Output to log:
     *	  see Energy()
     */
    virtual double E_VDW(bool UNUSED(gradients) = true) { return 0.0f; }
    /*! \param gradients Set to true when the gradients need to be calculated
     *  (needs to be done before calling GetGradient()).
     *  \return Electrostatic energy.
     *   \par Output to log:
     *	  see Energy()
     */
    virtual double E_Electrostatic(bool UNUSED(gradients) = true) { return 0.0f; }
    //@}

    /////////////////////////////////////////////////////////////////////////
    // Logging                                                             //
    /////////////////////////////////////////////////////////////////////////

    //! \name Methods for logging
    //@{
    /*! Print the atom types to the log.
     */
    void PrintTypes();
    /*! Print the formal charges to the log (atom.GetPartialCharge(),
     *  MMFF94 FC's are not always int).
     */
    void PrintFormalCharges();
    /*! Print the partial charges to the log.
     */
    void PrintPartialCharges();
    /*! Print the velocities to the log.
     */
    void PrintVelocities();
    /*! Set the stream for logging (can also be &cout for logging to screen).
     *  \param pos Stream (when pos is 0, std::cout wil be used).
     *  \return True if succesfull.
     */
    bool SetLogFile(std::ostream *pos);
    /*! Set the log level (OBFF_LOGLVL_NONE, OBFF_LOGLVL_LOW, OBFF_LOGLVL_MEDIUM, OBFF_LOGLVL_HIGH).
     *  Inline if statements for logging are available:
     *  \code
     *  #define IF_OBFF_LOGLVL_LOW    if(_loglvl >= OBFF_LOGLVL_LOW)
     *  #define IF_OBFF_LOGLVL_MEDIUM if(_loglvl >= OBFF_LOGLVL_MEDIUM)
     *  #define IF_OBFF_LOGLVL_HIGH   if(_loglvl >= OBFF_LOGLVL_HIGH)
     *  \endcode
     *
     *  example:
     *  \code
     *  SetLogLevel(OBFF_LOGLVL_MEDIUM);
     *  IF_OBFF_LOGLVL_HIGH {
     *    OBFFLog("this text will NOT be logged...\n");
     *  }
     *
     *  IF_OBFF_LOGLVL_LOW {
     *    OBFFLog"this text will be logged...\n");
     *  }
     *
     *  IF_OBFF_LOGLVL_MEDIUM {
     *    OBFFLog("this text will also be logged...\n");
     *  }
     *  \endcode
     */
    bool SetLogLevel(int level);
    /*! \return The log level.
     */
    int GetLogLevel() { return _loglvl; }
    /*! Print msg to the logfile.
     *  \param msg The message to print.
     */
    void OBFFLog(std::string msg)
    {
      if (!_logos)
        return;

      *_logos << msg;
    }
    /*! Print msg to the logfile.
     *  \param msg The message to print.
     */
    void OBFFLog(const char *msg)
    {
      if (!_logos)
        return;

      *_logos << msg;
    }
    //@}

    /////////////////////////////////////////////////////////////////////////
    // Structure Generation                                                //
    /////////////////////////////////////////////////////////////////////////

