/usr/include/vigra/edgedetection.hxx is in libvigraimpex-dev 1.7.1+dfsg1-2ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 | /************************************************************************/
/* */
/* Copyright 1998-2002 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_EDGEDETECTION_HXX
#define VIGRA_EDGEDETECTION_HXX
#include <vector>
#include <queue>
#include <cmath> // sqrt(), abs()
#include "utilities.hxx"
#include "numerictraits.hxx"
#include "stdimage.hxx"
#include "stdimagefunctions.hxx"
#include "recursiveconvolution.hxx"
#include "separableconvolution.hxx"
#include "convolution.hxx"
#include "labelimage.hxx"
#include "mathutil.hxx"
#include "pixelneighborhood.hxx"
#include "linear_solve.hxx"
#include "functorexpression.hxx"
namespace vigra {
/** \addtogroup EdgeDetection Edge Detection
Edge detectors based on first and second derivatives,
and related post-processing.
*/
//@{
/********************************************************/
/* */
/* differenceOfExponentialEdgeImage */
/* */
/********************************************************/
/** \brief Detect and mark edges in an edge image using the Shen/Castan zero-crossing detector.
This operator applies an exponential filter to the source image
at the given <TT>scale</TT> and subtracts the result from the original image.
Zero crossings are detected in the resulting difference image. Whenever the
gradient at a zero crossing is greater than the given <TT>gradient_threshold</TT>,
an edge point is marked (using <TT>edge_marker</TT>) in the destination image on
the darker side of the zero crossing (note that zero crossings occur
<i>between</i> pixels). For example:
\code
sign of difference image resulting edge points (*)
+ - - * * .
+ + - => . * *
+ + + . . .
\endcode
Non-edge pixels (<TT>.</TT>) remain untouched in the destination image.
The result can be improved by the post-processing operation \ref removeShortEdges().
A more accurate edge placement can be achieved with the function
\ref differenceOfExponentialCrackEdgeImage().
The source value type
(<TT>SrcAccessor::value_type</TT>) must be a linear algebra, i.e. addition,
subtraction and multiplication of the type with itself, and multiplication
with double and
\ref NumericTraits "NumericTraits" must
be defined. In addition, this type must be less-comparable.
<b> Declarations:</b>
pass arguments explicitly:
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue,
class DestValue = DestAccessor::value_type>
void differenceOfExponentialEdgeImage(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
double scale, GradValue gradient_threshold,
DestValue edge_marker = NumericTraits<DestValue>::one())
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue,
class DestValue = DestAccessor::value_type>
void differenceOfExponentialEdgeImage(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
double scale, GradValue gradient_threshold,
DestValue edge_marker = NumericTraits<DestValue>::one())
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<<a href="edgedetection_8hxx-source.html">vigra/edgedetection.hxx</a>\><br>
Namespace: vigra
\code
vigra::BImage src(w,h), edges(w,h);
// empty edge image
edges = 0;
...
// find edges at scale 0.8 with gradient larger than 4.0, mark with 1
vigra::differenceOfExponentialEdgeImage(srcImageRange(src), destImage(edges),
0.8, 4.0, 1);
\endcode
<b> Required Interface:</b>
\code
SrcImageIterator src_upperleft, src_lowerright;
DestImageIterator dest_upperleft;
SrcAccessor src_accessor;
DestAccessor dest_accessor;
SrcAccessor::value_type u = src_accessor(src_upperleft);
double d;
GradValue gradient_threshold;
u = u + u
u = u - u
u = u * u
u = d * u
u < gradient_threshold
DestValue edge_marker;
dest_accessor.set(edge_marker, dest_upperleft);
\endcode
<b> Preconditions:</b>
\code
scale > 0
gradient_threshold > 0
\endcode
*/
doxygen_overloaded_function(template <...> void differenceOfExponentialEdgeImage)
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void differenceOfExponentialEdgeImage(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
double scale, GradValue gradient_threshold, DestValue edge_marker)
{
vigra_precondition(scale > 0,
"differenceOfExponentialEdgeImage(): scale > 0 required.");
vigra_precondition(gradient_threshold > 0,
"differenceOfExponentialEdgeImage(): "
"gradient_threshold > 0 required.");
int w = slr.x - sul.x;
int h = slr.y - sul.y;
int x,y;
typedef typename
NumericTraits<typename SrcAccessor::value_type>::RealPromote
TMPTYPE;
typedef BasicImage<TMPTYPE> TMPIMG;
TMPIMG tmp(w,h);
TMPIMG smooth(w,h);
recursiveSmoothX(srcIterRange(sul, slr, sa), destImage(tmp), scale / 2.0);
recursiveSmoothY(srcImageRange(tmp), destImage(tmp), scale / 2.0);
recursiveSmoothX(srcImageRange(tmp), destImage(smooth), scale);
recursiveSmoothY(srcImageRange(smooth), destImage(smooth), scale);
typename TMPIMG::Iterator iy = smooth.upperLeft();
typename TMPIMG::Iterator ty = tmp.upperLeft();
DestIterator dy = dul;
static const Diff2D right(1, 0);
static const Diff2D bottom(0, 1);
TMPTYPE thresh = detail::RequiresExplicitCast<TMPTYPE>::cast((gradient_threshold * gradient_threshold) *
NumericTraits<TMPTYPE>::one());
TMPTYPE zero = NumericTraits<TMPTYPE>::zero();
for(y=0; y<h-1; ++y, ++iy.y, ++ty.y, ++dy.y)
{
typename TMPIMG::Iterator ix = iy;
typename TMPIMG::Iterator tx = ty;
DestIterator dx = dy;
for(x=0; x<w-1; ++x, ++ix.x, ++tx.x, ++dx.x)
{
TMPTYPE diff = *tx - *ix;
TMPTYPE gx = tx[right] - *tx;
TMPTYPE gy = tx[bottom] - *tx;
if((gx * gx > thresh) &&
(diff * (tx[right] - ix[right]) < zero))
{
if(gx < zero)
{
da.set(edge_marker, dx, right);
}
else
{
da.set(edge_marker, dx);
}
}
if(((gy * gy > thresh) &&
(diff * (tx[bottom] - ix[bottom]) < zero)))
{
if(gy < zero)
{
da.set(edge_marker, dx, bottom);
}
else
{
da.set(edge_marker, dx);
}
}
}
}
typename TMPIMG::Iterator ix = iy;
typename TMPIMG::Iterator tx = ty;
DestIterator dx = dy;
for(x=0; x<w-1; ++x, ++ix.x, ++tx.x, ++dx.x)
{
TMPTYPE diff = *tx - *ix;
TMPTYPE gx = tx[right] - *tx;
if((gx * gx > thresh) &&
(diff * (tx[right] - ix[right]) < zero))
{
if(gx < zero)
{
da.set(edge_marker, dx, right);
}
else
{
da.set(edge_marker, dx);
}
}
}
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue>
inline
void differenceOfExponentialEdgeImage(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
double scale, GradValue gradient_threshold)
{
differenceOfExponentialEdgeImage(sul, slr, sa, dul, da,
scale, gradient_threshold, 1);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
inline
void differenceOfExponentialEdgeImage(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
double scale, GradValue gradient_threshold,
DestValue edge_marker)
{
differenceOfExponentialEdgeImage(src.first, src.second, src.third,
dest.first, dest.second,
scale, gradient_threshold,
edge_marker);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue>
inline
void differenceOfExponentialEdgeImage(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
double scale, GradValue gradient_threshold)
{
differenceOfExponentialEdgeImage(src.first, src.second, src.third,
dest.first, dest.second,
scale, gradient_threshold, 1);
}
/********************************************************/
/* */
/* differenceOfExponentialCrackEdgeImage */
/* */
/********************************************************/
/** \brief Detect and mark edges in a crack edge image using the Shen/Castan zero-crossing detector.
