This file is indexed.

/usr/include/vigra/numpy_array.hxx is in libvigraimpex-dev 1.7.1+dfsg1-2ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
/************************************************************************/
/*                                                                      */
/*       Copyright 2009 by Ullrich Koethe and Hans Meine                */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_NUMPY_ARRAY_HXX
#define VIGRA_NUMPY_ARRAY_HXX

#include <Python.h>
#include <iostream>
#include <algorithm>
#include <complex>
#include <string>
#include <sstream>
#include <map>
#include <vigra/multi_array.hxx>
#include <vigra/array_vector.hxx>
#include <vigra/sized_int.hxx>
#include <vigra/python_utility.hxx>
#include <numpy/arrayobject.h>

int _import_array();

namespace vigra {

/********************************************************/
/*                                                      */
/*              Singleband and Multiband                */
/*                                                      */
/********************************************************/

typedef float NumpyValueType;

template <class T>
struct Singleband  // the last array dimension is not to be interpreted as a channel dimension
{
    typedef T value_type;
};

template <class T>
struct Multiband  // the last array dimension is a channel dimension
{
    typedef T value_type;
};

template<class T>
struct NumericTraits<Singleband<T> >
: public NumericTraits<T>
{};

template<class T>
struct NumericTraits<Multiband<T> >
{
    typedef Multiband<T> Type;
/*
    typedef int Promote;
    typedef unsigned int UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
*/
    typedef Type ValueType;

    typedef typename NumericTraits<T>::isIntegral isIntegral;
    typedef VigraFalseType isScalar;
    typedef typename NumericTraits<T>::isSigned isSigned;
    typedef typename NumericTraits<T>::isSigned isOrdered;
    typedef typename NumericTraits<T>::isSigned isComplex;
/*
    static signed char zero() { return 0; }
    static signed char one() { return 1; }
    static signed char nonZero() { return 1; }
    static signed char min() { return SCHAR_MIN; }
    static signed char max() { return SCHAR_MAX; }

#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = SCHAR_MIN, maxConst = SCHAR_MIN };
#else
    static const signed char minConst = SCHAR_MIN;
    static const signed char maxConst = SCHAR_MIN;
#endif

    static Promote toPromote(signed char v) { return v; }
    static RealPromote toRealPromote(signed char v) { return v; }
    static signed char fromPromote(Promote v) {
        return ((v < SCHAR_MIN) ? SCHAR_MIN : (v > SCHAR_MAX) ? SCHAR_MAX : v);
    }
    static signed char fromRealPromote(RealPromote v) {
        return ((v < 0.0)
                   ? ((v < (RealPromote)SCHAR_MIN)
                       ? SCHAR_MIN
                       : static_cast<signed char>(v - 0.5))
                   : (v > (RealPromote)SCHAR_MAX)
                       ? SCHAR_MAX
                       : static_cast<signed char>(v + 0.5));
    }
*/
};

template <class T>
class MultibandVectorAccessor
{
    MultiArrayIndex size_, stride_;

  public:
    MultibandVectorAccessor(MultiArrayIndex size, MultiArrayIndex stride)
    : size_(size),
      stride_(stride)
    {}


    typedef Multiband<T> value_type;

        /** the vector's value_type
        */
    typedef T component_type;

    typedef VectorElementAccessor<MultibandVectorAccessor<T> > ElementAccessor;

        /** Read the component data at given vector index
            at given iterator position
        */
    template <class ITERATOR>
    component_type const & getComponent(ITERATOR const & i, int idx) const
    {
        return *(&*i+idx*stride_);
    }

        /** Set the component data at given vector index
            at given iterator position. The type <TT>V</TT> of the passed
            in <TT>value</TT> is automatically converted to <TT>component_type</TT>.
            In case of a conversion floating point -> intergral this includes rounding and clipping.
        */
    template <class V, class ITERATOR>
    void setComponent(V const & value, ITERATOR const & i, int idx) const
    {
        *(&*i+idx*stride_) = detail::RequiresExplicitCast<component_type>::cast(value);
    }

        /** Read the component data at given vector index
            at an offset of given iterator position
        */
    template <class ITERATOR, class DIFFERENCE>
    component_type const & getComponent(ITERATOR const & i, DIFFERENCE const & diff, int idx) const
    {
        return *(&i[diff]+idx*stride_);
    }

    /** Set the component data at given vector index
        at an offset of given iterator position. The type <TT>V</TT> of the passed
        in <TT>value</TT> is automatically converted to <TT>component_type</TT>.
            In case of a conversion floating point -> intergral this includes rounding and clipping.
    */
    template <class V, class ITERATOR, class DIFFERENCE>
    void
    setComponent(V const & value, ITERATOR const & i, DIFFERENCE const & diff, int idx) const
    {
        *(&i[diff]+idx*stride_) = detail::RequiresExplicitCast<component_type>::cast(value);
    }

    template <class U>
    MultiArrayIndex size(U) const
    {
        return size_;
    }
};

/********************************************************/
/*                                                      */
/*                a few Python utilities                */
/*                                                      */
/********************************************************/

namespace detail {

inline long spatialDimensions(PyObject * obj)
{
    static python_ptr key(PyString_FromString("spatialDimensions"), python_ptr::keep_count);
    python_ptr pres(PyObject_GetAttr(obj, key), python_ptr::keep_count);
    long res = pres && PyInt_Check(pres)
                 ? PyInt_AsLong(pres)
                 : -1;
    return res;
}

/*
 * The registry is used to optionally map specific C++ types to
 * specific python sub-classes of numpy.ndarray (for example,
 * MultiArray<2, Singleband<int> > to a user-defined Python class 'ScalarImage').
 *
 * One needs to use NUMPY_ARRAY_INITIALIZE_REGISTRY once in a python
 * extension module using this technique, in order to actually provide
 * the registry (this is done by vigranumpycmodule and will then be
 * available for other modules, too).  Alternatively,
 * NUMPY_ARRAY_DUMMY_REGISTRY may be used to disable this feature
 * completely.  In both cases, the macro must not be enclosed by any
 * namespace, so it is best put right at the beginning of the file
 * (e.g. below the #includes).
 */

typedef std::map<std::string, std::pair<python_ptr, python_ptr> > ArrayTypeMap;

VIGRA_EXPORT ArrayTypeMap * getArrayTypeMap();

#define NUMPY_ARRAY_INITIALIZE_REGISTRY                                 \
    namespace vigra { namespace detail {                                \
    ArrayTypeMap * getArrayTypeMap()                                    \
    {                                                                   \
        static ArrayTypeMap arrayTypeMap;                               \
        return &arrayTypeMap;                                           \
    }                                                                   \
    }} // namespace vigra::detail

#define NUMPY_ARRAY_DUMMY_REGISTRY                      \
    namespace vigra { namespace detail {                \
    ArrayTypeMap * getArrayTypeMap()                    \
    {                                                   \
        return NULL;                                    \
    }                                                   \
    }} // namespace vigra::detail

inline
void registerPythonArrayType(std::string const & name, PyObject * obj, PyObject * typecheck)
{
    ArrayTypeMap *types = getArrayTypeMap();
    vigra_precondition(
        types != NULL,
        "registerPythonArrayType(): module was compiled without array type registry.");
    vigra_precondition(
        obj && PyType_Check(obj) && PyType_IsSubtype((PyTypeObject *)obj, &PyArray_Type),
        "registerPythonArrayType(obj): obj is not a subtype of numpy.ndarray.");
    if(typecheck && PyCallable_Check(typecheck))
        (*types)[name] = std::make_pair(python_ptr(obj), python_ptr(typecheck));
    else
        (*types)[name] = std::make_pair(python_ptr(obj), python_ptr());
//    std::cerr << "Registering " << ((PyTypeObject *)obj)->tp_name << " for " << name << "\n";
}

inline
python_ptr getArrayTypeObject(std::string const & name, PyTypeObject * def = 0)
{
    ArrayTypeMap *types = getArrayTypeMap();
    if(!types)
        // dummy registry -> handle like empty registry
        return python_ptr((PyObject *)def);

    python_ptr res;
    ArrayTypeMap::iterator i = types->find(name);
    if(i != types->end())
        res = i->second.first;
    else
        res = python_ptr((PyObject *)def);
//    std::cerr << "Requested " << name << ", got " << ((PyTypeObject *)res.get())->tp_name << "\n";
    return res;
}