    //! \name Methods for structure generation
    //@{
    //! Generate coordinates for the molecule (distance geometry). (OB 3.0).
    void DistanceGeometry();
    /*! Generate conformers for the molecule (systematicaly rotating torsions).
     *
     *  The initial starting structure here is important, this structure should be
     *  minimized for the best results. SystematicRotorSearch works by rotating around
     *  the rotatable bond in a molecule (see OBRotamerList class). This rotating generates
     *  multiple conformers. The energy for all these conformers is then evaluated and the
     *  lowest energy conformer is selected.
     *
     *  \param geomSteps The number of steps to take during geometry optimization.
     *
     *	\par Output to log:
     *  This function should only be called with the log level set to OBFF_LOGLVL_NONE or OBFF_LOGLVL_LOW. Otherwise
     *	too much information about the energy calculations needed for this function will interfere with the output for
     *	this function. \n\n
     *  OBFF_LOGLVL_NONE:   None. \n
     *  OBFF_LOGLVL_LOW:    Number of rotatable bonds, energies for the conformers, which one is the lowest, ... \n
     *  OBFF_LOGLVL_MEDIUM: See note above. \n
     *  OBFF_LOGLVL_HIGH:   See note above. \n
     */
    void SystematicRotorSearch(unsigned int geomSteps = 2500);
    /*! Generate conformers for the molecule by systematicaly rotating torsions. To be used in combination with
     *  SystematicRotorSearchNexConformer().
     *
     *  example:
     *  \code
     *  // pFF is a pointer to a OBForceField class
     *  pFF->SystematicRotorSearchInitialize(300);
     *  while (pFF->SystematicRotorSearchNextConformer(300)) {
     *    // do some updating in your program (show last generated conformer, ...)
     *  }
     *  \endcode
     *
     *  If you don't need any updating in your program, SystematicRotorSearch() is recommended.
     *
     *  \param geomSteps The number of steps to take during geometry optimization.
     *  \return The number of conformers.
     */
    int SystematicRotorSearchInitialize(unsigned int geomSteps = 2500);
    /*! Evaluate the next conformer.
     *  \param geomSteps The number of steps to take during geometry optimization.
     *  \return True if there are more conformers.
     */
    bool SystematicRotorSearchNextConformer(unsigned int geomSteps = 2500);
    /*! Generate conformers for the molecule (randomly rotating torsions).
     *
     *  The initial starting structure here is important, this structure should be
     *  minimized for the best results. RandomRotorSearch works by randomly rotating around
     *  the rotatable bonds in a molecule (see OBRotamerList class). This rotating generates
     *  multiple conformers. The energy for all these conformers is then evaluated and the
     *  lowest energy conformer is selected.
     *
     *  \param conformers The number of random conformers to consider during the search.
     *  \param geomSteps The number of steps to take during geometry optimization for each conformer.
     *
     *	\par Output to log:
     *  This function should only be called with the log level set to OBFF_LOGLVL_NONE or OBFF_LOGLVL_LOW. Otherwise
     *	too much information about the energy calculations needed for this function will interfere with the output for
     *	this function. \n\n
     *  OBFF_LOGLVL_NONE:   None. \n
     *  OBFF_LOGLVL_LOW:    Number of rotatable bonds, energies for the conformers, which one is the lowest, ... \n
     *  OBFF_LOGLVL_MEDIUM: See note above. \n
     *  OBFF_LOGLVL_HIGH:   See note above. \n
     */
    void RandomRotorSearch(unsigned int conformers, unsigned int geomSteps = 2500);
    /*! Generate conformers for the molecule by randomly rotating torsions. To be used in combination with
     *  RandomRotorSearchNexConformer().
     *
     *  example:
     *  \code
     *  // pFF is a pointer to a OBForceField class
     *  pFF->RandomRotorSearchInitialize(300);
     *  while (pFF->RandomRotorSearchNextConformer(300)) {
     *    // do some updating in your program (show last generated conformer, ...)
     *  }
     *  \endcode
     *
     *  If you don't need any updating in your program, RandomRotorSearch() is recommended.
     *
     *  \param conformers The number of random conformers to consider during the search
     *  \param geomSteps The number of steps to take during geometry optimization
     */
    void RandomRotorSearchInitialize(unsigned int conformers, unsigned int geomSteps = 2500);
    /*! Evaluate the next conformer.
     *  \param geomSteps The number of steps to take during geometry optimization.
     *  \return True if there are more conformers.
     */
    bool RandomRotorSearchNextConformer(unsigned int geomSteps = 2500);
    /*! Generate conformers for the molecule (randomly rotating torsions).
     *
     *  The initial starting structure here is important, this structure should be
     *  minimized for the best results. WeightedRotorSearch works by randomly rotating around
     *  the rotatable bonds in a molecule (see OBRotamerList class). Unlike RandomRotorSearch()
     *  the random choice of torsions is reweighted based on the energy of the generated conformer.
     *  Over time, the generated conformers for each step should become increasingly better.
     *  The lowest energy conformer is selected.
     *
     * \param conformers The number of random conformers to consider during the search.
     * \param geomSteps The number of steps to take during geometry optimization for each conformer.
     *
     *	\par Output to log:
     *  This function should only be called with the log level set to OBFF_LOGLVL_NONE or OBFF_LOGLVL_LOW. Otherwise
     *	too much information about the energy calculations needed for this function will interfere with the output for
     *	this function. \n\n
     *  OBFF_LOGLVL_NONE:   None. \n
     *  OBFF_LOGLVL_LOW:    Number of rotatable bonds, energies for the conformers, which one is the lowest, ... \n
     *  OBFF_LOGLVL_MEDIUM: See note above. \n
     *  OBFF_LOGLVL_HIGH:   See note above. \n
     */
    void WeightedRotorSearch(unsigned int conformers, unsigned int geomSteps);

