This file is indexed.

/usr/share/pyshared/bzrlib/fifo_cache.py is in python-bzrlib 2.5.0-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright (C) 2008 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

"""A simple first-in-first-out (FIFO) cache."""

from __future__ import absolute_import

from collections import deque


class FIFOCache(dict):
    """A class which manages a cache of entries, removing old ones."""

    def __init__(self, max_cache=100, after_cleanup_count=None):
        dict.__init__(self)
        self._max_cache = max_cache
        if after_cleanup_count is None:
            self._after_cleanup_count = self._max_cache * 8 / 10
        else:
            self._after_cleanup_count = min(after_cleanup_count,
                                            self._max_cache)
        self._cleanup = {} # map to cleanup functions when items are removed
        self._queue = deque() # Track when things are accessed

    def __setitem__(self, key, value):
        """Add a value to the cache, there will be no cleanup function."""
        self.add(key, value, cleanup=None)

    def __delitem__(self, key):
        # Remove the key from an arbitrary location in the queue
        remove = getattr(self._queue, 'remove', None)
        # Python2.5's has deque.remove, but Python2.4 does not
        if remove is not None:
            remove(key)
        else:
            # TODO: It would probably be faster to pop()/popleft() until we get to the
            #       key, and then insert those back into the queue. We know
            #       the key should only be present in one position, and we
            #       wouldn't need to rebuild the whole queue.
            self._queue = deque([k for k in self._queue if k != key])
        self._remove(key)

    def add(self, key, value, cleanup=None):
        """Add a new value to the cache.

        Also, if the entry is ever removed from the queue, call cleanup.
        Passing it the key and value being removed.

        :param key: The key to store it under
        :param value: The object to store
        :param cleanup: None or a function taking (key, value) to indicate
                        'value' should be cleaned up
        """
        if key in self:
            # Remove the earlier reference to this key, adding it again bumps
            # it to the end of the queue
            del self[key]
        self._queue.append(key)
        dict.__setitem__(self, key, value)
        if cleanup is not None:
            self._cleanup[key] = cleanup
        if len(self) > self._max_cache:
            self.cleanup()

    def cache_size(self):
        """Get the number of entries we will cache."""
        return self._max_cache

    def cleanup(self):
        """Clear the cache until it shrinks to the requested size.

        This does not completely wipe the cache, just makes sure it is under
        the after_cleanup_count.
        """
        # Make sure the cache is shrunk to the correct size
        while len(self) > self._after_cleanup_count:
            self._remove_oldest()
        if len(self._queue) != len(self):
            raise AssertionError('The length of the queue should always equal'
                ' the length of the dict. %s != %s'
                % (len(self._queue), len(self)))

    def clear(self):
        """Clear out all of the cache."""
        # Clean up in FIFO order
        while self:
            self._remove_oldest()

    def _remove(self, key):
        """Remove an entry, making sure to call any cleanup function."""
        cleanup = self._cleanup.pop(key, None)
        # We override self.pop() because it doesn't play well with cleanup
        # functions.
        val = dict.pop(self, key)
        if cleanup is not None:
            cleanup(key, val)
        return val

    def _remove_oldest(self):
        """Remove the oldest entry."""
        key = self._queue.popleft()
        self._remove(key)

    def resize(self, max_cache, after_cleanup_count=None):
        """Increase/decrease the number of cached entries.

        :param max_cache: The maximum number of entries to cache.
        :param after_cleanup_count: After cleanup, we should have at most this
            many entries. This defaults to 80% of max_cache.
        """
        self._max_cache = max_cache
        if after_cleanup_count is None:
            self._after_cleanup_count = max_cache * 8 / 10
        else:
            self._after_cleanup_count = min(max_cache, after_cleanup_count)
        if len(self) > self._max_cache:
            self.cleanup()