// there are two cases for the return:
// * if a typecheck function was registered, it is returned
// * a null pointer is returned if nothing was registered for either key, or if
//   a type was registered without typecheck function
inline python_ptr
getArrayTypecheckFunction(std::string const & keyFull, std::string const & key)
{
    python_ptr res;
    ArrayTypeMap *types = getArrayTypeMap();
    if(types)
    {
        ArrayTypeMap::iterator i = types->find(keyFull);
        if(i == types->end())
            i = types->find(key);
        if(i != types->end())
            res = i->second.second;
    }
    return res;
}

inline bool
performCustomizedArrayTypecheck(PyObject * obj, std::string const & keyFull, std::string const & key)
{
    if(obj == 0 || !PyArray_Check(obj))
        return false;
    python_ptr typecheck = getArrayTypecheckFunction(keyFull, key);
    if(typecheck == 0)
        return true; // no custom test registered
    python_ptr args(PyTuple_Pack(1, obj), python_ptr::keep_count);
    pythonToCppException(args);
    python_ptr res(PyObject_Call(typecheck.get(), args.get(), 0), python_ptr::keep_count);
    pythonToCppException(res);
    vigra_precondition(PyBool_Check(res),
           "NumpyArray conversion: registered typecheck function did not return a boolean.");
    return (void*)res.get() == (void*)Py_True;
}

inline
python_ptr constructNumpyArrayImpl(
    PyTypeObject * type,
    ArrayVector<npy_intp> const & shape, npy_intp *strides,
    NPY_TYPES typeCode, bool init)
{
    python_ptr array;

    if(strides == 0)
    {
        array = python_ptr(PyArray_New(type, shape.size(), (npy_intp *)shape.begin(), typeCode, 0, 0, 0, 1 /* Fortran order */, 0),
                           python_ptr::keep_count);
    }
    else
    {
        int N = shape.size();
        ArrayVector<npy_intp> pshape(N);
        for(int k=0; k<N; ++k)
            pshape[strides[k]] = shape[k];

        array = python_ptr(PyArray_New(type, N, pshape.begin(), typeCode, 0, 0, 0, 1 /* Fortran order */, 0),
                           python_ptr::keep_count);
        pythonToCppException(array);

        PyArray_Dims permute = { strides, N };
        array = python_ptr(PyArray_Transpose((PyArrayObject*)array.get(), &permute), python_ptr::keep_count);
    }
    pythonToCppException(array);

    if(init)
        PyArray_FILLWBYTE((PyArrayObject *)array.get(), 0);

    return array;
}

// strideOrdering will be ignored unless order == "A"
// TODO: this function should receive some refactoring in order to make
//       the rules clear from the code rather than from comments
inline python_ptr
constructNumpyArrayImpl(PyTypeObject * type, ArrayVector<npy_intp> const & shape,
                       unsigned int spatialDimensions, unsigned int channels,
                       NPY_TYPES typeCode, std::string order, bool init,
                       ArrayVector<npy_intp> strideOrdering = ArrayVector<npy_intp>())
{
    // shape must have at least length spatialDimensions, but can also have a channel dimension
    vigra_precondition(shape.size() == spatialDimensions || shape.size() == spatialDimensions + 1,
           "constructNumpyArray(type, shape, ...): shape has wrong length.");

    // if strideOrdering is given, it must have at least length spatialDimensions,
    // but can also have a channel dimension
    vigra_precondition(strideOrdering.size() == 0 || strideOrdering.size() == spatialDimensions ||
                       strideOrdering.size() == spatialDimensions + 1,
           "constructNumpyArray(type, ..., strideOrdering): strideOrdering has wrong length.");

    if(channels == 0) // if the requested number of channels is not given ...
    {
        // ... deduce it
        if(shape.size() == spatialDimensions)
            channels = 1;
        else
            channels = shape.back();
    }
    else
    {
        // otherwise, if the shape object also contains a channel dimension, they must be consistent
        if(shape.size() > spatialDimensions)
            vigra_precondition(channels == (unsigned int)shape[spatialDimensions],
                   "constructNumpyArray(type, ...): shape contradicts requested number of channels.");
    }

    // if we have only one channel, no explicit channel dimension should be in the shape
    unsigned int shapeSize = channels == 1
                                  ? spatialDimensions
                                  : spatialDimensions + 1;

    // create the shape object with optional channel dimension
    ArrayVector<npy_intp> pshape(shapeSize);
    std::copy(shape.begin(), shape.begin()+std::min(shape.size(), pshape.size()), pshape.begin());
    if(shapeSize > spatialDimensions)
        pshape[spatialDimensions] = channels;

    // order "A" means "preserve order" when an array is copied, and
    // defaults to "V" when a new array is created without explicit strideOrdering
    //
    if(order == "A")
    {
        if(strideOrdering.size() == 0)
        {
            order = "V";
        }
        else if(strideOrdering.size() > shapeSize)
        {
            // make sure that strideOrdering length matches shape length
            ArrayVector<npy_intp> pstride(strideOrdering.begin(), strideOrdering.begin()+shapeSize);

            // adjust the ordering when the channel dimension has been dropped because channel == 1
            if(strideOrdering[shapeSize] == 0)
                for(unsigned int k=0; k<shapeSize; ++k)
                    pstride[k] -= 1;
            pstride.swap(strideOrdering);
        }
        else if(strideOrdering.size() < shapeSize)
        {
            // make sure that strideOrdering length matches shape length
            ArrayVector<npy_intp> pstride(shapeSize);

            // adjust the ordering when the channel dimension has been dropped because channel == 1
            for(unsigned int k=0; k<shapeSize-1; ++k)
                pstride[k] = strideOrdering[k] + 1;
            pstride[shapeSize-1] = 0;
            pstride.swap(strideOrdering);
        }
    }

    // create the appropriate strideOrdering objects for the other memory orders
    // (when strideOrdering already contained data, it is ignored because order != "A")
    if(order == "C")
    {
        strideOrdering.resize(shapeSize);
        for(unsigned int k=0; k<shapeSize; ++k)
            strideOrdering[k] = shapeSize-1-k;
    }
    else if(order == "F" || (order == "V" && channels == 1))
    {
        strideOrdering.resize(shapeSize);
        for(unsigned int k=0; k<shapeSize; ++k)
            strideOrdering[k] = k;
    }
    else if(order == "V")
    {
        strideOrdering.resize(shapeSize);
        for(unsigned int k=0; k<shapeSize-1; ++k)
            strideOrdering[k] = k+1;
        strideOrdering[shapeSize-1] = 0;
    }

    return constructNumpyArrayImpl(type, pshape, strideOrdering.begin(), typeCode, init);
}

template <class TINY_VECTOR>
inline
python_ptr constructNumpyArrayFromData(
    std::string const & typeKeyFull,
    std::string const & typeKey,
    TINY_VECTOR const & shape, npy_intp *strides,
    NPY_TYPES typeCode, void *data)
{
    ArrayVector<npy_intp> pyShape(shape.begin(), shape.end());

    python_ptr type = detail::getArrayTypeObject(typeKeyFull);
    if(type == 0)
        type = detail::getArrayTypeObject(typeKey, &PyArray_Type);

    python_ptr array(PyArray_New((PyTypeObject *)type.ptr(), shape.size(), pyShape.begin(), typeCode, strides, data, 0, NPY_WRITEABLE, 0),
                     python_ptr::keep_count);
    pythonToCppException(array);

    return array;
}


} // namespace detail

/********************************************************/
/*                                                      */
/*               NumpyArrayValuetypeTraits              */
/*                                                      */
/********************************************************/

template<class ValueType>
struct ERROR_NumpyArrayValuetypeTraits_not_specialized_for_ { };

template<class ValueType>
struct NumpyArrayValuetypeTraits
{
    static bool isValuetypeCompatible(PyArrayObject const * obj)
    {
        return ERROR_NumpyArrayValuetypeTraits_not_specialized_for_<ValueType>();
    }

    static ERROR_NumpyArrayValuetypeTraits_not_specialized_for_<ValueType> typeCode;

    static std::string typeName()
    {
        return std::string("ERROR: NumpyArrayValuetypeTraits not specialized for this case");
    }

    static std::string typeNameImpex()
    {
        return std::string("ERROR: NumpyArrayValuetypeTraits not specialized for this case");
    }

    static PyObject * typeObject()
    {
        return (PyObject *)0;
    }
};

template<class ValueType>
ERROR_NumpyArrayValuetypeTraits_not_specialized_for_<ValueType> NumpyArrayValuetypeTraits<ValueType>::typeCode;