    /////////////////////////////////////////////////////////////////////////
    // Energy Minimization                                                 //
    /////////////////////////////////////////////////////////////////////////

    //! \name Methods for energy minimization
    //@{
    /*! Set the LineSearchType. The default type is LineSearchType::Simple.
     *  \param type The LineSearchType to be used in SteepestDescent and ConjugateGradients.
     */
    void SetLineSearchType(int type)
    {
      _linesearch = type;
    }
    /*! Get the LineSearchType.
     *  \return The current LineSearchType.
     */
    int GetLineSearchType()
    {
      return _linesearch;
    }
    /*! Perform a linesearch starting at atom in direction direction.
     * \deprecated Current code should use LineSearch(double *, double*) instead.
     */
    vector3 LineSearch(OBAtom *atom, vector3 &direction);
    /*! Perform a linesearch for the entire molecule in direction @p direction.
     *  This function is called when using LineSearchType::Simple.
     *
     *  \param currentCoords Start coordinates.
     *  \param direction The search direction.
     *  \return alpha, The scale of the step we moved along the direction vector.
     *
     *  \par Output to log:
     *  OBFF_LOGLVL_NONE:   none \n
     *  OBFF_LOGLVL_LOW:    none \n
     *  OBFF_LOGLVL_MEDIUM: none \n
     *  OBFF_LOGLVL_HIGH:   none \n
     */
    double LineSearch(double *currentCoords, double *direction);
    /*! Perform a linesearch for the entire molecule.
     *  This function is called when using LineSearchType::Newton2Num.
     *
     *  \param direction The search direction.
     *  \return alpha, The scale of the step we moved along the direction vector.
     *
     *  \par Output to log:
     *  OBFF_LOGLVL_NONE:   none \n
     *  OBFF_LOGLVL_LOW:    none \n
     *  OBFF_LOGLVL_MEDIUM: none \n
     *  OBFF_LOGLVL_HIGH:   none \n
     */
    double Newton2NumLineSearch(double *direction);
    /*! Set the coordinates of the atoms to origCoord + step.
     *  \param origCoords Start coordinates.
     *  \param direction The search direction.
     *  \param step The step to take.
     */
    void   LineSearchTakeStep(double *origCoords, double *direction, double step);
    /*! Perform steepest descent optimalization for steps steps or until convergence criteria is reached.
     *
     *  \param steps The number of steps.
     *  \param econv Energy convergence criteria. (defualt is 1e-6)
     *  \param method Deprecated. (see HasAnalyticalGradients())
     *
     *  \par Output to log:
     *  This function should only be called with the log level set to OBFF_LOGLVL_NONE or OBFF_LOGLVL_LOW. Otherwise
     *  too much information about the energy calculations needed for the minimization will interfere with the list
     *  of energies for succesive steps. \n\n
     *  OBFF_LOGLVL_NONE:   none \n
     *  OBFF_LOGLVL_LOW:    header including number of steps and first step \n
     *  OBFF_LOGLVL_MEDIUM: see note above \n
     *  OBFF_LOGLVL_HIGH:   see note above \n
     */
    void SteepestDescent(int steps, double econv = 1e-6f, int method = OBFF_ANALYTICAL_GRADIENT);
    /*! Initialize steepest descent optimalization, to be used in combination with SteepestDescentTakeNSteps().
     *
     *  example:
     *  \code
     *  // pFF is a pointer to a OBForceField class
     *  pFF->SteepestDescentInitialize(100, 1e-5f);
     *  while (pFF->SteepestDescentTakeNSteps(5)) {
     *    // do some updating in your program (redraw structure, ...)
     *  }
     *  \endcode
     *
     *  If you don't need any updating in your program, SteepestDescent() is recommended.
     *
     *  \param steps The number of steps.
     *  \param econv Energy convergence criteria. (defualt is 1e-6)
     *  \param method Deprecated. (see HasAnalyticalGradients())
     *
     *  \par Output to log:
     *  This function should only be called with the log level set to OBFF_LOGLVL_NONE or OBFF_LOGLVL_LOW. Otherwise
     *  too much information about the energy calculations needed for the minimization will interfere with the list
     *  of energies for succesive steps. \n\n
     *  OBFF_LOGLVL_NONE:   none \n
     *  OBFF_LOGLVL_LOW:    header including number of steps \n
