/usr/lib/ocaml/printf.ml is in ocaml-nox 3.12.1-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 | (***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy and Pierre Weis, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* $Id: printf.ml 10969 2011-03-06 16:11:50Z weis $ *)
external format_float: string -> float -> string
= "caml_format_float"
external format_int: string -> int -> string
= "caml_format_int"
external format_int32: string -> int32 -> string
= "caml_int32_format"
external format_nativeint: string -> nativeint -> string
= "caml_nativeint_format"
external format_int64: string -> int64 -> string
= "caml_int64_format"
module Sformat = struct
type index;;
external unsafe_index_of_int : int -> index = "%identity"
;;
let index_of_int i =
if i >= 0 then unsafe_index_of_int i
else failwith ("Sformat.index_of_int: negative argument " ^ string_of_int i)
;;
external int_of_index : index -> int = "%identity"
;;
let add_int_index i idx = index_of_int (i + int_of_index idx);;
let succ_index = add_int_index 1;;
(* Literal position are one-based (hence pred p instead of p). *)
let index_of_literal_position p = index_of_int (pred p);;
external length : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> int
= "%string_length"
;;
external get : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> int -> char
= "%string_safe_get"
;;
external unsafe_get : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> int -> char
= "%string_unsafe_get"
;;
external unsafe_to_string : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string
= "%identity"
;;
let sub fmt idx len =
String.sub (unsafe_to_string fmt) (int_of_index idx) len
;;
let to_string fmt = sub fmt (unsafe_index_of_int 0) (length fmt)
;;
end
;;
let bad_conversion sfmt i c =
invalid_arg
("Printf: bad conversion %" ^ String.make 1 c ^ ", at char number " ^
string_of_int i ^ " in format string ``" ^ sfmt ^ "''")
;;
let bad_conversion_format fmt i c =
bad_conversion (Sformat.to_string fmt) i c
;;
let incomplete_format fmt =
invalid_arg
("Printf: premature end of format string ``" ^
Sformat.to_string fmt ^ "''")
;;
(* Parses a string conversion to return the specified length and the padding direction. *)
let parse_string_conversion sfmt =
let rec parse neg i =
if i >= String.length sfmt then (0, neg) else
match String.unsafe_get sfmt i with
| '1'..'9' ->
(int_of_string
(String.sub sfmt i (String.length sfmt - i - 1)),
neg)
| '-' ->
parse true (succ i)
| _ ->
parse neg (succ i) in
try parse false 1 with
| Failure _ -> bad_conversion sfmt 0 's'
;;
(* Pad a (sub) string into a blank string of length [p],
on the right if [neg] is true, on the left otherwise. *)
let pad_string pad_char p neg s i len =
if p = len && i = 0 then s else
if p <= len then String.sub s i len else
let res = String.make p pad_char in
if neg
then String.blit s i res 0 len
else String.blit s i res (p - len) len;
res
;;
(* Format a string given a %s format, e.g. %40s or %-20s.
To do ?: ignore other flags (#, +, etc). *)
let format_string sfmt s =
let (p, neg) = parse_string_conversion sfmt in
pad_string ' ' p neg s 0 (String.length s)
;;
(* Extract a format string out of [fmt] between [start] and [stop] inclusive.
['*'] in the format are replaced by integers taken from the [widths] list.
