/usr/include/vigra/sampling.hxx is in libvigraimpex-dev 1.7.1+dfsg1-2ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 | /************************************************************************/
/* */
/* Copyright 2008-2009 by Ullrich Koethe and Rahul Nair */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_SAMPLING_HXX
#define VIGRA_SAMPLING_HXX
#include "array_vector.hxx"
#include "random.hxx"
#include <map>
#include <memory>
#include <cmath>
namespace vigra
{
/** \addtogroup MachineLearning Machine Learning
**/
//@{
/**\brief Options object for the Sampler class.
<b>usage:</b>
\code
SamplerOptions opt = SamplerOptions()
.withReplacement()
.sampleProportion(0.5);
\endcode
Note that the return value of all methods is <tt>*this</tt> which makes
concatenating of options as above possible.
*/
class SamplerOptions
{
public:
double sample_proportion;
unsigned int sample_size;
bool sample_with_replacement;
bool stratified_sampling;
SamplerOptions()
: sample_proportion(1.0),
sample_size(0),
sample_with_replacement(true),
stratified_sampling(false)
{}
/**\brief Sample from training population with replacement.
*
* <br> Default: true
*/
SamplerOptions& withReplacement(bool in = true)
{
sample_with_replacement = in;
return *this;
}
/**\brief Sample from training population without replacement.
*
* <br> Default (if you don't call this function): false
*/
SamplerOptions& withoutReplacement(bool in = true)
{
sample_with_replacement = !in;
return *this;
}
/**\brief Draw the given number of samples.
* If stratifiedSampling is true, the \a size is equally distributed
* accross all strata (e.g. <tt>size / strataCount</tt> samples are taken
* from each stratum, subject to rounding).
*
* <br> Default: 0 (i.e. determine the count by means of sampleProportion())
*/
SamplerOptions& sampleSize(unsigned int size)
{
sample_size = size;
return *this;
}
/**\brief Determine the number of samples to draw as a proportion of the total
* number. That is, we draw <tt>count = totalCount * proportion</tt> samples.
* This option is overridden when an absolute count is specified by sampleSize().
*
* If stratifiedSampling is true, the count is equally distributed
* accross all strata (e.g. <tt>totalCount * proportion / strataCount</tt> samples are taken
* from each stratum).
*
* <br> Default: 1.0
*/
SamplerOptions& sampleProportion(double proportion)
{
vigra_precondition(proportion >= 0.0,
"SamplerOptions::sampleProportion(): argument must not be negative.");
sample_proportion = proportion;
return *this;
}
/**\brief Draw equally many samples from each "stratum".
* A stratum is a group of like entities, e.g. pixels belonging
* to the same object class. This is useful to create balanced samples
* when the class probabilities are very unbalanced (e.g.
* when there are many background and few foreground pixels).
* Stratified sampling thus avoids that a trained classifier is biased
* towards the majority class.
*
* <br> Default (if you don't call this function): false
*/
SamplerOptions& stratified(bool in = true)
{
stratified_sampling = in;
return *this;
}
};
/************************************************************/
/* */
/* Sampler */
/* */
/************************************************************/
/** \brief Create random samples from a sequence of indices.
Selecting data items at random is a basic task of machine learning,
for example in boostrapping, RandomForest training, and cross validation.
This class implements various ways to select random samples via their indices.
Indices are assumed to be consecutive in
the range <tt>0 <= index < total_sample_count</tt>.
The class always contains a current sample which can be accessed by
the index operator or by the function sampledIndices(). The indices
that are not in the current sample (out-of-bag indices) can be accessed
via the function oobIndices().
The sampling method (with/without replacement, stratified or not) and the
number of samples to draw are determined by the option object
SamplerOptions.
<b>Usage:</b>
<b>\#include</b> \<<a href="sampling_8hxx-source.html">vigra/sampling.hxx</a>\><br>
Namespace: vigra
Create a Sampler with default options, i.e. sample as many indices as there
are data elements, with replacement. On average, the sample will contain
<tt>0.63*totalCount</tt> distinct indices.
\code
int totalCount = 10000; // total number of data elements
int numberOfSamples = 20; // repeat experiment 20 times
Sampler<> sampler(totalCount);
for(int k=0; k<numberOfSamples; ++k)
{
// process current sample
for(int i=0; i<sampler.sampleSize(); ++i)
{
int currentIndex = sampler[i];
processData(data[currentIndex]);
}
// create next sample
sampler.sample();
}
\endcode
Create a Sampler for stratified sampling, without replacement.