     *  OBFF_LOGLVL_MEDIUM: see note above \n
     *  OBFF_LOGLVL_HIGH:   see note above \n
     */
    void SteepestDescentInitialize(int steps = 1000, double econv = 1e-6f, int method = OBFF_ANALYTICAL_GRADIENT);
    /*! Take n steps in a steepestdescent optimalization that was previously initialized with SteepestDescentInitialize().
     *
     *  \param n The number of steps to take.
     *  \return False if convergence or the number of steps given by SteepestDescentInitialize() has been reached.
     *
     *  \par Output to log:
     *  This function should only be called with the log level set to OBFF_LOGLVL_NONE or OBFF_LOGLVL_LOW. Otherwise
     *  too much information about the energy calculations needed for the minimization will interfere with the list
     *  of energies for succesive steps. \n\n
     *  OBFF_LOGLVL_NONE:   none \n
     *  OBFF_LOGLVL_LOW:    step number, energy and energy for the previous step \n
     *  OBFF_LOGLVL_MEDIUM: see note above \n
     *  OBFF_LOGLVL_HIGH:   see note above \n
     */
    bool SteepestDescentTakeNSteps(int n);
    /*! Perform conjugate gradient optimalization for steps steps or until convergence criteria is reached.
     *
     *  \param steps The number of steps.
     *  \param econv Energy convergence criteria. (defualt is 1e-6)
     *  \param method Deprecated. (see HasAnalyticalGradients())
     *
     *  \par Output to log:
     *  This function should only be called with the log level set to OBFF_LOGLVL_NONE or OBFF_LOGLVL_LOW. Otherwise
     *  too much information about the energy calculations needed for the minimization will interfere with the list
     *  of energies for succesive steps. \n\n
     *  OBFF_LOGLVL_NONE:   none \n
     *  OBFF_LOGLVL_LOW:    information about the progress of the minimization \n
     *  OBFF_LOGLVL_MEDIUM: see note above \n
     *  OBFF_LOGLVL_HIGH:   see note above \n
     */
    void ConjugateGradients(int steps, double econv = 1e-6f, int method = OBFF_ANALYTICAL_GRADIENT);
    /*! Initialize conjugate gradient optimalization and take the first step, to be
     *  used in combination with ConjugateGradientsTakeNSteps().
     *
     *  example:
     *  \code
     *  // pFF is a pointer to a OBForceField class
     *  pFF->ConjugateGradientsInitialize(100, 1e-5f);
     *  while (pFF->ConjugateGradientsTakeNSteps(5)) {
     *    // do some updating in your program (redraw structure, ...)
     *  }
     *  \endcode
     *
     *  If you don't need any updating in your program, ConjugateGradients() is recommended.
     *
     *  \param steps The number of steps.
     *  \param econv Energy convergence criteria. (defualt is 1e-6)
     *  \param method Deprecated. (see HasAnalyticalGradients())
     *
     *  \par Output to log:
     *  This function should only be called with the log level set to OBFF_LOGLVL_NONE or OBFF_LOGLVL_LOW. Otherwise
     *  too much information about the energy calculations needed for the minimization will interfere with the list
     *  of energies for succesive steps. \n\n
     *  OBFF_LOGLVL_NONE:   none \n
     *  OBFF_LOGLVL_LOW:    header including number of steps and first step \n
     *  OBFF_LOGLVL_MEDIUM: see note above \n
     *  OBFF_LOGLVL_HIGH:   see note above \n
     */
    void ConjugateGradientsInitialize(int steps = 1000, double econv = 1e-6f, int method = OBFF_ANALYTICAL_GRADIENT);
    /*! Take n steps in a conjugate gradient optimalization that was previously
     *  initialized with ConjugateGradientsInitialize().
     *
     *  \param n The number of steps to take.
     *  \return False if convergence or the number of steps given by ConjugateGradientsInitialize() has been reached.
     *
     *  \par Output to log:
     *  This function should only be called with the log level set to OBFF_LOGLVL_NONE or OBFF_LOGLVL_LOW. Otherwise
     *  too much information about the energy calculations needed for the minimization will interfere with the list
     *  of energies for succesive steps. \n\n
     *  OBFF_LOGLVL_NONE:   none \n
     *  OBFF_LOGLVL_LOW:    step number, energy and energy for the previous step \n
     *  OBFF_LOGLVL_MEDIUM: see note above \n
     *  OBFF_LOGLVL_HIGH:   see note above \n
    */
    bool ConjugateGradientsTakeNSteps(int n);
    //@}