    # raise NotImplementedError on dict functions that would mutate the cache
    # which have not been properly implemented yet.
    def copy(self):
        raise NotImplementedError(self.copy)

    def pop(self, key, default=None):
        # If there is a cleanup() function, than it is unclear what pop()
        # should do. Specifically, we would have to call the cleanup on the
        # value before we return it, which should cause whatever resources were
        # allocated to be removed, which makes the return value fairly useless.
        # So instead, we just don't implement it.
        raise NotImplementedError(self.pop)

    def popitem(self):
        # See pop()
        raise NotImplementedError(self.popitem)

    def setdefault(self, key, defaultval=None):
        """similar to dict.setdefault"""
        if key in self:
            return self[key]
        self[key] = defaultval
        return defaultval

    def update(self, *args, **kwargs):
        """Similar to dict.update()"""
        if len(args) == 1:
            arg = args[0]
            if isinstance(arg, dict):
                for key, val in arg.iteritems():
                    self.add(key, val)
            else:
                for key, val in args[0]:
                    self.add(key, val)
        elif len(args) > 1:
            raise TypeError('update expected at most 1 argument, got %d'
                            % len(args))
        if kwargs:
            for key, val in kwargs.iteritems():
                self.add(key, val)


class FIFOSizeCache(FIFOCache):
    """An FIFOCache that removes things based on the size of the values.

    This differs in that it doesn't care how many actual items there are,
    it restricts the cache to be cleaned based on the size of the data.
    """

    def __init__(self, max_size=1024*1024, after_cleanup_size=None,
                 compute_size=None):
        """Create a new FIFOSizeCache.

        :param max_size: The max number of bytes to store before we start
            clearing out entries.
        :param after_cleanup_size: After cleaning up, shrink everything to this
            size (defaults to 80% of max_size).
        :param compute_size: A function to compute the size of a value. If
            not supplied we default to 'len'.
        """
        # Arbitrary, we won't really be using the value anyway.
        FIFOCache.__init__(self, max_cache=max_size)
        self._max_size = max_size
        if after_cleanup_size is None:
            self._after_cleanup_size = self._max_size * 8 / 10
        else:
            self._after_cleanup_size = min(after_cleanup_size, self._max_size)

        self._value_size = 0
        self._compute_size = compute_size
        if compute_size is None:
            self._compute_size = len

    def add(self, key, value, cleanup=None):
        """Add a new value to the cache.

        Also, if the entry is ever removed from the queue, call cleanup.
        Passing it the key and value being removed.

        :param key: The key to store it under
        :param value: The object to store, this value by itself is >=
            after_cleanup_size, then we will not store it at all.
        :param cleanup: None or a function taking (key, value) to indicate
                        'value' sohuld be cleaned up.
        """
        # Even if the new value won't be stored, we need to remove the old
        # value
        if key in self:
            # Remove the earlier reference to this key, adding it again bumps
            # it to the end of the queue
            del self[key]
        value_len = self._compute_size(value)
        if value_len >= self._after_cleanup_size:
            return
        self._queue.append(key)
        dict.__setitem__(self, key, value)
        if cleanup is not None:
            self._cleanup[key] = cleanup
        self._value_size += value_len
        if self._value_size > self._max_size:
            # Time to cleanup
            self.cleanup()

    def cache_size(self):
        """Get the number of bytes we will cache."""
        return self._max_size

    def cleanup(self):
        """Clear the cache until it shrinks to the requested size.

        This does not completely wipe the cache, just makes sure it is under
        the after_cleanup_size.
        """
        # Make sure the cache is shrunk to the correct size
        while self._value_size > self._after_cleanup_size:
            self._remove_oldest()

    def _remove(self, key):
        """Remove an entry, making sure to maintain the invariants."""
        val = FIFOCache._remove(self, key)
        self._value_size -= self._compute_size(val)
        return val

    def resize(self, max_size, after_cleanup_size=None):
        """Increase/decrease the amount of cached data.

        :param max_size: The maximum number of bytes to cache.
        :param after_cleanup_size: After cleanup, we should have at most this
            many bytes cached. This defaults to 80% of max_size.
        """
        FIFOCache.resize(self, max_size)
        self._max_size = max_size
        if after_cleanup_size is None:
            self._after_cleanup_size = max_size * 8 / 10
        else:
            self._after_cleanup_size = min(max_size, after_cleanup_size)
        if self._value_size > self._max_size:
            self.cleanup()