This operator applies an exponential filter to the source image
at the given <TT>scale</TT> and subtracts the result from the original image.
Zero crossings are detected in the resulting difference image. Whenever the
gradient at a zero crossing is greater than the given <TT>gradient_threshold</TT>,
an edge point is marked (using <TT>edge_marker</TT>) in the destination image
<i>between</i> the corresponding original pixels. Topologically, this means we
must insert additional pixels between the original ones to represent the
boundaries between the pixels (the so called zero- and one-cells, with the original
pixels being two-cells). Within VIGRA, such an image is called \ref CrackEdgeImage.
To allow insertion of the zero- and one-cells, the destination image must have twice the
size of the original (precisely, <TT>(2*w-1)</TT> by <TT>(2*h-1)</TT> pixels). Then the algorithm
proceeds as follows:
\code
sign of difference image insert zero- and one-cells resulting edge points (*)
+ . - . - . * . . .
+ - - . . . . . . * * * .
+ + - => + . + . - => . . . * .
+ + + . . . . . . . . * *
+ . + . + . . . . .
\endcode
Thus the edge points are marked where they actually are - in between the pixels.
An important property of the resulting edge image is that it conforms to the notion
of well-composedness as defined by Latecki et al., i.e. connected regions and edges
obtained by a subsequent \ref Labeling do not depend on
whether 4- or 8-connectivity is used.
The non-edge pixels (<TT>.</TT>) in the destination image remain unchanged.
The result conformes to the requirements of a \ref CrackEdgeImage. It can be further
improved by the post-processing operations \ref removeShortEdges() and
\ref closeGapsInCrackEdgeImage().
The source value type (<TT>SrcAccessor::value_type</TT>) must be a linear algebra, i.e. addition,
subtraction and multiplication of the type with itself, and multiplication
with double and
\ref NumericTraits "NumericTraits" must
be defined. In addition, this type must be less-comparable.
<b> Declarations:</b>
pass arguments explicitly:
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue,
class DestValue = DestAccessor::value_type>
void differenceOfExponentialCrackEdgeImage(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
double scale, GradValue gradient_threshold,
DestValue edge_marker = NumericTraits<DestValue>::one())
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue,
class DestValue = DestAccessor::value_type>
void differenceOfExponentialCrackEdgeImage(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
double scale, GradValue gradient_threshold,
DestValue edge_marker = NumericTraits<DestValue>::one())
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<<a href="edgedetection_8hxx-source.html">vigra/edgedetection.hxx</a>\><br>
Namespace: vigra
\code
vigra::BImage src(w,h), edges(2*w-1,2*h-1);
// empty edge image
edges = 0;
...
// find edges at scale 0.8 with gradient larger than 4.0, mark with 1
vigra::differenceOfExponentialCrackEdgeImage(srcImageRange(src), destImage(edges),
0.8, 4.0, 1);
\endcode
<b> Required Interface:</b>
\code
SrcImageIterator src_upperleft, src_lowerright;
DestImageIterator dest_upperleft;
SrcAccessor src_accessor;
DestAccessor dest_accessor;
SrcAccessor::value_type u = src_accessor(src_upperleft);
double d;
GradValue gradient_threshold;
u = u + u
u = u - u
u = u * u
u = d * u
u < gradient_threshold
DestValue edge_marker;
dest_accessor.set(edge_marker, dest_upperleft);
\endcode
<b> Preconditions:</b>
\code
scale > 0
gradient_threshold > 0
\endcode
The destination image must have twice the size of the source:
\code
w_dest = 2 * w_src - 1
h_dest = 2 * h_src - 1
\endcode
*/
doxygen_overloaded_function(template <...> void differenceOfExponentialCrackEdgeImage)
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void differenceOfExponentialCrackEdgeImage(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
double scale, GradValue gradient_threshold,
DestValue edge_marker)
{
vigra_precondition(scale > 0,
"differenceOfExponentialCrackEdgeImage(): scale > 0 required.");
vigra_precondition(gradient_threshold > 0,
"differenceOfExponentialCrackEdgeImage(): "
"gradient_threshold > 0 required.");
int w = slr.x - sul.x;
int h = slr.y - sul.y;
int x, y;
typedef typename
NumericTraits<typename SrcAccessor::value_type>::RealPromote
TMPTYPE;
typedef BasicImage<TMPTYPE> TMPIMG;
TMPIMG tmp(w,h);
TMPIMG smooth(w,h);
TMPTYPE zero = NumericTraits<TMPTYPE>::zero();
static const Diff2D right(1,0);
static const Diff2D bottom(0,1);
static const Diff2D left(-1,0);
static const Diff2D top(0,-1);
recursiveSmoothX(srcIterRange(sul, slr, sa), destImage(tmp), scale / 2.0);
recursiveSmoothY(srcImageRange(tmp), destImage(tmp), scale / 2.0);
recursiveSmoothX(srcImageRange(tmp), destImage(smooth), scale);
recursiveSmoothY(srcImageRange(smooth), destImage(smooth), scale);
typename TMPIMG::Iterator iy = smooth.upperLeft();
typename TMPIMG::Iterator ty = tmp.upperLeft();
DestIterator dy = dul;
TMPTYPE thresh = detail::RequiresExplicitCast<TMPTYPE>::cast((gradient_threshold * gradient_threshold) *
NumericTraits<TMPTYPE>::one());
// find zero crossings above threshold
for(y=0; y<h-1; ++y, ++iy.y, ++ty.y, dy.y+=2)
{
typename TMPIMG::Iterator ix = iy;
typename TMPIMG::Iterator tx = ty;
DestIterator dx = dy;
for(int x=0; x<w-1; ++x, ++ix.x, ++tx.x, dx.x+=2)
{
TMPTYPE diff = *tx - *ix;
TMPTYPE gx = tx[right] - *tx;
TMPTYPE gy = tx[bottom] - *tx;
if((gx * gx > thresh) &&
(diff * (tx[right] - ix[right]) < zero))
{
da.set(edge_marker, dx, right);
}
if((gy * gy > thresh) &&
(diff * (tx[bottom] - ix[bottom]) < zero))
{
da.set(edge_marker, dx, bottom);
}
}
TMPTYPE diff = *tx - *ix;
TMPTYPE gy = tx[bottom] - *tx;
if((gy * gy > thresh) &&
(diff * (tx[bottom] - ix[bottom]) < zero))
{
da.set(edge_marker, dx, bottom);
}
}
typename TMPIMG::Iterator ix = iy;
typename TMPIMG::Iterator tx = ty;
DestIterator dx = dy;
for(x=0; x<w-1; ++x, ++ix.x, ++tx.x, dx.x+=2)
{
TMPTYPE diff = *tx - *ix;
TMPTYPE gx = tx[right] - *tx;
if((gx * gx > thresh) &&
(diff * (tx[right] - ix[right]) < zero))
{
da.set(edge_marker, dx, right);
}
}
iy = smooth.upperLeft() + Diff2D(0,1);
ty = tmp.upperLeft() + Diff2D(0,1);
dy = dul + Diff2D(1,2);
static const Diff2D topleft(-1,-1);
static const Diff2D topright(1,-1);
static const Diff2D bottomleft(-1,1);
static const Diff2D bottomright(1,1);
// find missing 1-cells below threshold (x-direction)
for(y=0; y<h-2; ++y, ++iy.y, ++ty.y, dy.y+=2)
{
typename TMPIMG::Iterator ix = iy;
typename TMPIMG::Iterator tx = ty;
DestIterator dx = dy;
for(int x=0; x<w-2; ++x, ++ix.x, ++tx.x, dx.x+=2)
{
if(da(dx) == edge_marker) continue;
TMPTYPE diff = *tx - *ix;