#define VIGRA_NUMPY_VALUETYPE_TRAITS(type, typeID, numpyTypeName, impexTypeName) \
template <> \
struct NumpyArrayValuetypeTraits<type > \
{ \
    static bool isValuetypeCompatible(PyArrayObject const * obj) /* obj must not be NULL */ \
    { \
        return PyArray_EquivTypenums(typeID, PyArray_DESCR((PyObject *)obj)->type_num) && \
               PyArray_ITEMSIZE((PyObject *)obj) == sizeof(type); \
    } \
    \
    static NPY_TYPES const typeCode = typeID; \
    \
    static std::string typeName() \
    { \
        return #numpyTypeName; \
    } \
    \
    static std::string typeNameImpex() \
    { \
        return impexTypeName; \
    } \
    \
    static PyObject * typeObject() \
    { \
        return PyArray_TypeObjectFromType(typeID); \
    } \
};

VIGRA_NUMPY_VALUETYPE_TRAITS(bool,           NPY_BOOL, bool, "UINT8")
VIGRA_NUMPY_VALUETYPE_TRAITS(signed char,    NPY_INT8, int8, "INT16")
VIGRA_NUMPY_VALUETYPE_TRAITS(unsigned char,  NPY_UINT8, uint8, "UINT8")
VIGRA_NUMPY_VALUETYPE_TRAITS(short,          NPY_INT16, int16, "INT16")
VIGRA_NUMPY_VALUETYPE_TRAITS(unsigned short, NPY_UINT16, uint16, "UINT16")

#if VIGRA_BITSOF_LONG == 32
VIGRA_NUMPY_VALUETYPE_TRAITS(long,           NPY_INT32, int32, "INT32")
VIGRA_NUMPY_VALUETYPE_TRAITS(unsigned long,  NPY_UINT32, uint32, "UINT32")
#elif VIGRA_BITSOF_LONG == 64
VIGRA_NUMPY_VALUETYPE_TRAITS(long,           NPY_INT64, int64, "DOUBLE")
VIGRA_NUMPY_VALUETYPE_TRAITS(unsigned long,  NPY_UINT64, uint64, "DOUBLE")
#endif

#if VIGRA_BITSOF_INT == 32
VIGRA_NUMPY_VALUETYPE_TRAITS(int,            NPY_INT32, int32, "INT32")
VIGRA_NUMPY_VALUETYPE_TRAITS(unsigned int,   NPY_UINT32, uint32, "UINT32")
#elif VIGRA_BITSOF_INT == 64
VIGRA_NUMPY_VALUETYPE_TRAITS(int,            NPY_INT64, int64, "DOUBLE")
VIGRA_NUMPY_VALUETYPE_TRAITS(unsigned int,   NPY_UINT64, uint64, "DOUBLE")
#endif

#ifdef PY_LONG_LONG
# if VIGRA_BITSOF_LONG_LONG == 32
VIGRA_NUMPY_VALUETYPE_TRAITS(long long,            NPY_INT32, int32, "INT32")
VIGRA_NUMPY_VALUETYPE_TRAITS(unsigned long long,   NPY_UINT32, uint32, "UINT32")
# elif VIGRA_BITSOF_LONG_LONG == 64
VIGRA_NUMPY_VALUETYPE_TRAITS(long long,          NPY_INT64, int64, "DOUBLE")
VIGRA_NUMPY_VALUETYPE_TRAITS(unsigned long long, NPY_UINT64, uint64, "DOUBLE")
# endif
#endif

VIGRA_NUMPY_VALUETYPE_TRAITS(npy_float32, NPY_FLOAT32, float32, "FLOAT")
VIGRA_NUMPY_VALUETYPE_TRAITS(npy_float64, NPY_FLOAT64, float64, "DOUBLE")
#if NPY_SIZEOF_LONGDOUBLE != NPY_SIZEOF_DOUBLE
VIGRA_NUMPY_VALUETYPE_TRAITS(npy_longdouble, NPY_LONGDOUBLE, longdouble, "")
#endif
VIGRA_NUMPY_VALUETYPE_TRAITS(npy_cfloat, NPY_CFLOAT, complex64, "")
VIGRA_NUMPY_VALUETYPE_TRAITS(std::complex<npy_float>, NPY_CFLOAT, complex64, "")
VIGRA_NUMPY_VALUETYPE_TRAITS(npy_cdouble, NPY_CDOUBLE, complex128, "")
VIGRA_NUMPY_VALUETYPE_TRAITS(std::complex<npy_double>, NPY_CDOUBLE, complex128, "")
VIGRA_NUMPY_VALUETYPE_TRAITS(npy_clongdouble, NPY_CLONGDOUBLE, clongdouble, "")
#if NPY_SIZEOF_LONGDOUBLE != NPY_SIZEOF_DOUBLE
VIGRA_NUMPY_VALUETYPE_TRAITS(std::complex<npy_longdouble>, NPY_CLONGDOUBLE, clongdouble, "")
#endif

#undef VIGRA_NUMPY_VALUETYPE_TRAITS

/********************************************************/
/*                                                      */
/*                  NumpyArrayTraits                    */
/*                                                      */
/********************************************************/

template <class U, int N>
bool stridesAreAscending(TinyVector<U, N> const & strides)
{
    for(int k=1; k<N; ++k)
        if(strides[k] < strides[k-1])
            return false;
    return true;
}

template<unsigned int N, class T, class Stride>
struct NumpyArrayTraits;

template<unsigned int N, class T>
struct NumpyArrayTraits<N, T, StridedArrayTag>
{
    typedef T dtype;
    typedef T value_type;
    typedef NumpyArrayValuetypeTraits<T> ValuetypeTraits;
    static NPY_TYPES const typeCode = ValuetypeTraits::typeCode;

    enum { spatialDimensions = N, channels = 1 };

    static bool isArray(PyObject * obj)
    {
        return obj && PyArray_Check(obj);
    }

    static bool isClassCompatible(PyObject * obj)
    {
        return detail::performCustomizedArrayTypecheck(obj, typeKeyFull(), typeKey());
    }

    static bool isValuetypeCompatible(PyArrayObject * obj)  /* obj must not be NULL */
    {
        return ValuetypeTraits::isValuetypeCompatible(obj);
    }

    static bool isShapeCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return PyArray_NDIM((PyObject *)obj) == N-1 ||
               PyArray_NDIM((PyObject *)obj) == N ||
               (PyArray_NDIM((PyObject *)obj) == N+1 && PyArray_DIM((PyObject *)obj, N) == 1);
    }

    static bool isPropertyCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return ValuetypeTraits::isValuetypeCompatible(obj) &&
               isShapeCompatible(obj);
    }

    template <class U>
    static python_ptr constructor(TinyVector<U, N> const & shape,
                                  T *data, TinyVector<U, N> const & stride)
    {
        TinyVector<npy_intp, N> npyStride(stride * sizeof(T));
        return detail::constructNumpyArrayFromData(typeKeyFull(), typeKey(), shape, npyStride.begin(), ValuetypeTraits::typeCode, data);
    }

    static std::string typeKey()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) + ", *>";
        return key;
    }

    static std::string typeKeyFull()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) + ", " +
                                 ValuetypeTraits::typeName() + ", StridedArrayTag>";
        return key;
    }
};

/********************************************************/

template<unsigned int N, class T>
struct NumpyArrayTraits<N, T, UnstridedArrayTag>
: public NumpyArrayTraits<N, T, StridedArrayTag>
{
    typedef NumpyArrayTraits<N, T, StridedArrayTag> BaseType;
    typedef typename BaseType::ValuetypeTraits ValuetypeTraits;

    static bool isShapeCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return BaseType::isShapeCompatible(obj) &&
               PyArray_STRIDES((PyObject *)obj)[0] == PyArray_ITEMSIZE((PyObject *)obj);
    }

    static bool isPropertyCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return BaseType::isValuetypeCompatible(obj) &&
               isShapeCompatible(obj);
    }

    template <class U>
    static python_ptr constructor(TinyVector<U, N> const & shape,
                                  T *data, TinyVector<U, N> const & stride)
    {
        TinyVector<npy_intp, N> npyStride(stride * sizeof(T));
        return detail::constructNumpyArrayFromData(typeKeyFull(), BaseType::typeKey(), shape, npyStride.begin(), ValuetypeTraits::typeCode, data);
    }

    static std::string typeKeyFull()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) + ", " +
                                 ValuetypeTraits::typeName() + ", UnstridedArrayTag>";
        return key;
    }
};