    /////////////////////////////////////////////////////////////////////////
    // Molecular Dynamics                                                  //
    /////////////////////////////////////////////////////////////////////////

    //! \name Methods for molecular dynamics
    //@{
    /*! Generate starting velocities with a Maxwellian distribution.
     */
    void GenerateVelocities();
    /*! Correct the velocities so that the following is true:
     *
     *  \code
     *        3N
     *       ----
     *  0.5  \    m_i * v_i^2 = 0.5 * Ndf * kB * T = E_kin
     *       /
     *       ----
     *       i=1
     *
     *  E_kin : kinetic energy
     *  m_i : mass of atom i
     *  v_i : velocity of atom i
     *  Ndf : number of degrees of freedom (3 * number of atoms)
     *  kB : Boltzmann's constant
     *  T : temperature
     *  \endcode
     *
     */
    void CorrectVelocities();
    /*! Take n steps at temperature T. If no velocities are set, they will be generated.
     *
     *  example:
     *  \code
     *  // pFF is a pointer to a OBForceField class
     *  while (pFF->MolecularDynamicsTakeNSteps(5, 300)) {
     *    // do some updating in your program (redraw structure, ...)
     *  }
     * \endcode
     *
     *  \param n The number of steps to take.
     *  \param T Absolute temperature in Kelvin.
     *  \param timestep The time step in picoseconds. (10e-12 s)
     *  \param method OBFF_ANALYTICAL_GRADIENTS (default) or OBFF_NUMERICAL_GRADIENTS
     */
    void MolecularDynamicsTakeNSteps(int n, double T, double timestep = 0.001, int method = OBFF_ANALYTICAL_GRADIENT);
    //@}

    /////////////////////////////////////////////////////////////////////////
    // Constraints                                                         //
    /////////////////////////////////////////////////////////////////////////

    //! \name Methods for constraints
    //@{
    /*! Get the current constraints.
     *  \return The current constrains stored in the force field.
     */
    OBFFConstraints& GetConstraints();
    /*! Set the constraints.
     *  \param constraints The new constraints to be used.
     */
    void SetConstraints(OBFFConstraints& constraints);
    /*! Fix the atom position until UnsetFixAtom() is called. This function
     *  can be used in programs that allow the user to interact with a molecule
     *  that is being minimized without having to check if the atom is already
     *  fixed in the constraints set by Setup() or SetConstraints(). Using this
     *  makes sure the selected atom follows the mouse cursur.
     *  \param index The index for the atom to fix.
     */
    void SetFixAtom(int index);
    /*! Undo last SetFixAtom. This function will not remove the fix atom
     *  constraint for this atom if set by Setup() or SetConstraints().
     */
    void UnsetFixAtom();
    /*! Ignore the atom until UnsetIgnoreAtom() is called. This function
     *  can be used in programs that allow the user to interact with a molecule
     *  that is being minimized without having to check if the atom is already
     *  ignored in the constraints set by Setup() or SetConstraints(). Using this
     *  makes sure, in drawing mode, you can close rings without your newly
     *  created puching the other atoms away.
     *  \param index The index for the atom to ignore.
     */
    void SetIgnoreAtom(int index);
    /*! Undo last SetIgnoreAtom. This function will not remove the ignore atom
     *  constraint for this atom if set by Setup() or SetConstraints().
     */
    void UnsetIgnoreAtom();

    //! internal function
    static bool IgnoreCalculation(int a, int b);
    //! internal function
    static bool IgnoreCalculation(int a, int b, int c);
    //! internal function
    static bool IgnoreCalculation(int a, int b, int c, int d);
    //@}


    /////////////////////////////////////////////////////////////////////////
    // Validation                                                          //
    /////////////////////////////////////////////////////////////////////////

