This file is indexed.

/usr/include/wibble/amorph.h is in libwibble-dev 0.1.28-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/** -*- C++ -*-
    @file wibble/amorph.h
    @author Peter Rockai <me@mornfall.net>
*/

#include <iostream> // for noise

#include <wibble/mixin.h>
#include <wibble/cast.h>
#include <wibble/maybe.h>
#include <wibble/sfinae.h>
#include <wibble/test.h>

#ifndef WIBBLE_AMORPH_H
#define WIBBLE_AMORPH_H

namespace wibble {

template< typename _T >
struct ReturnType {
    typedef _T T;
};

template<>
struct ReturnType< void > {
    typedef Unit T;
};

template< typename F, typename R >
struct SanitizeReturn {
    inline typename ReturnType< R >::T call(
        typename F::argument_type a )
    {
        return f( a );
    };
};


template< typename F >
struct SanitizeReturn< F, void > {
    inline Unit call( typename F::argument_type a )
    {
        f( a );
        return Unit();
    }
};

template< int A >
struct IsZero {
    static const bool value = false;
};

template<>
struct IsZero< 0 > {
    static const bool value = true;
};

template< typename T >
struct IsPolymorphic {
    struct A : T {
        virtual ~A();
    };
    struct B : T {};
    static const bool value = IsZero< sizeof( A ) - sizeof( B ) >::value;
};

template< typename F >
struct SanitizeResultType {
    SanitizeResultType( F _f ) : f( _f ) {}
    typedef typename ReturnType< typename F::result_type >::T result_type;

    result_type operator()( typename F::argument_type a ) {
        return SanitizeReturn< F, typename F::result_type >().call( a );
    }


    F f;
};

#ifndef SWIG_I
struct Baseless {};

struct VirtualBase {
    virtual ~VirtualBase() {}
};

/**
   @brief An interface implemented by all morph classes
 */
template< typename Interface >
struct MorphInterface : public Interface {
    virtual VirtualBase *virtualBase() { return 0; }
    virtual MorphInterface *constructCopy( void *where = 0, unsigned int available = 0 ) const = 0;
    virtual void destroy( unsigned int available = 0 ) = 0;
    virtual ~MorphInterface() {}
    virtual bool leq( const MorphInterface * ) const = 0;
};

/** @brief custom allocator for morph classes */
struct MorphAllocator {
    void *operator new( size_t bytes, void *where, unsigned available ) {
        if ( bytes > available || where == 0 ) {
            where = ::operator new( bytes );
            return where;
        }
        return where;
    }
    void *operator new( size_t bytes ) {
        return ::operator new( bytes );
    }
};

template< typename W, typename Interface >
struct MorphBase : MorphInterface< Interface > {
    MorphBase( const W &w ) : m_wrapped( w ) {}

    template< typename _W >
    typename EnableIf< IsPolymorphic< _W >, VirtualBase *>::T virtualBase() {
        return dynamic_cast< VirtualBase * >( &m_wrapped );
    }

    template< typename _W >
    typename EnableIf< TNot< IsPolymorphic< _W > >, VirtualBase *>::T
    virtualBase() {
        return 0;
    }

    virtual VirtualBase *virtualBase() {
        return virtualBase< W >();
    }

    W &wrapped() {
        return m_wrapped;
    }

protected:
    W m_wrapped;
};

template< typename Self, typename W, typename Interface >
struct Morph : MorphBase< W, Interface >,
    mixin::Comparable< Morph< Self, W, Interface > >,
    MorphAllocator
{
    typedef W Wrapped;

    Morph( const Wrapped &w ) : MorphBase< W, Interface >( w ) {}

    const Self &self() const { return *static_cast< const Self * >( this ); }

    bool operator<=( const Morph &o ) const {
        return wrapped().operator<=( o.wrapped() );
    }

    // evaluation of correctness of definition should be done
    virtual bool leq( const MorphInterface< Interface > *_o ) const {
        const Morph *o = dynamic_cast< const Morph * >( _o );
        if ( !o ) {
            if ( typeid( Morph ).before( typeid( _o ) ) )
                return true;
            else
                return false;
        }
        return wrapped() <= o->wrapped();
    }

    virtual MorphInterface< Interface > *constructCopy(
        void *where, unsigned int available ) const
    {
        return new( where, available ) Self( self() );
    }

    virtual void destroy( unsigned int available ) {
        if ( sizeof( Morph ) <= available ) {
            this->~Morph();
        } else {
            delete this;
        }
    }

    const Wrapped &wrapped() const {
        return this->m_wrapped;
    }

    Wrapped &wrapped() {
        return this->m_wrapped;
    }

    virtual ~Morph() {}
};
#endif

/**
   @brief Amorph base class

   This class is an Amorph class. An Amorph can hold one of many
   Morhps of the corresponding kind. That means, Amorph is an envelope
   that can contain an instance of a Morph. The Amorph envelope can
   provide methods that all the Morphs that it can hold provide as
   well. These methods will then act polymoprhically in the Amorph
   instance, depending on what Morph is inside.

   You use the Amorph and Morph classes as values, that is, they have
   value semantics. You usually do not need (nor want) to use pointers
   to access them. Of course it may be useful sometimes, but is not
   the normal mode of operation.

   Amorph objects are equal if they hold same type of Morph and the
   Morphs themselves are also equal. Different types of Morphs are
   never equal.