/********************************************************/

template<unsigned int N, class T>
struct NumpyArrayTraits<N, Singleband<T>, StridedArrayTag>
: public NumpyArrayTraits<N, T, StridedArrayTag>
{
    typedef NumpyArrayTraits<N, T, StridedArrayTag> BaseType;
    typedef typename BaseType::ValuetypeTraits ValuetypeTraits;

    static bool isClassCompatible(PyObject * obj)
    {
        return detail::performCustomizedArrayTypecheck(obj, typeKeyFull(), typeKey());
    }

    template <class U>
    static python_ptr constructor(TinyVector<U, N> const & shape,
                                  T *data, TinyVector<U, N> const & stride)
    {
        TinyVector<npy_intp, N> npyStride(stride * sizeof(T));
        return detail::constructNumpyArrayFromData(typeKeyFull(), typeKey(), shape, npyStride.begin(), ValuetypeTraits::typeCode, data);
    }

    static std::string typeKey()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) + ", Singleband<*> >";
        return key;
    }

    static std::string typeKeyFull()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) + ", Singleband<" +
                                 ValuetypeTraits::typeName() + ">, StridedArrayTag>";
        return key;
    }
};

/********************************************************/

template<unsigned int N, class T>
struct NumpyArrayTraits<N, Singleband<T>, UnstridedArrayTag>
: public NumpyArrayTraits<N, Singleband<T>, StridedArrayTag>
{
    typedef NumpyArrayTraits<N, T, UnstridedArrayTag> UnstridedTraits;
    typedef NumpyArrayTraits<N, Singleband<T>, StridedArrayTag> BaseType;
    typedef typename BaseType::ValuetypeTraits ValuetypeTraits;

    static bool isShapeCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return UnstridedTraits::isShapeCompatible(obj);
    }

    static bool isPropertyCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return UnstridedTraits::isPropertyCompatible(obj);
    }

    template <class U>
    static python_ptr constructor(TinyVector<U, N> const & shape,
                                  T *data, TinyVector<U, N> const & stride)
    {
        TinyVector<npy_intp, N> npyStride(stride * sizeof(T));
        return detail::constructNumpyArrayFromData(typeKeyFull(), BaseType::typeKey(), shape, npyStride.begin(), ValuetypeTraits::typeCode, data);
    }

    static std::string typeKeyFull()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) + ", Singleband<" +
                                 ValuetypeTraits::typeName() + ">, UnstridedArrayTag>";
        return key;
    }
};

/********************************************************/

template<unsigned int N, class T>
struct NumpyArrayTraits<N, Multiband<T>, StridedArrayTag>
: public NumpyArrayTraits<N, T, StridedArrayTag>
{
    typedef NumpyArrayTraits<N, T, StridedArrayTag> BaseType;
    typedef typename BaseType::ValuetypeTraits ValuetypeTraits;

    enum { spatialDimensions = N-1, channels = 0 };

    static bool isClassCompatible(PyObject * obj)
    {
        return detail::performCustomizedArrayTypecheck(obj, typeKeyFull(), typeKey());
    }

    static bool isShapeCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return PyArray_NDIM(obj) == N || PyArray_NDIM(obj) == N-1;
    }

    static bool isPropertyCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return ValuetypeTraits::isValuetypeCompatible(obj) &&
               isShapeCompatible(obj);
    }

    template <class U>
    static python_ptr constructor(TinyVector<U, N> const & shape,
                                  T *data, TinyVector<U, N> const & stride)
    {
        TinyVector<npy_intp, N> npyStride(stride * sizeof(T));
        return detail::constructNumpyArrayFromData(typeKeyFull(), typeKey(), shape, npyStride.begin(), ValuetypeTraits::typeCode, data);
    }

    static std::string typeKey()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) + ", Multiband<*> >";
        return key;
    }

    static std::string typeKeyFull()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) + ", Multiband<" +
                                 ValuetypeTraits::typeName() + ">, StridedArrayTag>";
        return key;
    }
};

/********************************************************/

template<unsigned int N, class T>
struct NumpyArrayTraits<N, Multiband<T>, UnstridedArrayTag>
: public NumpyArrayTraits<N, Multiband<T>, StridedArrayTag>
{
    typedef NumpyArrayTraits<N, Multiband<T>, StridedArrayTag> BaseType;
    typedef typename BaseType::ValuetypeTraits ValuetypeTraits;

    static bool isShapeCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return BaseType::isShapeCompatible(obj) &&
               PyArray_STRIDES((PyObject *)obj)[0] == PyArray_ITEMSIZE((PyObject *)obj);
    }

    static bool isPropertyCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return BaseType::isValuetypeCompatible(obj) &&
               isShapeCompatible(obj);
    }

    template <class U>
    static python_ptr constructor(TinyVector<U, N> const & shape,
                                  T *data, TinyVector<U, N> const & stride)
    {
        TinyVector<npy_intp, N> npyStride(stride * sizeof(T));
        return detail::constructNumpyArrayFromData(typeKeyFull(), BaseType::typeKey(), shape, npyStride.begin(), ValuetypeTraits::typeCode, data);
    }

    static std::string typeKeyFull()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) + ", Multiband<" +
                                 ValuetypeTraits::typeName() + ">, UnstridedArrayTag>";
        return key;
    }
};

/********************************************************/

template<unsigned int N, int M, class T>
struct NumpyArrayTraits<N, TinyVector<T, M>, StridedArrayTag>
{
    typedef T dtype;
    typedef TinyVector<T, M> value_type;
    typedef NumpyArrayValuetypeTraits<T> ValuetypeTraits;
    static NPY_TYPES const typeCode = ValuetypeTraits::typeCode;

    enum { spatialDimensions = N, channels = M };

    static bool isArray(PyObject * obj)
    {
        return obj && PyArray_Check(obj);
    }

    static bool isClassCompatible(PyObject * obj)
    {
        return detail::performCustomizedArrayTypecheck(obj, typeKeyFull(), typeKey());
    }

    static bool isValuetypeCompatible(PyArrayObject * obj)  /* obj must not be NULL */
    {
        return ValuetypeTraits::isValuetypeCompatible(obj);
    }

    static bool isShapeCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return PyArray_NDIM((PyObject *)obj) == N+1 &&
               PyArray_DIM((PyObject *)obj, N) == M &&
               PyArray_STRIDES((PyObject *)obj)[N] == PyArray_ITEMSIZE((PyObject *)obj);
    }

    static bool isPropertyCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return ValuetypeTraits::isValuetypeCompatible(obj) &&
               isShapeCompatible(obj);
    }

    template <class U>
    static python_ptr constructor(TinyVector<U, N> const & shape,
                                  T *data, TinyVector<U, N> const & stride)
    {
        TinyVector<npy_intp, N+1> npyShape;
        std::copy(shape.begin(), shape.end(), npyShape.begin());
        npyShape[N] = M;

        TinyVector<npy_intp, N+1> npyStride;
        std::transform(
            stride.begin(), stride.end(), npyStride.begin(),
            std::bind2nd(std::multiplies<npy_intp>(), sizeof(value_type)));
        npyStride[N] = sizeof(T);

        return detail::constructNumpyArrayFromData(
            typeKeyFull(), typeKey(), npyShape,
            npyStride.begin(), ValuetypeTraits::typeCode, data);
    }

    static std::string typeKey()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) + ", TinyVector<*, " + asString(M) + "> >";
        return key;
    }

    static std::string typeKeyFull()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) +
                      ", TinyVector<" + ValuetypeTraits::typeName() + ", " + asString(M) + ">, StridedArrayTag>";
        return key;
    }
};

/********************************************************/

template<unsigned int N, int M, class T>
struct NumpyArrayTraits<N, TinyVector<T, M>, UnstridedArrayTag>
: public NumpyArrayTraits<N, TinyVector<T, M>, StridedArrayTag>
{
    typedef NumpyArrayTraits<N, TinyVector<T, M>, StridedArrayTag> BaseType;
    typedef typename BaseType::value_type value_type;
    typedef typename BaseType::ValuetypeTraits ValuetypeTraits;

    static bool isShapeCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return BaseType::isShapeCompatible(obj) &&
               PyArray_STRIDES((PyObject *)obj)[0] == sizeof(TinyVector<T, M>);
    }

    static bool isPropertyCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return BaseType::isValuetypeCompatible(obj) &&
               isShapeCompatible(obj);
    }

    template <class U>
    static python_ptr constructor(TinyVector<U, N> const & shape,
                                  T *data, TinyVector<U, N> const & stride)
    {
        TinyVector<npy_intp, N+1> npyShape;
        std::copy(shape.begin(), shape.end(), npyShape.begin());
        npyShape[N] = M;