if((diff * (tx[right] - ix[right]) < zero) &&
(((da(dx, bottomright) == edge_marker) &&
(da(dx, topleft) == edge_marker)) ||
((da(dx, bottomleft) == edge_marker) &&
(da(dx, topright) == edge_marker))))
{
da.set(edge_marker, dx);
}
}
}
iy = smooth.upperLeft() + Diff2D(1,0);
ty = tmp.upperLeft() + Diff2D(1,0);
dy = dul + Diff2D(2,1);
// find missing 1-cells below threshold (y-direction)
for(y=0; y<h-2; ++y, ++iy.y, ++ty.y, dy.y+=2)
{
typename TMPIMG::Iterator ix = iy;
typename TMPIMG::Iterator tx = ty;
DestIterator dx = dy;
for(int x=0; x<w-2; ++x, ++ix.x, ++tx.x, dx.x+=2)
{
if(da(dx) == edge_marker) continue;
TMPTYPE diff = *tx - *ix;
if((diff * (tx[bottom] - ix[bottom]) < zero) &&
(((da(dx, bottomright) == edge_marker) &&
(da(dx, topleft) == edge_marker)) ||
((da(dx, bottomleft) == edge_marker) &&
(da(dx, topright) == edge_marker))))
{
da.set(edge_marker, dx);
}
}
}
dy = dul + Diff2D(1,1);
// find missing 0-cells
for(y=0; y<h-1; ++y, dy.y+=2)
{
DestIterator dx = dy;
for(int x=0; x<w-1; ++x, dx.x+=2)
{
static const Diff2D dist[] = {right, top, left, bottom };
int i;
for(i=0; i<4; ++i)
{
if(da(dx, dist[i]) == edge_marker) break;
}
if(i < 4) da.set(edge_marker, dx);
}
}
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
inline
void differenceOfExponentialCrackEdgeImage(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
double scale, GradValue gradient_threshold,
DestValue edge_marker)
{
differenceOfExponentialCrackEdgeImage(src.first, src.second, src.third,
dest.first, dest.second,
scale, gradient_threshold,
edge_marker);
}
/********************************************************/
/* */
/* removeShortEdges */
/* */
/********************************************************/
/** \brief Remove short edges from an edge image.
This algorithm can be applied as a post-processing operation of
\ref differenceOfExponentialEdgeImage() and \ref differenceOfExponentialCrackEdgeImage().
It removes all edges that are shorter than <TT>min_edge_length</TT>. The corresponding
pixels are set to the <TT>non_edge_marker</TT>. The idea behind this algorithms is
that very short edges are probably caused by noise and don't represent interesting
image structure. Technically, the algorithms executes a connected components labeling,
so the image's value type must be equality comparable.
If the source image fulfills the requirements of a \ref CrackEdgeImage,
it will still do so after application of this algorithm.
Note that this algorithm, unlike most other algorithms in VIGRA, operates in-place,
i.e. on only one image. Also, the algorithm assumes that all non-edges pixels are already
marked with the given <TT>non_edge_marker</TT> value.
<b> Declarations:</b>
pass arguments explicitly:
\code
namespace vigra {
template <class Iterator, class Accessor, class SrcValue>
void removeShortEdges(
Iterator sul, Iterator slr, Accessor sa,
int min_edge_length, SrcValue non_edge_marker)
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class Iterator, class Accessor, class SrcValue>
void removeShortEdges(
triple<Iterator, Iterator, Accessor> src,
int min_edge_length, SrcValue non_edge_marker)
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<<a href="edgedetection_8hxx-source.html">vigra/edgedetection.hxx</a>\><br>
Namespace: vigra
\code
vigra::BImage src(w,h), edges(w,h);
// empty edge image
edges = 0;
...
// find edges at scale 0.8 with gradient larger than 4.0, mark with 1
vigra::differenceOfExponentialEdgeImage(srcImageRange(src), destImage(edges),
0.8, 4.0, 1);
// zero edges shorter than 10 pixels
vigra::removeShortEdges(srcImageRange(edges), 10, 0);
\endcode
<b> Required Interface:</b>
\code
SrcImageIterator src_upperleft, src_lowerright;
DestImageIterator dest_upperleft;
SrcAccessor src_accessor;
DestAccessor dest_accessor;
SrcAccessor::value_type u = src_accessor(src_upperleft);
u == u
SrcValue non_edge_marker;
src_accessor.set(non_edge_marker, src_upperleft);
\endcode
*/
doxygen_overloaded_function(template <...> void removeShortEdges)
template <class Iterator, class Accessor, class Value>
void removeShortEdges(
Iterator sul, Iterator slr, Accessor sa,
unsigned int min_edge_length, Value non_edge_marker)
{
int w = slr.x - sul.x;
int h = slr.y - sul.y;
int x,y;
IImage labels(w, h);
labels = 0;
int number_of_regions =
labelImageWithBackground(srcIterRange(sul,slr,sa),
destImage(labels), true, non_edge_marker);
ArrayOfRegionStatistics<FindROISize<int> >
region_stats(number_of_regions);
inspectTwoImages(srcImageRange(labels), srcImage(labels), region_stats);
IImage::Iterator ly = labels.upperLeft();
Iterator oy = sul;
for(y=0; y<h; ++y, ++oy.y, ++ly.y)
{
Iterator ox(oy);
IImage::Iterator lx(ly);
for(x=0; x<w; ++x, ++ox.x, ++lx.x)
{
if(sa(ox) == non_edge_marker) continue;
if((region_stats[*lx].count) < min_edge_length)
{
sa.set(non_edge_marker, ox);
}
}
}
}
template <class Iterator, class Accessor, class Value>
inline
void removeShortEdges(
triple<Iterator, Iterator, Accessor> src,
unsigned int min_edge_length, Value non_edge_marker)
{
removeShortEdges(src.first, src.second, src.third,
min_edge_length, non_edge_marker);
}
/********************************************************/
/* */
/* closeGapsInCrackEdgeImage */
/* */
/********************************************************/
/** \brief Close one-pixel wide gaps in a cell grid edge image.
This algorithm is typically applied as a post-processing operation of
\ref differenceOfExponentialCrackEdgeImage(). The source image must fulfill
the requirements of a \ref CrackEdgeImage, and will still do so after
application of this algorithm.
It closes one pixel wide gaps in the edges resulting from this algorithm.
Since these gaps are usually caused by zero crossing slightly below the gradient
threshold used in edge detection, this algorithms acts like a weak hysteresis
thresholding. The newly found edge pixels are marked with the given <TT>edge_marker</TT>.
The image's value type must be equality comparable.
Note that this algorithm, unlike most other algorithms in VIGRA, operates in-place,
i.e. on only one image.
<b> Declarations:</b>
pass arguments explicitly:
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor, class SrcValue>
void closeGapsInCrackEdgeImage(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
SrcValue edge_marker)
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor, class SrcValue>
void closeGapsInCrackEdgeImage(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
SrcValue edge_marker)
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<<a href="edgedetection_8hxx-source.html">vigra/edgedetection.hxx</a>\><br>
Namespace: vigra
\code
vigra::BImage src(w,h), edges(2*w-1, 2*h-1);
// empty edge image
edges = 0;
...