   When implementing your own Amorph class, you will want it to
   contain the methods that are shared by all it's Morphs. These will
   usually look like

   methodFoo() { return this->impl()->methodFoo(); }

   If you need to dispatch on the type of the Morph inside the Amorph
   envelope, you can use

   if ( amorph.is< MyMorph >() ) {
       MyMorph morph = amorph;
   }

   or if you write adaptable unary function objects (see stl manual)
   handling the specific morph types, you can write:

   amorph.ifType( functor );

   This will call functor on the morph type if the functor's
   argument_type matches the type of contained Morph. The returned
   type is Maybe< functor::result_type >. If the type matches, the
   returned value is Just (returned value), otherwise Nothing.

   See wibble::Maybe documentation for details.

   This also lends itself to template specialisation approach, where
   you have a template that handles all Morphs but you need to
   specialize it for certain Morphs. Eventually, an example of this
   usage will appear in amorph.cpp over time.

   Often, using Amorph types will save you a template parameter you
   cannot afford. It also supports value-based programming, which
   means you need to worry about pointers a lot less.

   For a complex example of Amorph class set implementation, see
   range.h.

   Implementation details: the current Amorph template takes an
   integral Padding argument. The MorphImpl class contains an
   overloaded operator new, that allows it to be constructed
   off-heap. The Padding argument is used as a number of words to
   reserve inside the Amorph object itself. If the Morph that will be
   enveloped in the Amorph fits in this space, it will be allocated
   there, otherwise on heap. The Padding size defaults to 0 and
   therefore all Morphs are by default heap-allocated. Reserving a
   reasonable amount of padding should improve performance a fair bit
   in some applications (and is worthless in others).
*/
#ifndef WIBBLE_AMORPH_PADDING
#define WIBBLE_AMORPH_PADDING 0
#endif
template<int Padding1> class AmorphPadder
{
	int m_padding[ Padding1 ];
};
template<> class AmorphPadder<0>
{
};

template< typename Self, typename _Interface, int Padding = WIBBLE_AMORPH_PADDING >
struct Amorph {
    typedef _Interface Interface;
    // typedef MorphInterface< Interface > Morp;

    template <typename T> struct Convert {
        typedef T type;
    };

    /* Amorph( const Interface &b ) {
        setInterfacePointer( &b );
        } */

    Amorph( const MorphInterface< Interface > &b ) {
        setMorphInterfacePointer( &b );
    }

    Amorph( const Amorph &a ) {
        setMorphInterfacePointer( a.morphInterface() );
        // setInterfacePointer( a.implementation() );
    }

    Amorph() : m_impl( 0 ) {}

    const Self &self() const {
        return *static_cast< const Self * >( this );
    }

    Self &self() {
        return *static_cast<Self *>( this );
    }

    bool leq( const Self &i ) const {
        if ( morphInterface() )
            if ( i.morphInterface() )
                return morphInterface()->leq( i.morphInterface() );
            else
                return false; // it's false that non-0 <= 0
        else
            return !i.morphInterface(); // 0 <= 0 holds, but 0 <=
                                        // non-0 doesn't
    }

    bool operator<=( const Self &i ) const { return leq( i ); }

    void setInterfacePointer( const Interface *i ) {
        if ( !i ) {
            m_impl = 0;
            return;
        }

        /* assert( dynamic_cast< const MorphInterface * >( i ) );
        assert( dynamic_cast< const Interface * >(
        dynamic_cast< const MorphInterface * >( i ) ) ); */

        m_impl = dynamic_cast< const MorphInterface< Interface > * >( i )->constructCopy(
            &m_padding, sizeof( m_padding ) );

        // assert( dynamic_cast< const Interface * >( m_impl ) );
    }

    void setMorphInterfacePointer( const MorphInterface< Interface > *i ) {
        if ( !i ) {
            m_impl = 0;
            return;
        }
        m_impl = i->constructCopy( &m_padding, sizeof( m_padding ) );
    }

    Amorph &operator=( const Amorph &i ) {
        setInterfacePointer( i.implementation() );
        return *this;
    }

    ~Amorph() {
        if ( morphInterface() )
            morphInterface()->destroy( sizeof( m_padding ) );
    }

    template< typename F >
    Maybe< typename F::result_type > ifType( F func ) {
        typedef typename F::argument_type T;
        typedef Maybe< typename F::result_type > rt;
        T *ptr = impl<T>();
        if (ptr) {
            return rt::Just( func(*ptr) );
        }
        return rt::Nothing();
    }

    const Interface *implementation() const {
        // return dynamic_cast< const Interface * >( m_impl );
        return static_cast< const Interface * >( m_impl );
    }

    Interface *implementation() {
        // return dynamic_cast< Interface * >( m_impl );
        return static_cast< Interface * >( m_impl );
    }

    MorphInterface< Interface > *morphInterface() const {
        return m_impl;
        // return dynamic_cast< MorphInterface< * >( m_impl );
    }

    const Interface &wrapped() const {
        return *implementation();
    }

    Interface &wrapped() {
        return *implementation();
    }

    template< typename T >
    bool is() const {
        return impl< T >();
    }

    bool isVoid() const { return !m_impl; }

    template< typename T >
    T *impl() const {
        T *p = dynamic_cast< T * >( m_impl );
        if ( !p ) {
            MorphBase< T, Interface > *m = dynamic_cast< MorphBase< T, Interface > * >( m_impl );
            if ( m ) p = &(m->wrapped());
        }
        if ( !p ) {
            p = dynamic_cast< T * >( morphInterface()->virtualBase() );
        }
        return p;
    }

private:
    unsigned int reservedSize() { return sizeof( m_padding ) + sizeof( m_impl ); }
    AmorphPadder<Padding> m_padding;
    MorphInterface< Interface > *m_impl;
    // Interface *m_impl;
};

#ifndef SWIG_I
template< typename T, typename X >
typename X::template Convert<T>::type &downcast( const X &a )
{
    return *a.template impl< T >();
}

#endif

}

#endif