[extract_format] returns a string which is the string representation of
the resulting format string. *)
let extract_format fmt start stop widths =
let skip_positional_spec start =
match Sformat.unsafe_get fmt start with
| '0'..'9' ->
let rec skip_int_literal i =
match Sformat.unsafe_get fmt i with
| '0'..'9' -> skip_int_literal (succ i)
| '$' -> succ i
| _ -> start in
skip_int_literal (succ start)
| _ -> start in
let start = skip_positional_spec (succ start) in
let b = Buffer.create (stop - start + 10) in
Buffer.add_char b '%';
let rec fill_format i widths =
if i <= stop then
match (Sformat.unsafe_get fmt i, widths) with
| ('*', h :: t) ->
Buffer.add_string b (string_of_int h);
let i = skip_positional_spec (succ i) in
fill_format i t
| ('*', []) ->
assert false (* Should not happen since this is ill-typed. *)
| (c, _) ->
Buffer.add_char b c;
fill_format (succ i) widths in
fill_format start (List.rev widths);
Buffer.contents b
;;
let extract_format_int conv fmt start stop widths =
let sfmt = extract_format fmt start stop widths in
match conv with
| 'n' | 'N' ->
sfmt.[String.length sfmt - 1] <- 'u';
sfmt
| _ -> sfmt
;;
let extract_format_float conv fmt start stop widths =
let sfmt = extract_format fmt start stop widths in
match conv with
| 'F' ->
sfmt.[String.length sfmt - 1] <- 'g';
sfmt
| _ -> sfmt
;;
(* Returns the position of the next character following the meta format
string, starting from position [i], inside a given format [fmt].
According to the character [conv], the meta format string is
enclosed by the delimiters %{ and %} (when [conv = '{']) or %( and
%) (when [conv = '(']). Hence, [sub_format] returns the index of
the character following the [')'] or ['}'] that ends the meta format,
according to the character [conv]. *)
let sub_format incomplete_format bad_conversion_format conv fmt i =
let len = Sformat.length fmt in
let rec sub_fmt c i =
let close = if c = '(' then ')' else (* '{' *) '}' in
let rec sub j =
if j >= len then incomplete_format fmt else
match Sformat.get fmt j with
| '%' -> sub_sub (succ j)
| _ -> sub (succ j)
and sub_sub j =
if j >= len then incomplete_format fmt else
match Sformat.get fmt j with
| '(' | '{' as c ->
let j = sub_fmt c (succ j) in
sub (succ j)
| '}' | ')' as c ->
if c = close then succ j else bad_conversion_format fmt i c
| _ -> sub (succ j) in
sub i in
sub_fmt conv i
;;
let sub_format_for_printf conv =
sub_format incomplete_format bad_conversion_format conv
;;
let iter_on_format_args fmt add_conv add_char =
let lim = Sformat.length fmt - 1 in
let rec scan_flags skip i =
if i > lim then incomplete_format fmt else
match Sformat.unsafe_get fmt i with
| '*' -> scan_flags skip (add_conv skip i 'i')
(* | '$' -> scan_flags skip (succ i) *** PR#4321 *)
| '#' | '-' | ' ' | '+' -> scan_flags skip (succ i)
| '_' -> scan_flags true (succ i)
| '0'..'9'
| '.' -> scan_flags skip (succ i)
| _ -> scan_conv skip i
and scan_conv skip i =
if i > lim then incomplete_format fmt else
match Sformat.unsafe_get fmt i with
| '%' | '!' | ',' -> succ i
| 's' | 'S' | '[' -> add_conv skip i 's'
| 'c' | 'C' -> add_conv skip i 'c'
| 'd' | 'i' |'o' | 'u' | 'x' | 'X' | 'N' -> add_conv skip i 'i'
| 'f' | 'e' | 'E' | 'g' | 'G' | 'F' -> add_conv skip i 'f'
| 'B' | 'b' -> add_conv skip i 'B'
| 'a' | 'r' | 't' as conv -> add_conv skip i conv
| 'l' | 'n' | 'L' as conv ->
let j = succ i in
if j > lim then add_conv skip i 'i' else begin
match Sformat.get fmt j with
| 'd' | 'i' | 'o' | 'u' | 'x' | 'X' ->
add_char (add_conv skip i conv) 'i'
| c -> add_conv skip i 'i' end
| '{' as conv ->
(* Just get a regular argument, skipping the specification. *)
let i = add_conv skip i conv in
(* To go on, find the index of the next char after the meta format. *)
let j = sub_format_for_printf conv fmt i in
(* Add the meta specification to the summary anyway. *)
let rec loop i =
if i < j - 2 then loop (add_char i (Sformat.get fmt i)) in
loop i;
(* Go on, starting at the closing brace to properly close the meta
specification in the summary. *)
scan_conv skip (j - 1)
| '(' as conv ->
(* Use the static format argument specification instead of
the runtime format argument value: they must have the same type
anyway. *)
scan_fmt (add_conv skip i conv)
| '}' | ')' as conv -> add_conv skip i conv
| conv -> bad_conversion_format fmt i conv
and scan_fmt i =
if i < lim then
if Sformat.get fmt i = '%'
then scan_fmt (scan_flags false (succ i))
else scan_fmt (succ i)
else i in
ignore (scan_fmt 0)
;;
(* Returns a string that summarizes the typing information that a given
format string contains.
