/usr/lib/ocaml/set.ml is in ocaml-nox 3.12.1-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | (***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* $Id: set.ml 6694 2004-11-25 00:06:06Z doligez $ *)
(* Sets over ordered types *)
module type OrderedType =
sig
type t
val compare: t -> t -> int
end
module type S =
sig
type elt
type t
val empty: t
val is_empty: t -> bool
val mem: elt -> t -> bool
val add: elt -> t -> t
val singleton: elt -> t
val remove: elt -> t -> t
val union: t -> t -> t
val inter: t -> t -> t
val diff: t -> t -> t
val compare: t -> t -> int
val equal: t -> t -> bool
val subset: t -> t -> bool
val iter: (elt -> unit) -> t -> unit
val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all: (elt -> bool) -> t -> bool
val exists: (elt -> bool) -> t -> bool
val filter: (elt -> bool) -> t -> t
val partition: (elt -> bool) -> t -> t * t
val cardinal: t -> int
val elements: t -> elt list
val min_elt: t -> elt
val max_elt: t -> elt
val choose: t -> elt
val split: elt -> t -> t * bool * t
end
module Make(Ord: OrderedType) =
struct
type elt = Ord.t
type t = Empty | Node of t * elt * t * int
(* Sets are represented by balanced binary trees (the heights of the
children differ by at most 2 *)
let height = function
Empty -> 0
| Node(_, _, _, h) -> h
(* Creates a new node with left son l, value v and right son r.
We must have all elements of l < v < all elements of r.
l and r must be balanced and | height l - height r | <= 2.
Inline expansion of height for better speed. *)
let create l v r =
let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1))
(* Same as create, but performs one step of rebalancing if necessary.
Assumes l and r balanced and | height l - height r | <= 3.
Inline expansion of create for better speed in the most frequent case
where no rebalancing is required. *)
let bal l v r =
let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Set.bal"
| Node(ll, lv, lr, _) ->
if height ll >= height lr then
create ll lv (create lr v r)
else begin
match lr with
Empty -> invalid_arg "Set.bal"
| Node(lrl, lrv, lrr, _)->
create (create ll lv lrl) lrv (create lrr v r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Set.bal"
| Node(rl, rv, rr, _) ->
if height rr >= height rl then
create (create l v rl) rv rr
else begin
match rl with
Empty -> invalid_arg "Set.bal"
| Node(rll, rlv, rlr, _) ->
create (create l v rll) rlv (create rlr rv rr)
end
end else
Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1))
(* Insertion of one element *)
let rec add x = function
Empty -> Node(Empty, x, Empty, 1)
| Node(l, v, r, _) as t ->
let c = Ord.compare x v in
if c = 0 then t else
if c < 0 then bal (add x l) v r else bal l v (add x r)
(* Same as create and bal, but no assumptions are made on the
relative heights of l and r. *)
let rec join l v r =
match (l, r) with
(Empty, _) -> add v r
| (_, Empty) -> add v l
| (Node(ll, lv, lr, lh), Node(rl, rv, rr, rh)) ->
if lh > rh + 2 then bal ll lv (join lr v r) else
if rh > lh + 2 then bal (join l v rl) rv rr else
create l v r
(* Smallest and greatest element of a set *)
let rec min_elt = function
Empty -> raise Not_found
| Node(Empty, v, r, _) -> v
| Node(l, v, r, _) -> min_elt l
let rec max_elt = function
Empty -> raise Not_found
| Node(l, v, Empty, _) -> v
| Node(l, v, r, _) -> max_elt r
(* Remove the smallest element of the given set *)
let rec remove_min_elt = function
Empty -> invalid_arg "Set.remove_min_elt"
| Node(Empty, v, r, _) -> r
| Node(l, v, r, _) -> bal (remove_min_elt l) v r
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
Assume | height l - height r | <= 2. *)
let merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2)
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
No assumption on the heights of l and r. *)
let concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) -> join t1 (min_elt t2) (remove_min_elt t2)
(* Splitting. split x s returns a triple (l, present, r) where
- l is the set of elements of s that are < x
- r is the set of elements of s that are > x
- present is false if s contains no element equal to x,
or true if s contains an element equal to x. *)
let rec split x = function
Empty ->
(Empty, false, Empty)
| Node(l, v, r, _) ->
let c = Ord.compare x v in
if c = 0 then (l, true, r)
else if c < 0 then
let (ll, pres, rl) = split x l in (ll, pres, join rl v r)
else
let (lr, pres, rr) = split x r in (join l v lr, pres, rr)
(* Implementation of the set operations *)
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let rec mem x = function
Empty -> false
| Node(l, v, r, _) ->
let c = Ord.compare x v in
c = 0 || mem x (if c < 0 then l else r)
let singleton x = Node(Empty, x, Empty, 1)
let rec remove x = function
Empty -> Empty
| Node(l, v, r, _) ->
let c = Ord.compare x v in
if c = 0 then merge l r else
if c < 0 then bal (remove x l) v r else bal l v (remove x r)
let rec union s1 s2 =
match (s1, s2) with
(Empty, t2) -> t2
| (t1, Empty) -> t1
| (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
if h1 >= h2 then
if h2 = 1 then add v2 s1 else begin
let (l2, _, r2) = split v1 s2 in
join (union l1 l2) v1 (union r1 r2)
end
else
if h1 = 1 then add v1 s2 else begin
let (l1, _, r1) = split v2 s1 in
join (union l1 l2) v2 (union r1 r2)
end
let rec inter s1 s2 =
match (s1, s2) with
(Empty, t2) -> Empty
| (t1, Empty) -> Empty
| (Node(l1, v1, r1, _), t2) ->
match split v1 t2 with
(l2, false, r2) ->
concat (inter l1 l2) (inter r1 r2)
| (l2, true, r2) ->
join (inter l1 l2) v1 (inter r1 r2)
let rec diff s1 s2 =
match (s1, s2) with
(Empty, t2) -> Empty
| (t1, Empty) -> t1
| (Node(l1, v1, r1, _), t2) ->
match split v1 t2 with
(l2, false, r2) ->
join (diff l1 l2) v1 (diff r1 r2)
| (l2, true, r2) ->
concat (diff l1 l2) (diff r1 r2)
type enumeration = End | More of elt * t * enumeration
let rec cons_enum s e =
match s with
Empty -> e
| Node(l, v, r, _) -> cons_enum l (More(v, r, e))
let rec compare_aux e1 e2 =
match (e1, e2) with
(End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More(v1, r1, e1), More(v2, r2, e2)) ->
let c = Ord.compare v1 v2 in
if c <> 0
then c
else compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
let compare s1 s2 =
compare_aux (cons_enum s1 End) (cons_enum s2 End)
let equal s1 s2 =
compare s1 s2 = 0
let rec subset s1 s2 =
match (s1, s2) with
Empty, _ ->
true
| _, Empty ->
false
| Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) ->
let c = Ord.compare v1 v2 in
if c = 0 then
subset l1 l2 && subset r1 r2
else if c < 0 then
subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2
else
subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2
let rec iter f = function
Empty -> ()
| Node(l, v, r, _) -> iter f l; f v; iter f r
let rec fold f s accu =
match s with
Empty -> accu
| Node(l, v, r, _) -> fold f r (f v (fold f l accu))
let rec for_all p = function
Empty -> true
| Node(l, v, r, _) -> p v && for_all p l && for_all p r
let rec exists p = function
Empty -> false
| Node(l, v, r, _) -> p v || exists p l || exists p r
let filter p s =
let rec filt accu = function
| Empty -> accu
| Node(l, v, r, _) ->
filt (filt (if p v then add v accu else accu) l) r in
filt Empty s
let partition p s =
let rec part (t, f as accu) = function
| Empty -> accu
| Node(l, v, r, _) ->
part (part (if p v then (add v t, f) else (t, add v f)) l) r in
part (Empty, Empty) s
let rec cardinal = function
Empty -> 0
| Node(l, v, r, _) -> cardinal l + 1 + cardinal r
let rec elements_aux accu = function
Empty -> accu
| Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l
let elements s =
elements_aux [] s
let choose = min_elt
end
|