// find edges at scale 0.8 with gradient larger than 4.0, mark with 1
vigra::differenceOfExponentialCrackEdgeImage(srcImageRange(src), destImage(edges),
0.8, 4.0, 1);
// close gaps, mark with 1
vigra::closeGapsInCrackEdgeImage(srcImageRange(edges), 1);
// zero edges shorter than 20 pixels
vigra::removeShortEdges(srcImageRange(edges), 10, 0);
\endcode
<b> Required Interface:</b>
\code
SrcImageIterator src_upperleft, src_lowerright;
SrcAccessor src_accessor;
DestAccessor dest_accessor;
SrcAccessor::value_type u = src_accessor(src_upperleft);
u == u
u != u
SrcValue edge_marker;
src_accessor.set(edge_marker, src_upperleft);
\endcode
*/
doxygen_overloaded_function(template <...> void closeGapsInCrackEdgeImage)
template <class SrcIterator, class SrcAccessor, class SrcValue>
void closeGapsInCrackEdgeImage(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
SrcValue edge_marker)
{
int w = slr.x - sul.x;
int h = slr.y - sul.y;
vigra_precondition(w % 2 == 1 && h % 2 == 1,
"closeGapsInCrackEdgeImage(): Input is not a crack edge image (must have odd-numbered shape).");
int w2 = w / 2, h2 = h / 2, x, y;
int count1, count2, count3;
static const Diff2D right(1,0);
static const Diff2D bottom(0,1);
static const Diff2D left(-1,0);
static const Diff2D top(0,-1);
static const Diff2D leftdist[] = {
Diff2D(0, 0), Diff2D(-1, 1), Diff2D(-2, 0), Diff2D(-1, -1)};
static const Diff2D rightdist[] = {
Diff2D(2, 0), Diff2D(1, 1), Diff2D(0, 0), Diff2D(1, -1)};
static const Diff2D topdist[] = {
Diff2D(1, -1), Diff2D(0, 0), Diff2D(-1, -1), Diff2D(0, -2)};
static const Diff2D bottomdist[] = {
Diff2D(1, 1), Diff2D(0, 2), Diff2D(-1, 1), Diff2D(0, 0)};
int i;
SrcIterator sy = sul + Diff2D(0,1);
SrcIterator sx;
// close 1-pixel wide gaps (x-direction)
for(y=0; y<h2; ++y, sy.y+=2)
{
sx = sy + Diff2D(2,0);
for(x=2; x<w2; ++x, sx.x+=2)
{
if(sa(sx) == edge_marker) continue;
if(sa(sx, left) != edge_marker) continue;
if(sa(sx, right) != edge_marker) continue;
count1 = 0;
count2 = 0;
count3 = 0;
for(i=0; i<4; ++i)
{
if(sa(sx, leftdist[i]) == edge_marker)
{
++count1;
count3 ^= 1 << i;
}
if(sa(sx, rightdist[i]) == edge_marker)
{
++count2;
count3 ^= 1 << i;
}
}
if(count1 <= 1 || count2 <= 1 || count3 == 15)
{
sa.set(edge_marker, sx);
}
}
}
sy = sul + Diff2D(1,2);
// close 1-pixel wide gaps (y-direction)
for(y=2; y<h2; ++y, sy.y+=2)
{
sx = sy;
for(x=0; x<w2; ++x, sx.x+=2)
{
if(sa(sx) == edge_marker) continue;
if(sa(sx, top) != edge_marker) continue;
if(sa(sx, bottom) != edge_marker) continue;
count1 = 0;
count2 = 0;
count3 = 0;
for(i=0; i<4; ++i)
{
if(sa(sx, topdist[i]) == edge_marker)
{
++count1;
count3 ^= 1 << i;
}
if(sa(sx, bottomdist[i]) == edge_marker)
{
++count2;
count3 ^= 1 << i;
}
}
if(count1 <= 1 || count2 <= 1 || count3 == 15)
{
sa.set(edge_marker, sx);
}
}
}
}
template <class SrcIterator, class SrcAccessor, class SrcValue>
inline
void closeGapsInCrackEdgeImage(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
SrcValue edge_marker)
{
closeGapsInCrackEdgeImage(src.first, src.second, src.third,
edge_marker);
}
/********************************************************/
/* */
/* beautifyCrackEdgeImage */
/* */
/********************************************************/
/** \brief Beautify crack edge image for visualization.
This algorithm is applied as a post-processing operation of
\ref differenceOfExponentialCrackEdgeImage(). The source image must fulfill
the requirements of a \ref CrackEdgeImage, but will <b> not</b> do so after
application of this algorithm. In particular, the algorithm removes zero-cells
marked as edges to avoid staircase effects on diagonal lines like this:
\code
original edge points (*) resulting edge points
. * . . . . * . . .
. * * * . . . * . .
. . . * . => . . . * .
. . . * * . . . . *
. . . . . . . . . .
\endcode
Therfore, this algorithm should only be applied as a vizualization aid, i.e.
for human inspection. The algorithm assumes that edges are marked with <TT>edge_marker</TT>,
and background pixels with <TT>background_marker</TT>. The image's value type must be
equality comparable.
Note that this algorithm, unlike most other algorithms in VIGRA, operates in-place,
i.e. on only one image.
<b> Declarations:</b>
pass arguments explicitly:
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor, class SrcValue>
void beautifyCrackEdgeImage(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
SrcValue edge_marker, SrcValue background_marker)
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor, class SrcValue>
void beautifyCrackEdgeImage(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
SrcValue edge_marker, SrcValue background_marker)
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<<a href="edgedetection_8hxx-source.html">vigra/edgedetection.hxx</a>\><br>
Namespace: vigra
\code
vigra::BImage src(w,h), edges(2*w-1, 2*h-1);
// empty edge image
edges = 0;
...
// find edges at scale 0.8 with gradient larger than 4.0, mark with 1
vigra::differenceOfExponentialCrackEdgeImage(srcImageRange(src), destImage(edges),
0.8, 4.0, 1);
// beautify edge image for visualization
vigra::beautifyCrackEdgeImage(destImageRange(edges), 1, 0);
// show to the user
window.open(edges);
\endcode
<b> Required Interface:</b>
\code
SrcImageIterator src_upperleft, src_lowerright;
SrcAccessor src_accessor;
DestAccessor dest_accessor;
SrcAccessor::value_type u = src_accessor(src_upperleft);
u == u
u != u
SrcValue background_marker;
src_accessor.set(background_marker, src_upperleft);
\endcode
*/
doxygen_overloaded_function(template <...> void beautifyCrackEdgeImage)
template <class SrcIterator, class SrcAccessor, class SrcValue>
void beautifyCrackEdgeImage(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
SrcValue edge_marker, SrcValue background_marker)
{
int w = slr.x - sul.x;
int h = slr.y - sul.y;
vigra_precondition(w % 2 == 1 && h % 2 == 1,
"beautifyCrackEdgeImage(): Input is not a crack edge image (must have odd-numbered shape).");
int w2 = w / 2, h2 = h / 2, x, y;
SrcIterator sy = sul + Diff2D(1,1);
SrcIterator sx;
static const Diff2D right(1,0);
static const Diff2D bottom(0,1);
static const Diff2D left(-1,0);
static const Diff2D top(0,-1);
// delete 0-cells at corners
for(y=0; y<h2; ++y, sy.y+=2)
{
sx = sy;
for(x=0; x<w2; ++x, sx.x+=2)
{
if(sa(sx) != edge_marker) continue;
if(sa(sx, right) == edge_marker && sa(sx, left) == edge_marker) continue;
if(sa(sx, bottom) == edge_marker && sa(sx, top) == edge_marker) continue;
sa.set(background_marker, sx);
}
}
}
template <class SrcIterator, class SrcAccessor, class SrcValue>
inline
void beautifyCrackEdgeImage(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
SrcValue edge_marker, SrcValue background_marker)
{
beautifyCrackEdgeImage(src.first, src.second, src.third,
edge_marker, background_marker);
}
/** Helper class that stores edgel attributes.