For instance, [summarize_format_type "A number %d\n"] is "%i".
It also checks the well-formedness of the format string. *)
let summarize_format_type fmt =
let len = Sformat.length fmt in
let b = Buffer.create len in
let add_char i c = Buffer.add_char b c; succ i in
let add_conv skip i c =
if skip then Buffer.add_string b "%_" else Buffer.add_char b '%';
add_char i c in
iter_on_format_args fmt add_conv add_char;
Buffer.contents b
;;
module Ac = struct
type ac = {
mutable ac_rglr : int;
mutable ac_skip : int;
mutable ac_rdrs : int;
}
end
;;
open Ac;;
(* Computes the number of arguments of a format (including the flag
arguments if any). *)
let ac_of_format fmt =
let ac = { ac_rglr = 0; ac_skip = 0; ac_rdrs = 0; } in
let incr_ac skip c =
let inc = if c = 'a' then 2 else 1 in
if c = 'r' then ac.ac_rdrs <- ac.ac_rdrs + 1;
if skip
then ac.ac_skip <- ac.ac_skip + inc
else ac.ac_rglr <- ac.ac_rglr + inc in
let add_conv skip i c =
(* Just finishing a meta format: no additional argument to record. *)
if c <> ')' && c <> '}' then incr_ac skip c;
succ i
and add_char i c = succ i in
iter_on_format_args fmt add_conv add_char;
ac
;;
let count_arguments_of_format fmt =
let ac = ac_of_format fmt in
(* For printing, only the regular arguments have to be counted. *)
ac.ac_rglr
;;
let list_iter_i f l =
let rec loop i = function
| [] -> ()
| [x] -> f i x (* Tail calling [f] *)
| x :: xs -> f i x; loop (succ i) xs in
loop 0 l
;;
(* ``Abstracting'' version of kprintf: returns a (curried) function that
will print when totally applied.
Note: in the following, we are careful not to be badly caught
by the compiler optimizations for the representation of arrays. *)
let kapr kpr fmt =
match count_arguments_of_format fmt with
| 0 -> kpr fmt [||]
| 1 -> Obj.magic (fun x ->
let a = Array.make 1 (Obj.repr 0) in
a.(0) <- x;
kpr fmt a)
| 2 -> Obj.magic (fun x y ->
let a = Array.make 2 (Obj.repr 0) in
a.(0) <- x; a.(1) <- y;
kpr fmt a)
| 3 -> Obj.magic (fun x y z ->
let a = Array.make 3 (Obj.repr 0) in
a.(0) <- x; a.(1) <- y; a.(2) <- z;
kpr fmt a)
| 4 -> Obj.magic (fun x y z t ->
let a = Array.make 4 (Obj.repr 0) in
a.(0) <- x; a.(1) <- y; a.(2) <- z;
a.(3) <- t;
kpr fmt a)
| 5 -> Obj.magic (fun x y z t u ->
let a = Array.make 5 (Obj.repr 0) in
a.(0) <- x; a.(1) <- y; a.(2) <- z;
a.(3) <- t; a.(4) <- u;
kpr fmt a)
| 6 -> Obj.magic (fun x y z t u v ->
let a = Array.make 6 (Obj.repr 0) in
a.(0) <- x; a.(1) <- y; a.(2) <- z;
a.(3) <- t; a.(4) <- u; a.(5) <- v;
kpr fmt a)
| nargs ->
let rec loop i args =
if i >= nargs then
let a = Array.make nargs (Obj.repr 0) in
list_iter_i (fun i arg -> a.(nargs - i - 1) <- arg) args;
kpr fmt a
else Obj.magic (fun x -> loop (succ i) (x :: args)) in
loop 0 []
;;
type positional_specification =
| Spec_none | Spec_index of Sformat.index
;;
(* To scan an optional positional parameter specification,
i.e. an integer followed by a [$].