        TinyVector<npy_intp, N+1> npyStride;
        std::transform(
            stride.begin(), stride.end(), npyStride.begin(),
            std::bind2nd(std::multiplies<npy_intp>(), sizeof(value_type)));
        npyStride[N] = sizeof(T);

        return detail::constructNumpyArrayFromData(
            typeKeyFull(), BaseType::typeKey(), npyShape,
            npyStride.begin(), ValuetypeTraits::typeCode, data);
    }

    static std::string typeKeyFull()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) +
                      ", TinyVector<" + ValuetypeTraits::typeName() + ", " + asString(M) + ">, UnstridedArrayTag>";
        return key;
    }
};

/********************************************************/

template<unsigned int N, class T>
struct NumpyArrayTraits<N, RGBValue<T>, StridedArrayTag>
: public NumpyArrayTraits<N, TinyVector<T, 3>, StridedArrayTag>
{
    typedef T dtype;
    typedef RGBValue<T> value_type;
    typedef NumpyArrayValuetypeTraits<T> ValuetypeTraits;

    static bool isClassCompatible(PyObject * obj)
    {
        return detail::performCustomizedArrayTypecheck(obj, typeKeyFull(), typeKey());
    }

    template <class U>
    static python_ptr constructor(TinyVector<U, N> const & shape,
                                  T *data, TinyVector<U, N> const & stride)
    {
        TinyVector<npy_intp, N+1> npyShape;
        std::copy(shape.begin(), shape.end(), npyShape.begin());
        npyShape[N] = 3;

        TinyVector<npy_intp, N+1> npyStride;
        std::transform(
            stride.begin(), stride.end(), npyStride.begin(),
            std::bind2nd(std::multiplies<npy_intp>(), sizeof(value_type)));
        npyStride[N] = sizeof(T);

        return detail::constructNumpyArrayFromData(
            typeKeyFull(), typeKey(), npyShape,
            npyStride.begin(), ValuetypeTraits::typeCode, data);
    }

    static std::string typeKey()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) + ", RGBValue<*> >";
        return key;
    }

    static std::string typeKeyFull()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) +
                      ", RGBValue<" + ValuetypeTraits::typeName() + ">, StridedArrayTag>";
        return key;
    }
};

/********************************************************/

template<unsigned int N, class T>
struct NumpyArrayTraits<N, RGBValue<T>, UnstridedArrayTag>
: public NumpyArrayTraits<N, RGBValue<T>, StridedArrayTag>
{
    typedef NumpyArrayTraits<N, TinyVector<T, 3>, UnstridedArrayTag> UnstridedTraits;
    typedef NumpyArrayTraits<N, RGBValue<T>, StridedArrayTag> BaseType;
    typedef typename BaseType::value_type value_type;
    typedef typename BaseType::ValuetypeTraits ValuetypeTraits;

    static bool isShapeCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return UnstridedTraits::isShapeCompatible(obj);
    }

    static bool isPropertyCompatible(PyArrayObject * obj) /* obj must not be NULL */
    {
        return UnstridedTraits::isPropertyCompatible(obj);
    }

    template <class U>
    static python_ptr constructor(TinyVector<U, N> const & shape,
                                  T *data, TinyVector<U, N> const & stride)
    {
        TinyVector<npy_intp, N+1> npyShape;
        std::copy(shape.begin(), shape.end(), npyShape.begin());
        npyShape[N] = 3;

        TinyVector<npy_intp, N+1> npyStride;
        std::transform(
            stride.begin(), stride.end(), npyStride.begin(),
            std::bind2nd(std::multiplies<npy_intp>(), sizeof(value_type)));
        npyStride[N] = sizeof(T);

        return detail::constructNumpyArrayFromData(
            typeKeyFull(), BaseType::typeKey(), npyShape,
            npyStride.begin(), ValuetypeTraits::typeCode, data);
    }

    static std::string typeKeyFull()
    {
        static std::string key = std::string("NumpyArray<") + asString(N) +
                      ", RGBValue<" + ValuetypeTraits::typeName() + ">, UnstridedArrayTag>";
        return key;
    }
};

/********************************************************/
/*                                                      */
/*                    NumpyAnyArray                     */
/*                                                      */
/********************************************************/

/** Wrapper class for a Python array.

    This class stores a reference-counted pointer to an Python numpy array object,
    i.e. an object where <tt>PyArray_Check(object)</tt> returns true (in Python, the
    object is then a subclass of <tt>numpy.ndarray</tt>). This class is mainly used
    as a smart pointer to these arrays, but some basic access and conversion functions
    are also provided.

    <b>\#include</b> \<<a href="numpy__array_8hxx-source.html">vigra/numpy_array.hxx</a>\><br>
    Namespace: vigra
*/
class NumpyAnyArray
{
  protected:
    python_ptr pyArray_;

    // We want to apply broadcasting to the channel dimension.
    // Since only leading dimensions can be added during numpy
    // broadcasting, we permute the array accordingly.
    NumpyAnyArray permuteChannelsToFront() const
    {
        MultiArrayIndex M = ndim();
        ArrayVector<npy_intp> permutation(M);
        for(int k=0; k<M; ++k)
            permutation[k] = M-1-k;
        // explicit cast to int is neede here to avoid gcc c++0x compilation
        // error: narrowing conversion of ‘M’ from ‘vigra::MultiArrayIndex’
        //        to ‘int’ inside { }
        // int overflow should not occur here because PyArray_NDIM returns
        // an integer which is converted to long in NumpyAnyArray::ndim()
        PyArray_Dims permute = { permutation.begin(), (int) M };
        python_ptr array(PyArray_Transpose(pyArray(), &permute), python_ptr::keep_count);
        pythonToCppException(array);
        return NumpyAnyArray(array.ptr());
    }

  public:

        /// difference type
    typedef ArrayVector<npy_intp> difference_type;

        /**
         Construct from a Python object. If \a obj is NULL, or is not a subclass
         of numpy.ndarray, the resulting NumpyAnyArray will have no data (i.e.
         hasData() returns false). Otherwise, it creates a new reference to the array
         \a obj, unless \a createCopy is true, where a new array is created by calling
         the C-equivalent of obj->copy().
         */
    explicit NumpyAnyArray(PyObject * obj = 0, bool createCopy = false, PyTypeObject * type = 0)
    {
        if(obj == 0)
            return;
        vigra_precondition(type == 0 || PyType_IsSubtype(type, &PyArray_Type),
             "NumpyAnyArray(obj, createCopy, type): type must be numpy.ndarray or a subclass thereof.");
        if(createCopy)
            makeCopy(obj, type);
        else
            vigra_precondition(makeReference(obj, type), "NumpyAnyArray(obj): obj isn't a numpy array.");
    }

        /**
         Copy constructor. By default, it creates a new reference to the array
         \a other. When \a createCopy is true, a new array is created by calling
         the C-equivalent of other.copy().
         */
    NumpyAnyArray(NumpyAnyArray const & other, bool createCopy = false, PyTypeObject * type = 0)
    {
        if(!other.hasData())
            return;
        vigra_precondition(type == 0 || PyType_IsSubtype(type, &PyArray_Type),
             "NumpyAnyArray(obj, createCopy, type): type must be numpy.ndarray or a subclass thereof.");
        if(createCopy)
            makeCopy(other.pyObject(), type);
        else
            makeReference(other.pyObject(), type);
    }

    // auto-generated destructor is ok

        /**
         * Assignment operator. If this is already a view with data
         * (i.e. hasData() is true) and the shapes match, the RHS
         * array contents are copied via the C-equivalent of
         * 'self[...] = other[...]'. If the shapes don't matched,
         * broadcasting is tried on the trailing (i.e. channel)
         * dimension.
         * If the LHS is an empty view, assignment is identical to
         * makeReference(other.pyObject()).
         */
    NumpyAnyArray & operator=(NumpyAnyArray const & other)
    {
        if(hasData())
        {
            vigra_precondition(other.hasData(),
                "NumpyArray::operator=(): Cannot assign from empty array.");
            if(PyArray_CopyInto(permuteChannelsToFront().pyArray(), other.permuteChannelsToFront().pyArray()) == -1)
                pythonToCppException(0);
        }
        else
        {
            pyArray_ = other.pyArray_;
        }
        return *this;
    }