*/
class Edgel
{
public:
/** The type of an Edgel's members.
*/
typedef float value_type;
/** The edgel's sub-pixel x coordinate.
*/
value_type x;
/** The edgel's sub-pixel y coordinate.
*/
value_type y;
/** The edgel's strength (magnitude of the gradient vector).
*/
value_type strength;
/**
The edgel's orientation. This is the clockwise angle in radians
between the x-axis and the edge, so that the bright side of the
edge is on the left when one looks along the orientation vector.
The angle is measured clockwise because the y-axis increases
downwards (left-handed coordinate system):
\code
edgel axis
\
(dark \ (bright side)
side) \
\
+------------> x-axis
|\ |
| \ /_/ orientation angle
| \\
| \
|
y-axis V
\endcode
So, for example a vertical edge with its dark side on the left
has orientation PI/2, and a horizontal edge with dark side on top
has orientation PI. Obviously, the edge's orientation changes
by PI if the contrast is reversed.
Note that this convention changed as of VIGRA version 1.7.0.
*/
value_type orientation;
Edgel()
: x(0.0), y(0.0), strength(0.0), orientation(0.0)
{}
Edgel(value_type ix, value_type iy, value_type is, value_type io)
: x(ix), y(iy), strength(is), orientation(io)
{}
};
template <class SrcIterator, class SrcAccessor,
class MagnitudeImage, class BackInsertable>
void internalCannyFindEdgels(SrcIterator ul, SrcAccessor grad,
MagnitudeImage const & magnitude,
BackInsertable & edgels)
{
typedef typename SrcAccessor::value_type PixelType;
typedef typename PixelType::value_type ValueType;
double t = 0.5 / VIGRA_CSTD::sin(M_PI/8.0);
ul += Diff2D(1,1);
for(int y=1; y<magnitude.height()-1; ++y, ++ul.y)
{
SrcIterator ix = ul;
for(int x=1; x<magnitude.width()-1; ++x, ++ix.x)
{
double mag = magnitude(x, y);
if(mag == 0.0)
continue;
ValueType gradx = grad.getComponent(ix, 0);
ValueType grady = grad.getComponent(ix, 1);
int dx = (int)VIGRA_CSTD::floor(gradx*t/mag + 0.5);
int dy = (int)VIGRA_CSTD::floor(grady*t/mag + 0.5);
int x1 = x - dx,
x2 = x + dx,
y1 = y - dy,
y2 = y + dy;
double m1 = magnitude(x1, y1);
double m3 = magnitude(x2, y2);
if(m1 < mag && m3 <= mag)
{
Edgel edgel;
// local maximum => quadratic interpolation of sub-pixel location
double del = 0.5 * (m1 - m3) / (m1 + m3 - 2.0*mag);
edgel.x = Edgel::value_type(x + dx*del);
edgel.y = Edgel::value_type(y + dy*del);
edgel.strength = Edgel::value_type(mag);
double orientation = VIGRA_CSTD::atan2(grady, gradx) + 0.5*M_PI;
if(orientation < 0.0)
orientation += 2.0*M_PI;
edgel.orientation = Edgel::value_type(orientation);
edgels.push_back(edgel);
}
}
}
}
/********************************************************/
/* */
/* cannyEdgelList */
/* */
/********************************************************/
/** \brief Simple implementation of Canny's edge detector.
The function can be called in two modes: If you pass a 'scale', it is assumed that the
original image is scalar, and the Gaussian gradient is internally computed at the
given 'scale'. If the function is called without scale parameter, it is assumed that
the given image already contains the gradient (i.e. its value_type must be
a vector of length 2).
On the basis of the gradient image, a simple non-maxima supression is performed:
for each 3x3 neighborhood, it is determined whether the center pixel has
larger gradient magnitude than its two neighbors in gradient direction
(where the direction is rounded into octands). If this is the case,
a new \ref Edgel is appended to the given vector of <TT>edgels</TT>. The subpixel
edgel position is determined by fitting a parabola to the three gradient
magnitude values mentioned above. The sub-pixel location of the parabola's tip
and the gradient magnitude and direction (from the pixel center)
are written in the newly created edgel.
<b> Declarations:</b>
pass arguments explicitly:
\code
namespace vigra {
// compute edgels from a gradient image
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void
cannyEdgelList(SrcIterator ul, SrcIterator lr, SrcAccessor src,
BackInsertable & edgels);
// compute edgels from a scaler image (determine gradient internally at 'scale')
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void
cannyEdgelList(SrcIterator ul, SrcIterator lr, SrcAccessor src,
BackInsertable & edgels, double scale);
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
// compute edgels from a gradient image
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void
cannyEdgelList(triple<SrcIterator, SrcIterator, SrcAccessor> src,
BackInsertable & edgels);
// compute edgels from a scaler image (determine gradient internally at 'scale')
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void
cannyEdgelList(triple<SrcIterator, SrcIterator, SrcAccessor> src,
BackInsertable & edgels, double scale);
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<<a href="edgedetection_8hxx-source.html">vigra/edgedetection.hxx</a>\><br>
Namespace: vigra
\code
vigra::BImage src(w,h);
// empty edgel list
std::vector<vigra::Edgel> edgels;
...
// find edgels at scale 0.8
vigra::cannyEdgelList(srcImageRange(src), edgels, 0.8);
\endcode
<b> Required Interface:</b>
\code
SrcImageIterator src_upperleft;
SrcAccessor src_accessor;
src_accessor(src_upperleft);
BackInsertable edgels;
edgels.push_back(Edgel());
\endcode
SrcAccessor::value_type must be a type convertible to float
<b> Preconditions:</b>
\code
scale > 0
\endcode
*/
doxygen_overloaded_function(template <...> void cannyEdgelList)
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void
cannyEdgelList(SrcIterator ul, SrcIterator lr, SrcAccessor src,
BackInsertable & edgels, double scale)
{
typedef typename NumericTraits<typename SrcAccessor::value_type>::RealPromote TmpType;
BasicImage<TinyVector<TmpType, 2> > grad(lr-ul);
gaussianGradient(srcIterRange(ul, lr, src), destImage(grad), scale);
cannyEdgelList(srcImageRange(grad), edgels);
}
template <class SrcIterator, class SrcAccessor, class BackInsertable>
inline void
cannyEdgelList(triple<SrcIterator, SrcIterator, SrcAccessor> src,
BackInsertable & edgels, double scale)
{
cannyEdgelList(src.first, src.second, src.third, edgels, scale);
}
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void
cannyEdgelList(SrcIterator ul, SrcIterator lr, SrcAccessor src,
BackInsertable & edgels)
{
using namespace functor;
typedef typename SrcAccessor::value_type SrcType;
typedef typename NumericTraits<typename SrcType::value_type>::RealPromote TmpType;
BasicImage<TmpType> magnitude(lr-ul);
transformImage(srcIterRange(ul, lr, src), destImage(magnitude), norm(Arg1()));
// find edgels
internalCannyFindEdgels(ul, src, magnitude, edgels);
}
template <class SrcIterator, class SrcAccessor, class BackInsertable>
inline void
cannyEdgelList(triple<SrcIterator, SrcIterator, SrcAccessor> src,
BackInsertable & edgels)
{
cannyEdgelList(src.first, src.second, src.third, edgels);
}
/********************************************************/
/* */
/* cannyEdgeImage */
/* */
/********************************************************/
/** \brief Detect and mark edges in an edge image using Canny's algorithm.