    //! \name Methods for forcefield validation
    //@{
    //! (debugging)
    bool DetectExplosion();
    //! (debugging)
    vector3 ValidateLineSearch(OBAtom *atom, vector3 &direction);
    //! (debugging)
    void ValidateSteepestDescent(int steps);
    //! (debugging)
    void ValidateConjugateGradients(int steps);
    //! Validate the force field implementation (debugging)
    virtual bool Validate() { return false; }
    /*!
      Validate the analytical gradients by comparing them to numerical ones. This function has to
      be implemented force field specific. (debugging)
    */
    virtual bool ValidateGradients() { return false; }
    /*!
      Calculate the error of the analytical gradient (debugging)
      \return  error = fabs(numgrad - anagrad) / anagrad * 100%
    */
    vector3 ValidateGradientError(vector3 &numgrad, vector3 &anagrad);
    //@}

    /////////////////////////////////////////////////////////////////////////
    // Vector Analysis                                                     //
    /////////////////////////////////////////////////////////////////////////

    //! \name Methods for vector analysis (used by OBFFXXXXCalculationYYYY)
    //@{
    /*! Calculate the derivative of a vector length. The vector is given by a - b,
     * the length of this vector rab = sqrt(ab.x^2 + ab.y^2 + ab.z^2).
     * \param pos_a atom a (coordinates)
     * \param pos_b atom b (coordinates)
     * \param force_a - return value for the force on atom a
     * \param force_b - return value for the force on atom b
     * \return The distance between a and b (bondlength for bond stretching, separation for vdw, electrostatic)
     */
    static double VectorBondDerivative(double *pos_a, double *pos_b,
                                       double *force_a, double *force_b);
    /*! To be used for VDW or Electrostatic interactions. This
     *  is faster than VectorBondDerivative, but does no error checking.
     */
    static double VectorDistanceDerivative(const double* const pos_i, const double* const pos_j,
                                           double *force_i, double *force_j);
    //! \deprecated
    static double VectorLengthDerivative(vector3 &a, vector3 &b);

    /*! Calculate the derivative of a angle a-b-c. The angle is given by dot(ab,cb)/rab*rcb.
     *  Used for harmonic (cubic) angle potentials.
     * \param pos_a atom a (coordinates)
     * \param pos_b atom b (coordinates)
     * \param pos_c atom c (coordinates)
     * \param force_a - return value for the force on atom a
     * \param force_b - return value for the force on atom b
     * \param force_c - return value for the force on atom c
     * \return The angle between a-b-c
     */
    static double VectorAngleDerivative(double *pos_a, double *pos_b, double *pos_c,
                                        double *force_a, double *force_b, double *force_c);
    //! \deprecated
    static double VectorAngleDerivative(vector3 &a, vector3 &b, vector3 &c);
    /*! Calculate the derivative of a OOP angle a-b-c-d. b is the central atom, and a-b-c is the plane.
     * The OOP angle is given by 90° - arccos(dot(corss(ab,cb),db)/rabbc*rdb).
     * \param pos_a atom a (coordinates)
     * \param pos_b atom b (coordinates)
     * \param pos_c atom c (coordinates)
     * \param pos_d atom d (coordinates)
     * \param force_a - return value for the force on atom a
     * \param force_b - return value for the force on atom b
     * \param force_c - return value for the force on atom c
     * \param force_d - return value for the force on atom d
     * \return The OOP angle for a-b-c-d
     */
    static double VectorOOPDerivative(double *pos_a, double *pos_b, double *pos_c, double *pos_d,
                                      double *force_a, double *force_b, double *force_c, double *force_d);
    //! \deprecated
    static double VectorOOPDerivative(vector3 &a, vector3 &b, vector3 &c, vector3 &d);
    /*! Calculate the derivative of a torsion angle a-b-c-d. The torsion angle is given by arccos(dot(corss(ab,bc),cross(bc,cd))/rabbc*rbccd).
     * \param pos_a atom a (coordinates)
     * \param pos_b atom b (coordinates)
     * \param pos_c atom c (coordinates)
     * \param pos_d atom d (coordinates)
     * \param force_a - return value for the force on atom a
     * \param force_b - return value for the force on atom b
     * \param force_c - return value for the force on atom c
     * \param force_d - return value for the force on atom d
     * \return The tosion angle for a-b-c-d
     */
    static double VectorTorsionDerivative(double *pos_a, double *pos_b, double *pos_c, double *pos_d,
                                          double *force_a, double *force_b, double *force_c, double *force_d);
    //! \deprecated
    static double VectorTorsionDerivative(vector3 &a, vector3 &b, vector3 &c, vector3 &d);