Calling [got_spec] with appropriate arguments, we ``return'' a positional
specification and an index to go on scanning the [fmt] format at hand.
Note that this is optimized for the regular case, i.e. no positional
parameter, since in this case we juste ``return'' the constant
[Spec_none]; in case we have a positional parameter, we ``return'' a
[Spec_index] [positional_specification] which is a bit more costly.
Note also that we do not support [*$] specifications, since this would
lead to type checking problems: a [*$] positional specification means
``take the next argument to [printf] (which must be an integer value)'',
name this integer value $n$; [*$] now designates parameter $n$.
Unfortunately, the type of a parameter specified via a [*$] positional
specification should be the type of the corresponding argument to
[printf], hence this should be the type of the $n$-th argument to [printf]
with $n$ being the {\em value} of the integer argument defining [*]; we
clearly cannot statically guess the value of this parameter in the general
case. Put it another way: this means type dependency, which is completely
out of scope of the Caml type algebra. *)
let scan_positional_spec fmt got_spec n i =
match Sformat.unsafe_get fmt i with
| '0'..'9' as d ->
let rec get_int_literal accu j =
match Sformat.unsafe_get fmt j with
| '0'..'9' as d ->
get_int_literal (10 * accu + (int_of_char d - 48)) (succ j)
| '$' ->
if accu = 0 then
failwith "printf: bad positional specification (0)." else
got_spec (Spec_index (Sformat.index_of_literal_position accu)) (succ j)
(* Not a positional specification: tell so the caller, and go back to
scanning the format from the original [i] position we were called at
first. *)
| _ -> got_spec Spec_none i in
get_int_literal (int_of_char d - 48) (succ i)
(* No positional specification: tell so the caller, and go back to scanning
the format from the original [i] position. *)
| _ -> got_spec Spec_none i
;;
(* Get the index of the next argument to printf, according to the given
positional specification. *)
let next_index spec n =
match spec with
| Spec_none -> Sformat.succ_index n
| Spec_index _ -> n
;;
(* Get the index of the actual argument to printf, according to its
optional positional specification. *)
let get_index spec n =
match spec with
| Spec_none -> n
| Spec_index p -> p
;;
(* Format a float argument as a valid Caml lexeme. *)
let format_float_lexeme =
(* To be revised: this procedure should be a unique loop that performs the
validity check and the string lexeme modification at the same time.
Otherwise, it is too difficult to handle the strange padding facilities
given by printf. Let alone handling the correct widths indication,
knowing that we have sometime to add a '.' at the end of the result!
*)
let make_valid_float_lexeme s =
(* Check if s is already a valid lexeme:
in this case do nothing,
otherwise turn s into a valid Caml lexeme. *)
let l = String.length s in
let rec valid_float_loop i =
if i >= l then s ^ "." else
match s.[i] with
(* Sure, this is already a valid float lexeme. *)
| '.' | 'e' | 'E' -> s
| _ -> valid_float_loop (i + 1) in
valid_float_loop 0 in
(fun sfmt x ->
let s = format_float sfmt x in
match classify_float x with
| FP_normal | FP_subnormal | FP_zero -> make_valid_float_lexeme s
| FP_nan | FP_infinite -> s)
;;
(* Decode a format string and act on it.
[fmt] is the [printf] format string, and [pos] points to a [%] character in
the format string.