This operator first calls \ref cannyEdgelList() to generate an
edgel list for the given image. Then it scans this list and selects edgels
whose strength is above the given <TT>gradient_threshold</TT>. For each of these
edgels, the edgel's location is rounded to the nearest pixel, and that
pixel marked with the given <TT>edge_marker</TT>.
<b> Declarations:</b>
pass arguments explicitly:
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void cannyEdgeImage(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
double scale, GradValue gradient_threshold, DestValue edge_marker);
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void cannyEdgeImage(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
double scale, GradValue gradient_threshold, DestValue edge_marker);
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<<a href="edgedetection_8hxx-source.html">vigra/edgedetection.hxx</a>\><br>
Namespace: vigra
\code
vigra::BImage src(w,h), edges(w,h);
// empty edge image
edges = 0;
...
// find edges at scale 0.8 with gradient larger than 4.0, mark with 1
vigra::cannyEdgeImage(srcImageRange(src), destImage(edges),
0.8, 4.0, 1);
\endcode
<b> Required Interface:</b>
see also: \ref cannyEdgelList().
\code
DestImageIterator dest_upperleft;
DestAccessor dest_accessor;
DestValue edge_marker;
dest_accessor.set(edge_marker, dest_upperleft, vigra::Diff2D(1,1));
\endcode
<b> Preconditions:</b>
\code
scale > 0
gradient_threshold > 0
\endcode
*/
doxygen_overloaded_function(template <...> void cannyEdgeImage)
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void cannyEdgeImage(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
double scale, GradValue gradient_threshold, DestValue edge_marker)
{
std::vector<Edgel> edgels;
cannyEdgelList(sul, slr, sa, edgels, scale);
int w = slr.x - sul.x;
int h = slr.y - sul.y;
for(unsigned int i=0; i<edgels.size(); ++i)
{
if(gradient_threshold < edgels[i].strength)
{
Diff2D pix((int)(edgels[i].x + 0.5), (int)(edgels[i].y + 0.5));
if(pix.x < 0 || pix.x >= w || pix.y < 0 || pix.y >= h)
continue;
da.set(edge_marker, dul, pix);
}
}
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
inline void cannyEdgeImage(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
double scale, GradValue gradient_threshold, DestValue edge_marker)
{
cannyEdgeImage(src.first, src.second, src.third,
dest.first, dest.second,
scale, gradient_threshold, edge_marker);
}
/********************************************************/
namespace detail {
template <class DestIterator>
int neighborhoodConfiguration(DestIterator dul)
{
int v = 0;
NeighborhoodCirculator<DestIterator, EightNeighborCode> c(dul, EightNeighborCode::SouthEast);
for(int i=0; i<8; ++i, --c)
{
v = (v << 1) | ((*c != 0) ? 1 : 0);
}
return v;
}
template <class GradValue>
struct SimplePoint
{
Diff2D point;
GradValue grad;
SimplePoint(Diff2D const & p, GradValue g)
: point(p), grad(g)
{}
bool operator<(SimplePoint const & o) const
{
return grad < o.grad;
}
bool operator>(SimplePoint const & o) const
{
return grad > o.grad;
}
};
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void cannyEdgeImageFromGrad(
SrcIterator sul, SrcIterator slr, SrcAccessor grad,
DestIterator dul, DestAccessor da,
GradValue gradient_threshold, DestValue edge_marker)
{
typedef typename SrcAccessor::value_type PixelType;
typedef typename NormTraits<PixelType>::SquaredNormType NormType;
NormType zero = NumericTraits<NormType>::zero();
double tan22_5 = M_SQRT2 - 1.0;
typename NormTraits<GradValue>::SquaredNormType g2thresh = squaredNorm(gradient_threshold);
int w = slr.x - sul.x;
int h = slr.y - sul.y;
sul += Diff2D(1,1);
dul += Diff2D(1,1);
Diff2D p(0,0);
for(int y = 1; y < h-1; ++y, ++sul.y, ++dul.y)
{
SrcIterator sx = sul;
DestIterator dx = dul;
for(int x = 1; x < w-1; ++x, ++sx.x, ++dx.x)
{
PixelType g = grad(sx);
NormType g2n = squaredNorm(g);
if(g2n < g2thresh)
continue;
NormType g2n1, g2n3;
// find out quadrant
if(abs(g[1]) < tan22_5*abs(g[0]))
{
// north-south edge
g2n1 = squaredNorm(grad(sx, Diff2D(-1, 0)));
g2n3 = squaredNorm(grad(sx, Diff2D(1, 0)));
}
else if(abs(g[0]) < tan22_5*abs(g[1]))
{
// west-east edge
g2n1 = squaredNorm(grad(sx, Diff2D(0, -1)));
g2n3 = squaredNorm(grad(sx, Diff2D(0, 1)));
}
else if(g[0]*g[1] < zero)
{
// north-west-south-east edge
g2n1 = squaredNorm(grad(sx, Diff2D(1, -1)));
g2n3 = squaredNorm(grad(sx, Diff2D(-1, 1)));
}
else
{
// north-east-south-west edge
g2n1 = squaredNorm(grad(sx, Diff2D(-1, -1)));
g2n3 = squaredNorm(grad(sx, Diff2D(1, 1)));
}
if(g2n1 < g2n && g2n3 <= g2n)
{
da.set(edge_marker, dx);
}
}
}
}
} // namespace detail
/********************************************************/
/* */
/* cannyEdgeImageWithThinning */
/* */
/********************************************************/
/** \brief Detect and mark edges in an edge image using Canny's algorithm.
The input pixels of this algorithms must be vectors of length 2 (see Required Interface below).
It first searches for all pixels whose gradient magnitude is larger
than the given <tt>gradient_threshold</tt> and larger than the magnitude of its two neighbors
in gradient direction (where these neighbors are determined by nearest neighbor
interpolation, i.e. according to the octant where the gradient points into).
The resulting edge pixel candidates are then subjected to topological thinning
so that the remaining edge pixels can be linked into edgel chains with a provable,
non-heuristic algorithm. Thinning is performed so that the pixels with highest gradient
magnitude survive. Optionally, the outermost pixels are marked as edge pixels
as well when <tt>addBorder</tt> is true. The remaining pixels will be marked in the destination
image with the value of <tt>edge_marker</tt> (all non-edge pixels remain untouched).