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3]
     * \param j pointer to j[3]
     * \param result pointer to result[3], will be set to i - j
     */
    static void VectorSubtract(double *i, double *j, double *result)
    {
      for (unsigned int c = 0; c < 3; ++c)
        result[c] = i[c] - j[c];
    }

    static void VectorSubtract(const double* const i, const double* const j, double *result)
    {
      for (unsigned int c = 0; c < 3; ++c)
        result[c] = i[c] - j[c];
    }

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3]
     * \param j pointer to j[3]
     * \param result pointer to result[3], will be set to i + j
     */
    static void VectorAdd(double *i, double *j, double *result)
    {
      for (unsigned int c = 0; c < 3; ++c)
        result[c] = i[c] + j[c];
    }

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3]
     * \param n divide x,y,z with n
     * \param result pointer to result[3]
     */
    static void VectorDivide(double *i, double n, double *result)
    {
      for (unsigned int c = 0; c < 3; ++c)
        result[c] = i[c] / n;
    }

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3]
     * \param n multiply x,y,z with n
     * \param result pointer to result[3]
     */
    static void VectorMultiply(double *i, double n, double *result)
    {
      for (unsigned int c = 0; c < 3; ++c)
        result[c] = i[c] * n;
    }

    static void VectorMultiply(const double* const i, const double n, double *result)
    {
      for (unsigned int c = 0; c < 3; ++c)
        result[c] = i[c] * n;
    }

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3], multiply this vector by n and set this vector to the result.
     * \param n the scalar value to be multipled
     */
    static void VectorSelfMultiply(double *i, double n)
    {
      for (unsigned int c = 0; c < 3; ++c)
        i[c] *= n;
    }

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3] to be normalized
     */
    static void VectorNormalize(double *i)
    {
      double length = VectorLength(i);
      for (unsigned int c = 0; c < 3; ++c)
        i[c] /= length;
    }

    /*! inline fuction to speed up minimization speed
     * \param from pointer to i[3] to be copied from
     * \param to pointer to j[3] to be copied to
     */
    static void VectorCopy(double *from, double *to)
    {
      for (unsigned int c = 0; c < 3; ++c)
        to[c] = from[c];
    }

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3]
     * \return the vector length
     */
    static double VectorLength(double *i)
    {
      return sqrt( i[0]*i[0] + i[1]*i[1] + i[2]*i[2] );
    }

    static double VectorDistance(double *pos_i, double *pos_j)
    {
      double ij[3];
      VectorSubtract(pos_i, pos_j, ij);
      const double rij = VectorLength(ij);
      return rij;
    }

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3]
     * \param j pointer to j[3]
     * \param k pointer to k[3]
     * \return the vector angle ijk (deg)
     */
    static double VectorAngle(double *i, double *j, double *k);

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3]
     * \param j pointer to j[3]
     * \param k pointer to k[3]
     * \param l pointer to l[3]
     * \return the vector torson ijkl (deg)
     */
    static double VectorTorsion(double *i, double *j, double *k, double *l);

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3]
     * \param j pointer to j[3]
     * \param k pointer to k[3]
     * \param l pointer to l[3]
     * \return the vector torson ijkl (deg)
     */
    static double VectorOOP(double *i, double *j, double *k, double *l);

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3], will set x,y,z to 0,0,0
     */
    static void VectorClear(double *i)
    {
      for (unsigned int c = 0; c < 3; ++c)
        i[c] = 0.0;
    }

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3]
     * \param j pointer to j[3]
     * \return the dot product
     */
    static double VectorDot(double *i, double *j)
    {
      double result = 0.0;
      // Written as a loop for vectorization
      // Loop will be unrolled by compiler otherwise
      for (unsigned int c = 0; c < 3; ++c)
        result += i[c]*j[c];
      return result;
    }

    /*! inline fuction to speed up minimization speed
     * \param i pointer to i[3]
     * \param j pointer to j[3]
     * \param result the dot product (as a return value double[3])
     */
    static void VectorCross(double *i, double *j, double *result)
    {
      result[0] =   i[1]*j[2] - i[2]*j[1];
      result[1] = - i[0]*j[2] + i[2]*j[0];
      result[2] =   i[0]*j[1] - i[1]*j[0];
    }

    static void PrintVector(double *i)
    {
      std::cout << "<" << i[0] << ", " << i[1] << ", " << i[2] << ">" << std::endl;
    }
    //@}

  }; // class OBForceField

}// namespace OpenBabel

#endif   // OB_FORCEFIELD_H

//! \file forcefield.h
//! \brief Handle forcefields