        /**
         Returns the number of dimensions of this array, or 0 if
         hasData() is false.
         */
    MultiArrayIndex ndim() const
    {
        if(hasData())
            return PyArray_NDIM(pyObject());
        return 0;
    }

        /**
         Returns the number of spatial dimensions of this array, or 0 if
         hasData() is false. If the enclosed Python array does not define
         the attribute spatialDimensions, ndim() is returned.
         */
    MultiArrayIndex spatialDimensions() const
    {
        if(!hasData())
            return 0;
        MultiArrayIndex s = detail::spatialDimensions(pyObject());
        if(s == -1)
            s = ndim();
        return s;
    }

        /**
         Returns the shape of this array. The size of
         the returned shape equals ndim().
         */
    difference_type shape() const
    {
        if(hasData())
            return difference_type(PyArray_DIMS(pyObject()), PyArray_DIMS(pyObject()) + ndim());
        return difference_type();
    }

        /** Compute the ordering of the strides of this array.
            The result is describes the current permutation of the axes relative
            to an ascending stride order.
        */
    difference_type strideOrdering() const
    {
        if(!hasData())
            return difference_type();
        MultiArrayIndex N = ndim();
        difference_type stride(PyArray_STRIDES(pyObject()), PyArray_STRIDES(pyObject()) + N),
                        permutation(N);
        for(MultiArrayIndex k=0; k<N; ++k)
            permutation[k] = k;
        for(MultiArrayIndex k=0; k<N-1; ++k)
        {
            MultiArrayIndex smallest = k;
            for(MultiArrayIndex j=k+1; j<N; ++j)
            {
                if(stride[j] < stride[smallest])
                    smallest = j;
            }
            if(smallest != k)
            {
                std::swap(stride[k], stride[smallest]);
                std::swap(permutation[k], permutation[smallest]);
            }
        }
        difference_type ordering(N);
        for(MultiArrayIndex k=0; k<N; ++k)
            ordering[permutation[k]] = k;
        return ordering;
    }

        /**
         Returns the value type of the elements in this array, or -1
         when hasData() is false.
         */
    int dtype() const
    {
        if(hasData())
            return PyArray_DESCR(pyObject())->type_num;
        return -1;
    }

        /**
         * Return a borrowed reference to the internal PyArrayObject.
         */
    PyArrayObject * pyArray() const
    {
        return (PyArrayObject *)pyArray_.get();
    }

        /**
         * Return a borrowed reference to the internal PyArrayObject
         * (see pyArray()), cast to PyObject for your convenience.
         */
    PyObject * pyObject() const
    {
        return pyArray_.get();
    }

        /**
           Reset the NumpyAnyArray to the given object. If \a obj is a numpy array object,
           a new reference to that array is created, and the function returns
           true. Otherwise, it returns false and the NumpyAnyArray remains unchanged.
           If \a type is given, the new reference will be a view with that type, provided
           that \a type is a numpy ndarray or a subclass thereof. Otherwise, an
           exception is thrown.
         */
    bool makeReference(PyObject * obj, PyTypeObject * type = 0)
    {
        if(obj == 0 || !PyArray_Check(obj))
            return false;
        if(type != 0)
        {
            vigra_precondition(PyType_IsSubtype(type, &PyArray_Type) != 0,
                "NumpyAnyArray::makeReference(obj, type): type must be numpy.ndarray or a subclass thereof.");
            obj = PyArray_View((PyArrayObject*)obj, 0, type);
            pythonToCppException(obj);
        }
        pyArray_.reset(obj);
        return true;
    }

        /**
           Create a copy of the given array object. If \a obj is a numpy array object,
           a copy is created via the C-equivalent of 'obj->copy()'. If
           this call fails, or obj was not an array, an exception is thrown
           and the NumpyAnyArray remains unchanged.
         */
    void makeCopy(PyObject * obj, PyTypeObject * type = 0)
    {
        vigra_precondition(obj && PyArray_Check(obj),
             "NumpyAnyArray::makeCopy(obj): obj is not an array.");
        vigra_precondition(type == 0 || PyType_IsSubtype(type, &PyArray_Type),
             "NumpyAnyArray::makeCopy(obj, type): type must be numpy.ndarray or a subclass thereof.");
        python_ptr array(PyArray_NewCopy((PyArrayObject*)obj, NPY_ANYORDER), python_ptr::keep_count);
        pythonToCppException(array);
        makeReference(array, type);
    }

         /**
           Check whether this NumpyAnyArray actually points to a Python array.
         */
    bool hasData() const
    {
        return pyArray_ != 0;
    }
};

/********************************************************/
/*                                                      */
/*                     NumpyArray                       */
/*                                                      */
/********************************************************/

/** Provide the MultiArrayView interface for a Python array.

    This class inherits from both \ref vigra::MultiArrayView and \ref vigra::NumpyAnyArray
    in order to support easy and save application of VIGRA functions to Python arrays.

    <b>\#include</b> \<<a href="numpy__array_8hxx-source.html">vigra/numpy_array.hxx</a>\><br>
    Namespace: vigra
*/
template <unsigned int N, class T, class Stride = StridedArrayTag>
class NumpyArray
: public MultiArrayView<N, typename NumpyArrayTraits<N, T, Stride>::value_type, Stride>,
  public NumpyAnyArray
{
  public:
    typedef NumpyArrayTraits<N, T, Stride> ArrayTraits;
    typedef typename ArrayTraits::dtype dtype;
    typedef T pseudo_value_type;

    static NPY_TYPES const typeCode = ArrayTraits::typeCode;

        /** the view type associated with this array.
         */
    typedef MultiArrayView<N, typename ArrayTraits::value_type, Stride> view_type;

    enum { actual_dimension = view_type::actual_dimension };

        /** the array's value type
         */
    typedef typename view_type::value_type value_type;

        /** pointer type
         */
    typedef typename view_type::pointer pointer;

        /** const pointer type
         */
    typedef typename view_type::const_pointer const_pointer;

        /** reference type (result of operator[])
         */
    typedef typename view_type::reference reference;

        /** const reference type (result of operator[] const)
         */
    typedef typename view_type::const_reference const_reference;

        /** size type
         */
    typedef typename view_type::size_type size_type;

        /** difference type (used for multi-dimensional offsets and indices)
         */
    typedef typename view_type::difference_type difference_type;

        /** difference and index type for a single dimension
         */
    typedef typename view_type::difference_type_1 difference_type_1;

        /** traverser type
         */
    typedef typename view_type::traverser traverser;

        /** traverser type to const data
         */
    typedef typename view_type::const_traverser const_traverser;

        /** sequential (random access) iterator type
         */
    typedef value_type * iterator;

        /** sequential (random access) const iterator type
         */
    typedef value_type * const_iterator;

    using view_type::shape;   // resolve ambiguity of multiple inheritance
    using view_type::hasData; // resolve ambiguity of multiple inheritance
    using view_type::strideOrdering; // resolve ambiguity of multiple inheritance

  protected:

    // this function assumes that pyArray_ has already been set, and compatibility been checked
    void setupArrayView();

    static python_ptr getArrayTypeObject()
    {
        python_ptr type = detail::getArrayTypeObject(ArrayTraits::typeKeyFull());
        if(type == 0)
            type = detail::getArrayTypeObject(ArrayTraits::typeKey(), &PyArray_Type);
        return type;
    }

    static python_ptr init(difference_type const & shape, bool init = true)
    {
        ArrayVector<npy_intp> pshape(shape.begin(), shape.end());
        return detail::constructNumpyArrayImpl((PyTypeObject *)getArrayTypeObject().ptr(), pshape,
                       ArrayTraits::spatialDimensions, ArrayTraits::channels,
                       typeCode, "V", init);
    }

    static python_ptr init(difference_type const & shape, difference_type const & strideOrdering, bool init = true)
    {
        ArrayVector<npy_intp> pshape(shape.begin(), shape.end()),
                              pstrideOrdering(strideOrdering.begin(), strideOrdering.end());
        return detail::constructNumpyArrayImpl((PyTypeObject *)getArrayTypeObject().ptr(), pshape,
                       ArrayTraits::spatialDimensions, ArrayTraits::channels,
                       typeCode, "A", init, pstrideOrdering);
    }

  public:

    using view_type::init;