<b> Declarations:</b>
pass arguments explicitly:
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void cannyEdgeImageFromGradWithThinning(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
GradValue gradient_threshold,
DestValue edge_marker, bool addBorder = true);
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void cannyEdgeImageFromGradWithThinning(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
GradValue gradient_threshold,
DestValue edge_marker, bool addBorder = true);
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<<a href="edgedetection_8hxx-source.html">vigra/edgedetection.hxx</a>\><br>
Namespace: vigra
\code
vigra::BImage src(w,h), edges(w,h);
vigra::FVector2Image grad(w,h);
// compute the image gradient at scale 0.8
vigra::gaussianGradient(srcImageRange(src), destImage(grad), 0.8);
// empty edge image
edges = 0;
// find edges gradient larger than 4.0, mark with 1, and add border
vigra::cannyEdgeImageFromGradWithThinning(srcImageRange(grad), destImage(edges),
4.0, 1, true);
\endcode
<b> Required Interface:</b>
\code
// the input pixel type must be a vector with two elements
SrcImageIterator src_upperleft;
SrcAccessor src_accessor;
typedef SrcAccessor::value_type SrcPixel;
typedef NormTraits<SrcPixel>::SquaredNormType SrcSquaredNormType;
SrcPixel g = src_accessor(src_upperleft);
SrcPixel::value_type g0 = g[0];
SrcSquaredNormType gn = squaredNorm(g);
DestImageIterator dest_upperleft;
DestAccessor dest_accessor;
DestValue edge_marker;
dest_accessor.set(edge_marker, dest_upperleft, vigra::Diff2D(1,1));
\endcode
<b> Preconditions:</b>
\code
gradient_threshold > 0
\endcode
*/
doxygen_overloaded_function(template <...> void cannyEdgeImageFromGradWithThinning)
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void cannyEdgeImageFromGradWithThinning(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
GradValue gradient_threshold,
DestValue edge_marker, bool addBorder)
{
int w = slr.x - sul.x;
int h = slr.y - sul.y;
BImage edgeImage(w, h, BImage::value_type(0));
BImage::traverser eul = edgeImage.upperLeft();
BImage::Accessor ea = edgeImage.accessor();
if(addBorder)
initImageBorder(destImageRange(edgeImage), 1, 1);
detail::cannyEdgeImageFromGrad(sul, slr, sa, eul, ea, gradient_threshold, 1);
static bool isSimplePoint[256] = {
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,
0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1,
0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,
0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0,
1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0,
1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0,
0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1,
1, 0, 1, 0 };
eul += Diff2D(1,1);
sul += Diff2D(1,1);
int w2 = w-2;
int h2 = h-2;
typedef detail::SimplePoint<GradValue> SP;
// use std::greater becaus we need the smallest gradients at the top of the queue
std::priority_queue<SP, std::vector<SP>, std::greater<SP> > pqueue;
Diff2D p(0,0);
for(; p.y < h2; ++p.y)
{
for(p.x = 0; p.x < w2; ++p.x)
{
BImage::traverser e = eul + p;
if(*e == 0)
continue;
int v = detail::neighborhoodConfiguration(e);
if(isSimplePoint[v])
{
pqueue.push(SP(p, norm(sa(sul+p))));
*e = 2; // remember that it is already in queue
}
}
}
static const Diff2D dist[] = { Diff2D(-1,0), Diff2D(0,-1),
Diff2D(1,0), Diff2D(0,1) };
while(pqueue.size())
{
p = pqueue.top().point;
pqueue.pop();
BImage::traverser e = eul + p;
int v = detail::neighborhoodConfiguration(e);
if(!isSimplePoint[v])
continue; // point may no longer be simple because its neighbors changed
*e = 0; // delete simple point
for(int i=0; i<4; ++i)
{
Diff2D pneu = p + dist[i];
if(pneu.x == -1 || pneu.y == -1 || pneu.x == w2 || pneu.y == h2)
continue; // do not remove points at the border
BImage::traverser eneu = eul + pneu;
if(*eneu == 1) // point is boundary and not yet in the queue
{
int v = detail::neighborhoodConfiguration(eneu);
if(isSimplePoint[v])
{
pqueue.push(SP(pneu, norm(sa(sul+pneu))));
*eneu = 2; // remember that it is already in queue
}
}
}
}
initImageIf(destIterRange(dul, dul+Diff2D(w,h), da),
maskImage(edgeImage), edge_marker);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
inline void cannyEdgeImageFromGradWithThinning(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
GradValue gradient_threshold,
DestValue edge_marker, bool addBorder)
{
cannyEdgeImageFromGradWithThinning(src.first, src.second, src.third,
dest.first, dest.second,
gradient_threshold, edge_marker, addBorder);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
inline void cannyEdgeImageFromGradWithThinning(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
GradValue gradient_threshold, DestValue edge_marker)
{
cannyEdgeImageFromGradWithThinning(sul, slr, sa,
dul, da,
gradient_threshold, edge_marker, true);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
inline void cannyEdgeImageFromGradWithThinning(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
GradValue gradient_threshold, DestValue edge_marker)
{
cannyEdgeImageFromGradWithThinning(src.first, src.second, src.third,
dest.first, dest.second,
gradient_threshold, edge_marker, true);
}
/********************************************************/
/* */
/* cannyEdgeImageWithThinning */
/* */
/********************************************************/
/** \brief Detect and mark edges in an edge image using Canny's algorithm.
This operator first calls \ref gaussianGradient() to compute the gradient of the input
image, ad then \ref cannyEdgeImageFromGradWithThinning() to generate an
edge image. See there for more detailed documentation.
<b> Declarations:</b>
pass arguments explicitly:
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void cannyEdgeImageWithThinning(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
double scale, GradValue gradient_threshold,
DestValue edge_marker, bool addBorder = true);
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void cannyEdgeImageWithThinning(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
double scale, GradValue gradient_threshold,
DestValue edge_marker, bool addBorder = true);
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<<a href="edgedetection_8hxx-source.html">vigra/edgedetection.hxx</a>\><br>
Namespace: vigra
\code
vigra::BImage src(w,h), edges(w,h);
// empty edge image
edges = 0;
...
// find edges at scale 0.8 with gradient larger than 4.0, mark with 1, annd add border
vigra::cannyEdgeImageWithThinning(srcImageRange(src), destImage(edges),
0.8, 4.0, 1, true);
\endcode
<b> Required Interface:</b>
see also: \ref cannyEdgelList().
\code
DestImageIterator dest_upperleft;
DestAccessor dest_accessor;
DestValue edge_marker;
dest_accessor.set(edge_marker, dest_upperleft, vigra::Diff2D(1,1));
\endcode
<b> Preconditions:</b>
\code
scale > 0
gradient_threshold > 0
\endcode
*/
doxygen_overloaded_function(template <...> void cannyEdgeImageWithThinning)
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
void cannyEdgeImageWithThinning(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
double scale, GradValue gradient_threshold,
DestValue edge_marker, bool addBorder)
{
// mark pixels that are higher than their neighbors in gradient direction
typedef typename NumericTraits<typename SrcAccessor::value_type>::RealPromote TmpType;
BasicImage<TinyVector<TmpType, 2> > grad(slr-sul);
gaussianGradient(srcIterRange(sul, slr, sa), destImage(grad), scale);
cannyEdgeImageFromGradWithThinning(srcImageRange(grad), destIter(dul, da),
gradient_threshold, edge_marker, addBorder);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
inline void cannyEdgeImageWithThinning(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
double scale, GradValue gradient_threshold,
DestValue edge_marker, bool addBorder)
{
cannyEdgeImageWithThinning(src.first, src.second, src.third,
dest.first, dest.second,
scale, gradient_threshold, edge_marker, addBorder);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
inline void cannyEdgeImageWithThinning(
SrcIterator sul, SrcIterator slr, SrcAccessor sa,
DestIterator dul, DestAccessor da,
double scale, GradValue gradient_threshold, DestValue edge_marker)
{
cannyEdgeImageWithThinning(sul, slr, sa,
dul, da,
scale, gradient_threshold, edge_marker, true);
}
template <class SrcIterator, class SrcAccessor,
class DestIterator, class DestAccessor,
class GradValue, class DestValue>
inline void cannyEdgeImageWithThinning(
triple<SrcIterator, SrcIterator, SrcAccessor> src,
pair<DestIterator, DestAccessor> dest,
double scale, GradValue gradient_threshold, DestValue edge_marker)
{
cannyEdgeImageWithThinning(src.first, src.second, src.third,
dest.first, dest.second,
scale, gradient_threshold, edge_marker, true);
}
/********************************************************/
template <class SrcIterator, class SrcAccessor,
class MaskImage, class BackInsertable>
void internalCannyFindEdgels3x3(SrcIterator ul, SrcAccessor grad,
MaskImage const & mask,
BackInsertable & edgels)
{
typedef typename SrcAccessor::value_type PixelType;
typedef typename PixelType::value_type ValueType;
ul += Diff2D(1,1);
for(int y=1; y<mask.height()-1; ++y, ++ul.y)
{
SrcIterator ix = ul;
for(int x=1; x<mask.width()-1; ++x, ++ix.x)
{
if(!mask(x,y))
continue;
ValueType gradx = grad.getComponent(ix, 0);
ValueType grady = grad.getComponent(ix, 1);
double mag = hypot(gradx, grady);
if(mag == 0.0)
continue;
double c = gradx / mag,
s = grady / mag;
Matrix<double> ml(3,3), mr(3,1), l(3,1), r(3,1);
l(0,0) = 1.0;
for(int yy = -1; yy <= 1; ++yy)
{
for(int xx = -1; xx <= 1; ++xx)
{
double u = c*xx + s*yy;
double v = norm(grad(ix, Diff2D(xx, yy)));
l(1,0) = u;
l(2,0) = u*u;
ml += outer(l);
mr += v*l;
}
}
linearSolve(ml, mr, r);
Edgel edgel;
// local maximum => quadratic interpolation of sub-pixel location
double del = -r(1,0) / 2.0 / r(2,0);
if(std::fabs(del) > 1.5) // don't move by more than about a pixel diameter
del = 0.0;
edgel.x = Edgel::value_type(x + c*del);
edgel.y = Edgel::value_type(y + s*del);
edgel.strength = Edgel::value_type(mag);
double orientation = VIGRA_CSTD::atan2(grady, gradx) + 0.5*M_PI;
if(orientation < 0.0)
orientation += 2.0*M_PI;
edgel.orientation = Edgel::value_type(orientation);
edgels.push_back(edgel);
}
}
}
/********************************************************/
/* */
/* cannyEdgelList3x3 */
/* */
/********************************************************/
/** \brief Improved implementation of Canny's edge detector.