After consuming the appropriate number of arguments and formatting
them, one of the following five continuations described below is called:
- [cont_s] for outputting a string (arguments: arg num, string, next pos)
- [cont_a] for performing a %a action (arguments: arg num, fn, arg, next pos)
- [cont_t] for performing a %t action (arguments: arg num, fn, next pos)
- [cont_f] for performing a flush action (arguments: arg num, next pos)
- [cont_m] for performing a %( action (arguments: arg num, sfmt, next pos)
"arg num" is the index in array [args] of the next argument to [printf].
"next pos" is the position in [fmt] of the first character following
the %conversion specification in [fmt]. *)
(* Note: here, rather than test explicitly against [Sformat.length fmt]
to detect the end of the format, we use [Sformat.unsafe_get] and
rely on the fact that we'll get a "null" character if we access
one past the end of the string. These "null" characters are then
caught by the [_ -> bad_conversion] clauses below.
Don't do this at home, kids. *)
let scan_format fmt args n pos cont_s cont_a cont_t cont_f cont_m =
let get_arg spec n =
Obj.magic (args.(Sformat.int_of_index (get_index spec n))) in
let rec scan_positional n widths i =
let got_spec spec i = scan_flags spec n widths i in
scan_positional_spec fmt got_spec n i
and scan_flags spec n widths i =
match Sformat.unsafe_get fmt i with
| '*' ->
let got_spec wspec i =
let (width : int) = get_arg wspec n in
scan_flags spec (next_index wspec n) (width :: widths) i in
scan_positional_spec fmt got_spec n (succ i)
| '0'..'9'
| '.' | '#' | '-' | ' ' | '+' -> scan_flags spec n widths (succ i)
| _ -> scan_conv spec n widths i
and scan_conv spec n widths i =
match Sformat.unsafe_get fmt i with
| '%' ->
cont_s n "%" (succ i)
| 's' | 'S' as conv ->
let (x : string) = get_arg spec n in
let x = if conv = 's' then x else "\"" ^ String.escaped x ^ "\"" in
let s =
(* Optimize for common case %s *)
if i = succ pos then x else
format_string (extract_format fmt pos i widths) x in
cont_s (next_index spec n) s (succ i)
| 'c' | 'C' as conv ->
let (x : char) = get_arg spec n in
let s =
if conv = 'c' then String.make 1 x else "'" ^ Char.escaped x ^ "'" in
cont_s (next_index spec n) s (succ i)
| 'd' | 'i' | 'o' | 'u' | 'x' | 'X' | 'N' as conv ->
let (x : int) = get_arg spec n in
let s =
format_int (extract_format_int conv fmt pos i widths) x in
cont_s (next_index spec n) s (succ i)
| 'f' | 'e' | 'E' | 'g' | 'G' ->
let (x : float) = get_arg spec n in
let s = format_float (extract_format fmt pos i widths) x in
cont_s (next_index spec n) s (succ i)
| 'F' as conv ->
let (x : float) = get_arg spec n in
let s =
if widths = [] then Pervasives.string_of_float x else
format_float_lexeme (extract_format_float conv fmt pos i widths) x in
cont_s (next_index spec n) s (succ i)
| 'B' | 'b' ->
let (x : bool) = get_arg spec n in
cont_s (next_index spec n) (string_of_bool x) (succ i)
| 'a' ->
let printer = get_arg spec n in
(* If the printer spec is Spec_none, go on as usual.