        /**
         * Construct from a given PyObject pointer. When the given
         * python object is NULL, the internal python array will be
         * NULL and hasData() will return false.
         *
         * Otherwise, the function attempts to create a
         * new reference to the given Python object, unless
         * copying is forced by setting \a createCopy to true.
         * If either of this fails, the function throws an exception.
         * This will not happen if isStrictlyCompatible(obj) (in case
         * of creating a new reference) or isCopyCompatible(obj)
         * (in case of copying) have returned true beforehand.
         */
    explicit NumpyArray(PyObject *obj = 0, bool createCopy = false)
    {
        if(obj == 0)
            return;
        if(createCopy)
            makeCopy(obj);
        else
            vigra_precondition(makeReference(obj),
                  "NumpyArray(obj): Cannot construct from incompatible array.");
    }

       /**
         * Copy constructor; does not copy the memory, but creates a
         * new reference to the same underlying python object, unless
         * a copy is forced by setting \a createCopy to true.
         * (If the source object has no data, this one will have
         * no data, too.)
         */
    NumpyArray(const NumpyArray &other, bool createCopy = false) :
            MultiArrayView<N, typename NumpyArrayTraits<N, T, Stride>::value_type, Stride>(other),
            NumpyAnyArray(other, createCopy)
    {
        if(!other.hasData())
            return;
        if(createCopy)
            makeCopy(other.pyObject());
        else
            makeReferenceUnchecked(other.pyObject());
    }

       /**
         * Allocate new memory and copy data from a MultiArrayView.
         */
    explicit NumpyArray(const view_type &other)
    {
        if(!other.hasData())
            return;
        vigra_postcondition(makeReference(init(other.shape(), false)),
                  "NumpyArray(view_type): Python constructor did not produce a compatible array.");
        static_cast<view_type &>(*this) = other;
    }

        /**
         * Construct a new array object, allocating an internal python
         * ndarray of the given shape (in fortran order), initialized
         * with zeros.
         *
         * An exception is thrown when construction fails.
         */
    explicit NumpyArray(difference_type const & shape)
    {
        vigra_postcondition(makeReference(init(shape)),
                     "NumpyArray(shape): Python constructor did not produce a compatible array.");
    }

        /**
         * Construct a new array object, allocating an internal python
         * ndarray of the given shape and given stride ordering, initialized
         * with zeros.
         *
         * An exception is thrown when construction fails.
         */
    NumpyArray(difference_type const & shape, difference_type const & strideOrdering)
    {
        vigra_postcondition(makeReference(init(shape, strideOrdering)),
                     "NumpyArray(shape): Python constructor did not produce a compatible array.");
    }

        /**
         * Constructor from NumpyAnyArray.
         * Equivalent to NumpyArray(other.pyObject())
         */
    NumpyArray(const NumpyAnyArray &other, bool createCopy = false)
    {
        if(!other.hasData())
            return;
        if(createCopy)
            makeCopy(other.pyObject());
        else
            vigra_precondition(makeReference(other.pyObject()), //, false),
                   "NumpyArray(NumpyAnyArray): Cannot construct from incompatible or empty array.");
    }

        /**
         * Assignment operator. If this is already a view with data
         * (i.e. hasData() is true) and the shapes match, the RHS
         * array contents are copied.  If this is an empty view,
         * assignment is identical to makeReferenceUnchecked(other.pyObject()).
         * See MultiArrayView::operator= for further information on
         * semantics.
         */
    NumpyArray &operator=(const NumpyArray &other)
    {
        if(hasData())
            view_type::operator=(other);
        else
            makeReferenceUnchecked(other.pyObject());
        return *this;
    }

        /**
         * Assignment operator. If this is already a view with data
         * (i.e. hasData() is true) and the shapes match, the RHS
         * array contents are copied.
         * If this is an empty view, assignment is identical to
         * makeReference(other.pyObject()).
         * Otherwise, an exception is thrown.
         */
    NumpyArray &operator=(const NumpyAnyArray &other)
    {
        if(hasData())
        {
            NumpyAnyArray::operator=(other);
        }
        else if(isStrictlyCompatible(other.pyObject()))
        {
            makeReferenceUnchecked(other.pyObject());
        }
        else
        {
            vigra_precondition(false,
                "NumpyArray::operator=(): Cannot assign from incompatible array.");
        }
        return *this;
    }

        /**
         * Test whether a given python object is a numpy array that can be
         * converted (copied) into an array compatible to this NumpyArray type.
         * This means that the array's shape conforms to the requirements of
         * makeCopy().
         */
    static bool isCopyCompatible(PyObject *obj)
    {
        return ArrayTraits::isArray(obj) &&
               ArrayTraits::isShapeCompatible((PyArrayObject *)obj);
    }

        /**
         * Test whether a given python object is a numpy array with a
         * compatible dtype and the correct shape and strides, so that it
         * can be referenced as a view by this NumpyArray type (i.e.
         * it conforms to the requirements of makeReference()).
         */
    static bool isReferenceCompatible(PyObject *obj)
    {
        return ArrayTraits::isArray(obj) &&
               ArrayTraits::isPropertyCompatible((PyArrayObject *)obj);
    }

        /**
         * Like isReferenceCompatible(obj), but also executes a customized type compatibility
         * check when such a check has been registered for this class via
         * registerPythonArrayType().
         *
         * This facilitates proper overload resolution between
         * NumpyArray<3, Multiband<T> > (a multiband image) and NumpyArray<3, Singleband<T> > (a scalar volume).
         */
    static bool isStrictlyCompatible(PyObject *obj)
    {
#if VIGRA_CONVERTER_DEBUG
        std::cerr << "class " << typeid(NumpyArray).name() << " got " << obj->ob_type->tp_name << "\n";
        bool isClassCompatible=ArrayTraits::isClassCompatible(obj);
        bool isPropertyCompatible((PyArrayObject *)obj);
        std::cerr<<"isClassCompatible: "<<isClassCompatible<<std::endl;
        std::cerr<<"isPropertyCompatible: "<<isPropertyCompatible<<std::endl;
#endif
        return ArrayTraits::isClassCompatible(obj) &&
               ArrayTraits::isPropertyCompatible((PyArrayObject *)obj);
    }

        /**
         * Create a vector representing the standard stride ordering of a NumpyArray.
         * That is, we get a vector representing the range [0,...,N-1], which
         * denotes the stride ordering for Fortran order.
         */
    static difference_type standardStrideOrdering()
    {
        difference_type strideOrdering;
        for(unsigned int k=0; k<N; ++k)
            strideOrdering[k] = k;
        return strideOrdering;
    }

        /**
         * Set up a view to the given object without checking compatibility.
         * This function must not be used unless isReferenceCompatible(obj) returned
         * true on the given object (otherwise, a crash is likely).
         */
    void makeReferenceUnchecked(PyObject *obj)
    {
        NumpyAnyArray::makeReference(obj);
        setupArrayView();
    }

        /**
         * Try to set up a view referencing the given PyObject.
         * Returns false if the python object is not a compatible
         * numpy array (see isReferenceCompatible() or
         * isStrictlyCompatible(), according to the parameter \a
         * strict).
         */
    bool makeReference(PyObject *obj, bool strict = true)
    {
        if(strict)
        {
            if(!isStrictlyCompatible(obj))
                return false;
        }
        else
        {
            if(!isReferenceCompatible(obj))
                return false;
        }
        makeReferenceUnchecked(obj);
        return true;
    }

        /**
         * Try to set up a view referencing the same data as the given
         * NumpyAnyArray.  This overloaded variant simply calls
         * makeReference() on array.pyObject().
         */
    bool makeReference(const NumpyAnyArray &array, bool strict = true)
    {
        return makeReference(array.pyObject(), strict);
    }

        /**
         * Set up an unsafe reference to the given MultiArrayView.
         * ATTENTION: This creates a numpy.ndarray that points to the
         * same data, but does not own it, so it must be ensured by
         * other means that the memory does not get freed before the
         * end of the ndarray's lifetime!  (One elegant way would be
         * to set the 'base' attribute of the resulting ndarray to a
         * python object which directly or indirectly holds the memory
         * of the given MultiArrayView.)
         */
    void makeReference(const view_type &multiArrayView)
    {
        vigra_precondition(!hasData(), "makeReference(): cannot replace existing view with given buffer");