\code
// prepare the strata (i.e. specify which stratum each element belongs to)
int stratumSize1 = 2000, stratumSize2 = 8000,
totalCount = stratumSize1 + stratumSize2;
ArrayVerctor<int> strata(totalCount);
for(int i=0; i<stratumSize1; ++i)
strata[i] = 1;
for(int i=stratumSize1; i<stratumSize2; ++i)
strata[i] = 2;
int sampleSize = 200; // i.e. sample 100 elements from each of the two strata
int numberOfSamples = 20; // repeat experiment 20 times
Sampler<> stratifiedSampler(strata.begin(), strata.end(),
SamplerOptions().withoutReplacement().stratified().sampleSize(sampleSize));
for(int k=0; k<numberOfSamples; ++k)
{
// process current sample
for(int i=0; i<sampler.sampleSize(); ++i)
{
int currentIndex = sampler[i];
processData(data[currentIndex]);
}
// create next sample
sampler.sample();
}
\endcode
*/
template<class Random = MersenneTwister >
class Sampler
{
public:
/** Internal type of the indices.
Currently, 64-bit indices are not supported because this
requires extension of the random number generator classes.
*/
typedef Int32 IndexType;
typedef ArrayVector <IndexType> IndexArrayType;
/** Type of the array view object that is returned by
sampledIndices() and oobIndices().
*/
typedef ArrayVectorView <IndexType> IndexArrayViewType;
private:
typedef std::map<IndexType, IndexArrayType> StrataIndicesType;
typedef std::map<IndexType, int> StrataSizesType;
typedef ArrayVector <bool> IsUsedArrayType;
typedef ArrayVectorView <bool> IsUsedArrayViewType;
static const int oobInvalid = -1;
int total_count_, sample_size_;
mutable int current_oob_count_;
StrataIndicesType strata_indices_;
StrataSizesType strata_sample_size_;
IndexArrayType current_sample_;
mutable IndexArrayType current_oob_sample_;
IsUsedArrayType is_used_;
Random const & random_;
SamplerOptions options_;
void initStrataCount()
{
// compute how many samples to take from each stratum
// (may be unequal if sample_size_ is not a multiple of strataCount())
int strata_sample_size = (int)std::ceil(double(sample_size_) / strataCount());
int strata_total_count = strata_sample_size * strataCount();
for(StrataIndicesType::iterator i = strata_indices_.begin();
i != strata_indices_.end(); ++i)
{
if(strata_total_count > sample_size_)
{
strata_sample_size_[i->first] = strata_sample_size - 1;
--strata_total_count;
}
else
{
strata_sample_size_[i->first] = strata_sample_size;
}
}
}
public:
/** Create a sampler for \a totalCount data objects.
In each invocation of <tt>sample()</tt> below, it will sample
indices according to the options passed. If no options are given,
<tt>totalCount</tt> indices will be drawn with replacement.
*/
Sampler(UInt32 totalCount, SamplerOptions const & opt = SamplerOptions(),
Random const & rnd = Random(RandomSeed))
: total_count_(totalCount),
sample_size_(opt.sample_size == 0
? (int)(std::ceil(total_count_ * opt.sample_proportion))
: opt.sample_size),
current_oob_count_(oobInvalid),
current_sample_(sample_size_),
current_oob_sample_(total_count_),
is_used_(total_count_),
random_(rnd),
options_(opt)
{
vigra_precondition(opt.sample_with_replacement || sample_size_ <= total_count_,
"Sampler(): Cannot draw without replacement when data size is smaller than sample count.");
vigra_precondition(!opt.stratified_sampling,
"Sampler(): Stratified sampling requested, but no strata given.");
// initialize a single stratum containing all data
strata_indices_[0].resize(total_count_);
for(int i=0; i<total_count_; ++i)
strata_indices_[0][i] = i;
initStrataCount();
//this is screwing up the random forest tests.
//sample();
}
/** Create a sampler for stratified sampling.
<tt>strataBegin</tt> and <tt>strataEnd</tt> must refer to a sequence
which specifies for each sample the stratum it belongs to. The
total number of data objects will be set to <tt>strataEnd - strataBegin</tt>.
Equally many samples (subject to rounding) will be drawn from each stratum,
unless the option object explicitly requests unstratified sampling,
in which case the strata are ignored.