This operator first computes pixels which are crossed by the edge using
cannyEdgeImageWithThinning(). The gradient magnitudes in the 3x3 neighborhood of these
pixels are then projected onto the normal of the edge (as determined
by the gradient direction). The edgel's subpixel location is found by fitting a
parabola through the 9 gradient values and determining the parabola's tip.
A new \ref Edgel is appended to the given vector of <TT>edgels</TT>. Since the parabola
is fitted to 9 points rather than 3 points as in cannyEdgelList(), the accuracy is higher.
The function can be called in two modes: If you pass a 'scale', it is assumed that the
original image is scalar, and the Gaussian gradient is internally computed at the
given 'scale'. If the function is called without scale parameter, it is assumed that
the given image already contains the gradient (i.e. its value_type must be
a vector of length 2).
<b> Declarations:</b>
pass arguments explicitly:
\code
namespace vigra {
// compute edgels from a gradient image
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void cannyEdgelList3x3(SrcIterator ul, SrcIterator lr, SrcAccessor src,
BackInsertable & edgels);
// compute edgels from a scaler image (determine gradient internally at 'scale')
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void cannyEdgelList3x3(SrcIterator ul, SrcIterator lr, SrcAccessor src,
BackInsertable & edgels, double scale);
}
\endcode
use argument objects in conjunction with \ref ArgumentObjectFactories :
\code
namespace vigra {
// compute edgels from a gradient image
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void
cannyEdgelList3x3(triple<SrcIterator, SrcIterator, SrcAccessor> src,
BackInsertable & edgels);
// compute edgels from a scaler image (determine gradient internally at 'scale')
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void
cannyEdgelList3x3(triple<SrcIterator, SrcIterator, SrcAccessor> src,
BackInsertable & edgels, double scale);
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<<a href="edgedetection_8hxx-source.html">vigra/edgedetection.hxx</a>\><br>
Namespace: vigra
\code
vigra::BImage src(w,h);
// empty edgel list
std::vector<vigra::Edgel> edgels;
...
// find edgels at scale 0.8
vigra::cannyEdgelList3x3(srcImageRange(src), edgels, 0.8);
\endcode
<b> Required Interface:</b>
\code
SrcImageIterator src_upperleft;
SrcAccessor src_accessor;
src_accessor(src_upperleft);
BackInsertable edgels;
edgels.push_back(Edgel());
\endcode
SrcAccessor::value_type must be a type convertible to float
<b> Preconditions:</b>
\code
scale > 0
\endcode
*/
doxygen_overloaded_function(template <...> void cannyEdgelList3x3)
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void
cannyEdgelList3x3(SrcIterator ul, SrcIterator lr, SrcAccessor src,
BackInsertable & edgels, double scale)
{
typedef typename NumericTraits<typename SrcAccessor::value_type>::RealPromote TmpType;
BasicImage<TinyVector<TmpType, 2> > grad(lr-ul);
gaussianGradient(srcIterRange(ul, lr, src), destImage(grad), scale);
cannyEdgelList3x3(srcImageRange(grad), edgels);
}
template <class SrcIterator, class SrcAccessor, class BackInsertable>
inline void
cannyEdgelList3x3(triple<SrcIterator, SrcIterator, SrcAccessor> src,
BackInsertable & edgels, double scale)
{
cannyEdgelList3x3(src.first, src.second, src.third, edgels, scale);
}
template <class SrcIterator, class SrcAccessor, class BackInsertable>
void
cannyEdgelList3x3(SrcIterator ul, SrcIterator lr, SrcAccessor src,
BackInsertable & edgels)
{
UInt8Image edges(lr-ul);
cannyEdgeImageFromGradWithThinning(srcIterRange(ul, lr, src), destImage(edges),
0.0, 1, false);
// find edgels
internalCannyFindEdgels3x3(ul, src, edges, edgels);
}
template <class SrcIterator, class SrcAccessor, class BackInsertable>
inline void
cannyEdgelList3x3(triple<SrcIterator, SrcIterator, SrcAccessor> src,
BackInsertable & edgels)
{
cannyEdgelList3x3(src.first, src.second, src.third, edgels);
}
//@}
/** \page CrackEdgeImage Crack Edge Image
Crack edges are marked <i>between</i> the pixels of an image.
A Crack Edge Image is an image that represents these edges. In order
to accomodate the cracks, the Crack Edge Image must be twice as large
as the original image (precisely (2*w - 1) by (2*h - 1)). A Crack Edge Image
can easily be derived from a binary image or from the signs of the
response of a Laplacean filter. Consider the following sketch, where
<TT>+</TT> encodes the foreground, <TT>-</TT> the background, and
<TT>*</TT> the resulting crack edges.
\code
sign of difference image insert cracks resulting CrackEdgeImage
+ . - . - . * . . .
+ - - . . . . . . * * * .
+ + - => + . + . - => . . . * .
+ + + . . . . . . . . * *
+ . + . + . . . . .
\endcode
Starting from the original binary image (left), we insert crack pixels
to get to the double-sized image (center). Finally, we mark all
crack pixels whose non-crack neighbors have different signs as
crack edge points, while all other pixels (crack and non-crack) become
region pixels.
<b>Requirements on a Crack Edge Image:</b>
<ul>
<li>Crack Edge Images have odd width and height.
<li>Crack pixels have at least one odd coordinate.
<li>Only crack pixels may be marked as edge points.
<li>Crack pixels with two odd coordinates must be marked as edge points
whenever any of their neighboring crack pixels was marked.
</ul>
The last two requirements ensure that both edges and regions are 4-connected.
Thus, 4-connectivity and 8-connectivity yield identical connected
components in a Crack Edge Image (so called <i>well-composedness</i>).
This ensures that Crack Edge Images have nice topological properties
(cf. L. J. Latecki: "Well-Composed Sets", Academic Press, 2000).
*/
} // namespace vigra
#endif // VIGRA_EDGEDETECTION_HXX
|