/usr/share/pyshared/bzrlib/fifo_cache.py is in python-bzrlib 2.5.0-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 | # Copyright (C) 2008 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
"""A simple first-in-first-out (FIFO) cache."""
from __future__ import absolute_import
from collections import deque
class FIFOCache(dict):
"""A class which manages a cache of entries, removing old ones."""
def __init__(self, max_cache=100, after_cleanup_count=None):
dict.__init__(self)
self._max_cache = max_cache
if after_cleanup_count is None:
self._after_cleanup_count = self._max_cache * 8 / 10
else:
self._after_cleanup_count = min(after_cleanup_count,
self._max_cache)
self._cleanup = {} # map to cleanup functions when items are removed
self._queue = deque() # Track when things are accessed
def __setitem__(self, key, value):
"""Add a value to the cache, there will be no cleanup function."""
self.add(key, value, cleanup=None)
def __delitem__(self, key):
# Remove the key from an arbitrary location in the queue
remove = getattr(self._queue, 'remove', None)
# Python2.5's has deque.remove, but Python2.4 does not
if remove is not None:
remove(key)
else:
# TODO: It would probably be faster to pop()/popleft() until we get to the
# key, and then insert those back into the queue. We know
# the key should only be present in one position, and we
# wouldn't need to rebuild the whole queue.
self._queue = deque([k for k in self._queue if k != key])
self._remove(key)
def add(self, key, value, cleanup=None):
"""Add a new value to the cache.
Also, if the entry is ever removed from the queue, call cleanup.
Passing it the key and value being removed.
:param key: The key to store it under
:param value: The object to store
:param cleanup: None or a function taking (key, value) to indicate
'value' should be cleaned up
"""
if key in self:
# Remove the earlier reference to this key, adding it again bumps
# it to the end of the queue
del self[key]
self._queue.append(key)
dict.__setitem__(self, key, value)
if cleanup is not None:
self._cleanup[key] = cleanup
if len(self) > self._max_cache:
self.cleanup()
def cache_size(self):
"""Get the number of entries we will cache."""
return self._max_cache
def cleanup(self):
"""Clear the cache until it shrinks to the requested size.
This does not completely wipe the cache, just makes sure it is under
the after_cleanup_count.
"""
# Make sure the cache is shrunk to the correct size
while len(self) > self._after_cleanup_count:
self._remove_oldest()
if len(self._queue) != len(self):
raise AssertionError('The length of the queue should always equal'
' the length of the dict. %s != %s'
% (len(self._queue), len(self)))
def clear(self):
"""Clear out all of the cache."""
# Clean up in FIFO order
while self:
self._remove_oldest()
def _remove(self, key):
"""Remove an entry, making sure to call any cleanup function."""
cleanup = self._cleanup.pop(key, None)
# We override self.pop() because it doesn't play well with cleanup
# functions.
val = dict.pop(self, key)
if cleanup is not None:
cleanup(key, val)
return val
def _remove_oldest(self):
"""Remove the oldest entry."""
key = self._queue.popleft()
self._remove(key)
def resize(self, max_cache, after_cleanup_count=None):
"""Increase/decrease the number of cached entries.
:param max_cache: The maximum number of entries to cache.
:param after_cleanup_count: After cleanup, we should have at most this
many entries. This defaults to 80% of max_cache.
"""
self._max_cache = max_cache
if after_cleanup_count is None:
self._after_cleanup_count = max_cache * 8 / 10
else:
self._after_cleanup_count = min(max_cache, after_cleanup_count)
if len(self) > self._max_cache:
self.cleanup()
# raise NotImplementedError on dict functions that would mutate the cache
# which have not been properly implemented yet.
def copy(self):
raise NotImplementedError(self.copy)
def pop(self, key, default=None):
# If there is a cleanup() function, than it is unclear what pop()
# should do. Specifically, we would have to call the cleanup on the
# value before we return it, which should cause whatever resources were
# allocated to be removed, which makes the return value fairly useless.
# So instead, we just don't implement it.
raise NotImplementedError(self.pop)
def popitem(self):
# See pop()
raise NotImplementedError(self.popitem)
def setdefault(self, key, defaultval=None):
"""similar to dict.setdefault"""
if key in self:
return self[key]
self[key] = defaultval
return defaultval
def update(self, *args, **kwargs):
"""Similar to dict.update()"""
if len(args) == 1:
arg = args[0]
if isinstance(arg, dict):
for key, val in arg.iteritems():
self.add(key, val)
else:
for key, val in args[0]:
self.add(key, val)
elif len(args) > 1:
raise TypeError('update expected at most 1 argument, got %d'
% len(args))
if kwargs:
for key, val in kwargs.iteritems():
self.add(key, val)
class FIFOSizeCache(FIFOCache):
"""An FIFOCache that removes things based on the size of the values.
This differs in that it doesn't care how many actual items there are,
it restricts the cache to be cleaned based on the size of the data.
"""
def __init__(self, max_size=1024*1024, after_cleanup_size=None,
compute_size=None):
"""Create a new FIFOSizeCache.
:param max_size: The max number of bytes to store before we start
clearing out entries.
:param after_cleanup_size: After cleaning up, shrink everything to this
size (defaults to 80% of max_size).
:param compute_size: A function to compute the size of a value. If
not supplied we default to 'len'.
"""
# Arbitrary, we won't really be using the value anyway.
FIFOCache.__init__(self, max_cache=max_size)
self._max_size = max_size
if after_cleanup_size is None:
self._after_cleanup_size = self._max_size * 8 / 10
else:
self._after_cleanup_size = min(after_cleanup_size, self._max_size)
self._value_size = 0
self._compute_size = compute_size
if compute_size is None:
self._compute_size = len
def add(self, key, value, cleanup=None):
"""Add a new value to the cache.
Also, if the entry is ever removed from the queue, call cleanup.
Passing it the key and value being removed.
:param key: The key to store it under
:param value: The object to store, this value by itself is >=
after_cleanup_size, then we will not store it at all.
:param cleanup: None or a function taking (key, value) to indicate
'value' sohuld be cleaned up.
"""
# Even if the new value won't be stored, we need to remove the old
# value
if key in self:
# Remove the earlier reference to this key, adding it again bumps
# it to the end of the queue
del self[key]
value_len = self._compute_size(value)
if value_len >= self._after_cleanup_size:
return
self._queue.append(key)
dict.__setitem__(self, key, value)
if cleanup is not None:
self._cleanup[key] = cleanup
self._value_size += value_len
if self._value_size > self._max_size:
# Time to cleanup
self.cleanup()
def cache_size(self):
"""Get the number of bytes we will cache."""
return self._max_size
def cleanup(self):
"""Clear the cache until it shrinks to the requested size.
This does not completely wipe the cache, just makes sure it is under
the after_cleanup_size.
"""
# Make sure the cache is shrunk to the correct size
while self._value_size > self._after_cleanup_size:
self._remove_oldest()
def _remove(self, key):
"""Remove an entry, making sure to maintain the invariants."""
val = FIFOCache._remove(self, key)
self._value_size -= self._compute_size(val)
return val
def resize(self, max_size, after_cleanup_size=None):
"""Increase/decrease the amount of cached data.
:param max_size: The maximum number of bytes to cache.
:param after_cleanup_size: After cleanup, we should have at most this
many bytes cached. This defaults to 80% of max_size.
"""
FIFOCache.resize(self, max_size)
self._max_size = max_size
if after_cleanup_size is None:
self._after_cleanup_size = max_size * 8 / 10
else:
self._after_cleanup_size = min(max_size, after_cleanup_size)
if self._value_size > self._max_size:
self.cleanup()
|