*/
template <class Iterator>
Sampler(Iterator strataBegin, Iterator strataEnd, SamplerOptions const & opt = SamplerOptions(),
Random const & rnd = Random(RandomSeed))
: total_count_(strataEnd - strataBegin),
sample_size_(opt.sample_size == 0
? (int)(std::ceil(total_count_ * opt.sample_proportion))
: opt.sample_size),
current_oob_count_(oobInvalid),
current_sample_(sample_size_),
current_oob_sample_(total_count_),
is_used_(total_count_),
random_(rnd),
options_(opt)
{
vigra_precondition(opt.sample_with_replacement || sample_size_ <= total_count_,
"Sampler(): Cannot draw without replacement when data size is smaller than sample count.");
// copy the strata indices
if(opt.stratified_sampling)
{
for(int i = 0; strataBegin != strataEnd; ++i, ++strataBegin)
{
strata_indices_[*strataBegin].push_back(i);
}
}
else
{
strata_indices_[0].resize(total_count_);
for(int i=0; i<total_count_; ++i)
strata_indices_[0][i] = i;
}
vigra_precondition(sample_size_ >= (int)strata_indices_.size(),
"Sampler(): Requested sample count must be at least as large as the number of strata.");
initStrataCount();
//this is screwing up the random forest tests.
//sample();
}
/** Return the k-th index in the current sample.
*/
IndexType operator[](int k) const
{
return current_sample_[k];
}
/** Create a new sample.
*/
void sample();
/** The total number of data elements.
*/
int totalCount() const
{
return total_count_;
}
/** The number of data elements that have been sampled.
*/
int sampleSize() const
{
return sample_size_;
}
/** Same as sampleSize().
*/
int size() const
{
return sample_size_;
}
/** The number of strata to be used.
Will be 1 if no strata are given. Will be ognored when
stratifiedSampling() is false.
*/
int strataCount() const
{
return strata_indices_.size();
}
/** Whether to use stratified sampling.
(If this is false, strata will be ignored even if present.)
*/
bool stratifiedSampling() const
{
return options_.stratified_sampling;
}
/** Whether sampling should be performed with replacement.
*/
bool withReplacement() const
{
return options_.sample_with_replacement;
}
/** Return an array view containing the indices in the current sample.
*/
IndexArrayViewType sampledIndices() const
{
return current_sample_;
}
/** Return an array view containing the out-of-bag indices.
(i.e. the indices that are not in the current sample)
*/
IndexArrayViewType oobIndices() const
{
if(current_oob_count_ == oobInvalid)
{
current_oob_count_ = 0;
for(int i = 0; i<total_count_; ++i)
{
if(!is_used_[i])
{
current_oob_sample_[current_oob_count_] = i;
++current_oob_count_;
}
}
}
return current_oob_sample_.subarray(0, current_oob_count_);
}
IsUsedArrayType const & is_used() const
{
return is_used_;
}
};
template<class Random>
void Sampler<Random>::sample()
{
current_oob_count_ = oobInvalid;
is_used_.init(false);
if(options_.sample_with_replacement)
{
//Go thru all strata
int j = 0;
StrataIndicesType::iterator iter;
for(iter = strata_indices_.begin(); iter != strata_indices_.end(); ++iter)
{
// do sampling with replacement in each strata and copy data.
int stratum_size = iter->second.size();
for(int i = 0; i < (int)strata_sample_size_[iter->first]; ++i, ++j)
{
current_sample_[j] = iter->second[random_.uniformInt(stratum_size)];
is_used_[current_sample_[j]] = true;
}
}
}
else
{
//Go thru all strata
int j = 0;
StrataIndicesType::iterator iter;
for(iter = strata_indices_.begin(); iter != strata_indices_.end(); ++iter)
{
// do sampling without replacement in each strata and copy data.
int stratum_size = iter->second.size();
for(int i = 0; i < (int)strata_sample_size_[iter->first]; ++i, ++j)
{
std::swap(iter->second[i], iter->second[i+ random_.uniformInt(stratum_size - i)]);
current_sample_[j] = iter->second[i];
is_used_[current_sample_[j]] = true;
}
}
}
}
template<class Random =RandomTT800 >
class PoissonSampler
{
public:
Random randfloat;
typedef Int32 IndexType;
typedef vigra::ArrayVector <IndexType> IndexArrayType;
IndexArrayType used_indices_;
double lambda;
int minIndex;
int maxIndex;
PoissonSampler(double lambda,IndexType minIndex,IndexType maxIndex)
: lambda(lambda),
minIndex(minIndex),
maxIndex(maxIndex)
{}
void sample( )
{
used_indices_.clear();
IndexType i;
for(i=minIndex;i<maxIndex;++i)
{
//from http://en.wikipedia.org/wiki/Poisson_distribution
int k=0;
double p=1;
double L=exp(-lambda);
do
{
++k;
p*=randfloat.uniform53();
}while(p>L);
--k;
//Insert i this many time
while(k>0)
{
used_indices_.push_back(i);
--k;
}
}
}
IndexType const & operator[](int in) const
{
return used_indices_[in];
}
int numOfSamples() const
{
return used_indices_.size();
}
};
//@}
} // namespace vigra
#endif /*VIGRA_SAMPLING_HXX*/
|