If the printer spec is Spec_index p,
printer's argument spec is Spec_index (succ_index p). *)
let n = Sformat.succ_index (get_index spec n) in
let arg = get_arg Spec_none n in
cont_a (next_index spec n) printer arg (succ i)
| 't' ->
let printer = get_arg spec n in
cont_t (next_index spec n) printer (succ i)
| 'l' | 'n' | 'L' as conv ->
begin match Sformat.unsafe_get fmt (succ i) with
| 'd' | 'i' | 'o' | 'u' | 'x' | 'X' ->
let i = succ i in
let s =
match conv with
| 'l' ->
let (x : int32) = get_arg spec n in
format_int32 (extract_format fmt pos i widths) x
| 'n' ->
let (x : nativeint) = get_arg spec n in
format_nativeint (extract_format fmt pos i widths) x
| _ ->
let (x : int64) = get_arg spec n in
format_int64 (extract_format fmt pos i widths) x in
cont_s (next_index spec n) s (succ i)
| _ ->
let (x : int) = get_arg spec n in
let s = format_int (extract_format_int 'n' fmt pos i widths) x in
cont_s (next_index spec n) s (succ i)
end
| ',' -> cont_s n "" (succ i)
| '!' -> cont_f n (succ i)
| '{' | '(' as conv (* ')' '}' *) ->
let (xf : ('a, 'b, 'c, 'd, 'e, 'f) format6) = get_arg spec n in
let i = succ i in
let j = sub_format_for_printf conv fmt i in
if conv = '{' (* '}' *) then
(* Just print the format argument as a specification. *)
cont_s
(next_index spec n)
(summarize_format_type xf)
j else
(* Use the format argument instead of the format specification. *)
cont_m (next_index spec n) xf j
| (* '(' *) ')' ->
cont_s n "" (succ i)
| conv ->
bad_conversion_format fmt i conv in
scan_positional n [] (succ pos)
;;
let mkprintf to_s get_out outc outs flush k fmt =
(* [out] is global to this definition of [pr], and must be shared by all its
recursive calls (if any). *)
let out = get_out fmt in
let rec pr k n fmt v =
let len = Sformat.length fmt in
let rec doprn n i =
if i >= len then Obj.magic (k out) else
match Sformat.unsafe_get fmt i with
| '%' -> scan_format fmt v n i cont_s cont_a cont_t cont_f cont_m
| c -> outc out c; doprn n (succ i)
and cont_s n s i =
outs out s; doprn n i
and cont_a n printer arg i =
if to_s then
outs out ((Obj.magic printer : unit -> _ -> string) () arg)
else
printer out arg;
doprn n i
and cont_t n printer i =
if to_s then
outs out ((Obj.magic printer : unit -> string) ())
else
printer out;
doprn n i
and cont_f n i =
flush out; doprn n i
and cont_m n xf i =
let m = Sformat.add_int_index (count_arguments_of_format xf) n in
pr (Obj.magic (fun _ -> doprn m i)) n xf v in
doprn n 0 in
let kpr = pr k (Sformat.index_of_int 0) in
kapr kpr fmt
;;
let kfprintf k oc =
mkprintf false (fun _ -> oc) output_char output_string flush k
;;
let ifprintf oc = kapr (fun _ -> Obj.magic ignore);;
let fprintf oc = kfprintf ignore oc;;
let printf fmt = fprintf stdout fmt;;
let eprintf fmt = fprintf stderr fmt;;
let kbprintf k b =
mkprintf false (fun _ -> b) Buffer.add_char Buffer.add_string ignore k
;;
let bprintf b = kbprintf ignore b;;
let get_buff fmt =
let len = 2 * Sformat.length fmt in
Buffer.create len
;;
let get_contents b =
let s = Buffer.contents b in
Buffer.clear b;
s
;;
let get_cont k b = k (get_contents b);;
let ksprintf k =
mkprintf true get_buff Buffer.add_char Buffer.add_string ignore (get_cont k)
;;
let sprintf fmt = ksprintf (fun s -> s) fmt;;
(* Obsolete and deprecated. *)
let kprintf = ksprintf;;
(* For Caml system internal use only: needed to implement modules [Format]
and [Scanf]. *)
module CamlinternalPr = struct
module Sformat = Sformat;;
module Tformat = struct
type ac =
Ac.ac = {
mutable ac_rglr : int;
mutable ac_skip : int;
mutable ac_rdrs : int;
}
;;
let ac_of_format = ac_of_format;;
let sub_format = sub_format;;
let summarize_format_type = summarize_format_type;;
let scan_format = scan_format;;
let kapr = kapr;;
end
;;
end
;;
|