        // construct an ndarray that points to our data (taking strides into account):
        python_ptr array(ArrayTraits::constructor(multiArrayView.shape(), multiArrayView.data(), multiArrayView.stride()));

        view_type::operator=(multiArrayView);
        pyArray_ = array;
    }

        /**
         Try to create a copy of the given PyObject.
         Raises an exception when obj is not a compatible array
         (see isCopyCompatible() or isStrictlyCompatible(), according to the
         parameter \a strict) or the Python constructor call failed.
         */
    void makeCopy(PyObject *obj, bool strict = false)
    {
        vigra_precondition(strict ? isStrictlyCompatible(obj) : isCopyCompatible(obj),
                     "NumpyArray::makeCopy(obj): Cannot copy an incompatible array.");

        int M = PyArray_NDIM(obj);
        TinyVector<npy_intp, N> shape;
        std::copy(PyArray_DIMS(obj), PyArray_DIMS(obj)+M, shape.begin());
        if(M == N-1)
            shape[M] = 1;
        vigra_postcondition(makeReference(init(shape, false)),
                     "NumpyArray::makeCopy(obj): Copy created an incompatible array.");
        NumpyAnyArray::operator=(NumpyAnyArray(obj));
//        if(PyArray_CopyInto(pyArray(), (PyArrayObject*)obj) == -1)
//            pythonToCppException(0);
    }

        /**
            Allocate new memory with the given shape and initialize with zeros.<br>
            If a stride ordering is given, the resulting array will have this stride
            ordering, when it is compatible with the array's memory layout (unstrided
            arrays only permit the standard ascending stride ordering).

            <em>Note:</em> this operation invalidates dependent objects
            (MultiArrayViews and iterators)
         */
    void reshape(difference_type const & shape, difference_type const & strideOrdering = standardStrideOrdering())
    {
        vigra_postcondition(makeReference(init(shape, strideOrdering)),
                     "NumpyArray(shape): Python constructor did not produce a compatible array.");
    }

        /**
            When this array has no data, allocate new memory with the given \a shape and
            initialize with zeros. Otherwise, check if the new shape matches the old shape
            and throw a precondition exception with the given \a message if not.
         */
    void reshapeIfEmpty(difference_type const & shape, std::string message = "")
    {
        reshapeIfEmpty(shape, standardStrideOrdering(), message);
    }

        /**
            When this array has no data, allocate new memory with the given \a shape and
            initialize with zeros. Otherwise, check if the new shape matches the old shape
            and throw a precondition exception with the given \a message if not. If strict
            is true, the given stride ordering must also match that of the existing data.
         */
    void reshapeIfEmpty(difference_type const & shape, difference_type const & strideOrdering,
                        std::string message = "", bool strict = false)
    {
        if(hasData())
        {
            if(strict)
            {
                if(message == "")
                    message = "NumpyArray::reshapeIfEmpty(shape): array was not empty, and shape or stride ordering did not match.";
                vigra_precondition(shape == this->shape() && strideOrdering == this->strideOrdering(), message.c_str());
            }
            else
            {
                if(message == "")
                    message = "NumpyArray::reshapeIfEmpty(shape): array was not empty, and shape did not match.";
                vigra_precondition(shape == this->shape(), message.c_str());
            }
        }
        else
        {
            reshape(shape, strideOrdering);
        }
    }
};

    // this function assumes that pyArray_ has already been set, and compatibility been checked
template <unsigned int N, class T, class Stride>
void NumpyArray<N, T, Stride>::setupArrayView()
{
    if(NumpyAnyArray::hasData())
    {
        unsigned int dimension = std::min<unsigned int>(actual_dimension, pyArray()->nd);
        std::copy(pyArray()->dimensions, pyArray()->dimensions + dimension, this->m_shape.begin());
        std::copy(pyArray()->strides, pyArray()->strides + dimension, this->m_stride.begin());
        if(pyArray()->nd < actual_dimension)
        {
            this->m_shape[dimension] = 1;
            this->m_stride[dimension] = sizeof(value_type);
        }
        this->m_stride /= sizeof(value_type);
        this->m_ptr = reinterpret_cast<pointer>(pyArray()->data);
    }
    else
    {
        this->m_ptr = 0;
    }
}


typedef NumpyArray<2, float >  NumpyFArray2;
typedef NumpyArray<3, float >  NumpyFArray3;
typedef NumpyArray<4, float >  NumpyFArray4;
typedef NumpyArray<2, Singleband<float> >  NumpyFImage;
typedef NumpyArray<3, Singleband<float> >  NumpyFVolume;
typedef NumpyArray<2, RGBValue<float> >  NumpyFRGBImage;
typedef NumpyArray<3, RGBValue<float> >  NumpyFRGBVolume;
typedef NumpyArray<3, Multiband<float> >  NumpyFMultibandImage;
typedef NumpyArray<4, Multiband<float> >  NumpyFMultibandVolume;

inline void import_vigranumpy()
{
    if(_import_array() < 0)
        pythonToCppException(0);
    python_ptr module(PyImport_ImportModule("vigra.vigranumpycore"), python_ptr::keep_count);
    pythonToCppException(module);
}

/********************************************************/
/*                                                      */
/*   NumpyArray Multiband Argument Object Factories     */
/*                                                      */
/********************************************************/

template <class PixelType, class Stride>
inline triple<ConstStridedImageIterator<PixelType>,
              ConstStridedImageIterator<PixelType>,
              MultibandVectorAccessor<PixelType> >
srcImageRange(NumpyArray<3, Multiband<PixelType>, Stride> const & img)
{
    ConstStridedImageIterator<PixelType>
        ul(img.data(), 1, img.stride(0), img.stride(1));
    return triple<ConstStridedImageIterator<PixelType>,
                  ConstStridedImageIterator<PixelType>,
                  MultibandVectorAccessor<PixelType> >
        (ul, ul + Size2D(img.shape(0), img.shape(1)), MultibandVectorAccessor<PixelType>(img.shape(2), img.stride(2)));
}

template <class PixelType, class Stride>
inline pair< ConstStridedImageIterator<PixelType>,
             MultibandVectorAccessor<PixelType> >
srcImage(NumpyArray<3, Multiband<PixelType>, Stride> const & img)
{
    ConstStridedImageIterator<PixelType>
        ul(img.data(), 1, img.stride(0), img.stride(1));
    return pair<ConstStridedImageIterator<PixelType>, MultibandVectorAccessor<PixelType> >
        (ul, MultibandVectorAccessor<PixelType>(img.shape(2), img.stride(2)));
}

template <class PixelType, class Stride>
inline triple< StridedImageIterator<PixelType>,
               StridedImageIterator<PixelType>,
               MultibandVectorAccessor<PixelType> >
destImageRange(NumpyArray<3, Multiband<PixelType>, Stride> & img)
{
    StridedImageIterator<PixelType>
        ul(img.data(), 1, img.stride(0), img.stride(1));
    typedef typename AccessorTraits<PixelType>::default_accessor Accessor;
    return triple<StridedImageIterator<PixelType>,
                  StridedImageIterator<PixelType>,
                  MultibandVectorAccessor<PixelType> >
        (ul, ul + Size2D(img.shape(0), img.shape(1)),
        MultibandVectorAccessor<PixelType>(img.shape(2), img.stride(2)));
}

template <class PixelType, class Stride>
inline pair< StridedImageIterator<PixelType>,
             MultibandVectorAccessor<PixelType> >
destImage(NumpyArray<3, Multiband<PixelType>, Stride> & img)
{
    StridedImageIterator<PixelType>
        ul(img.data(), 1, img.stride(0), img.stride(1));
    return pair<StridedImageIterator<PixelType>, MultibandVectorAccessor<PixelType> >
        (ul, MultibandVectorAccessor<PixelType>(img.shape(2), img.stride(2)));
}

template <class PixelType, class Stride>
inline pair< ConstStridedImageIterator<PixelType>,
             MultibandVectorAccessor<PixelType> >
maskImage(NumpyArray<3, Multiband<PixelType>, Stride> const & img)
{
    ConstStridedImageIterator<PixelType>
        ul(img.data(), 1, img.stride(0), img.stride(1));
    typedef typename AccessorTraits<PixelType>::default_accessor Accessor;
    return pair<ConstStridedImageIterator<PixelType>, MultibandVectorAccessor<PixelType> >
        (ul, MultibandVectorAccessor<PixelType>(img.shape(2), img.stride(2)));
}

} // namespace vigra

#endif // VIGRA_NUMPY_ARRAY_HXX