/usr/share/pyshared/bzrlib/graph.py is in python-bzrlib 2.5.0-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 | # Copyright (C) 2007-2011 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
from __future__ import absolute_import
import time
from bzrlib import (
debug,
errors,
osutils,
revision,
trace,
)
STEP_UNIQUE_SEARCHER_EVERY = 5
# DIAGRAM of terminology
# A
# /\
# B C
# | |\
# D E F
# |\/| |
# |/\|/
# G H
#
# In this diagram, relative to G and H:
# A, B, C, D, E are common ancestors.
# C, D and E are border ancestors, because each has a non-common descendant.
# D and E are least common ancestors because none of their descendants are
# common ancestors.
# C is not a least common ancestor because its descendant, E, is a common
# ancestor.
#
# The find_unique_lca algorithm will pick A in two steps:
# 1. find_lca('G', 'H') => ['D', 'E']
# 2. Since len(['D', 'E']) > 1, find_lca('D', 'E') => ['A']
class DictParentsProvider(object):
"""A parents provider for Graph objects."""
def __init__(self, ancestry):
self.ancestry = ancestry
def __repr__(self):
return 'DictParentsProvider(%r)' % self.ancestry
# Note: DictParentsProvider does not implement get_cached_parent_map
# Arguably, the data is clearly cached in memory. However, this class
# is mostly used for testing, and it keeps the tests clean to not
# change it.
def get_parent_map(self, keys):
"""See StackedParentsProvider.get_parent_map"""
ancestry = self.ancestry
return dict([(k, ancestry[k]) for k in keys if k in ancestry])
class StackedParentsProvider(object):
"""A parents provider which stacks (or unions) multiple providers.
The providers are queries in the order of the provided parent_providers.
"""
def __init__(self, parent_providers):
self._parent_providers = parent_providers
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self._parent_providers)
def get_parent_map(self, keys):
"""Get a mapping of keys => parents
A dictionary is returned with an entry for each key present in this
source. If this source doesn't have information about a key, it should
not include an entry.
[NULL_REVISION] is used as the parent of the first user-committed
revision. Its parent list is empty.
:param keys: An iterable returning keys to check (eg revision_ids)
:return: A dictionary mapping each key to its parents
"""
found = {}
remaining = set(keys)
# This adds getattr() overhead to each get_parent_map call. However,
# this is StackedParentsProvider, which means we're dealing with I/O
# (either local indexes, or remote RPCs), so CPU overhead should be
# minimal.
for parents_provider in self._parent_providers:
get_cached = getattr(parents_provider, 'get_cached_parent_map',
None)
if get_cached is None:
continue
new_found = get_cached(remaining)
found.update(new_found)
remaining.difference_update(new_found)
if not remaining:
break
if not remaining:
return found
for parents_provider in self._parent_providers:
new_found = parents_provider.get_parent_map(remaining)
found.update(new_found)
remaining.difference_update(new_found)
if not remaining:
break
return found
class CachingParentsProvider(object):
"""A parents provider which will cache the revision => parents as a dict.
This is useful for providers which have an expensive look up.
Either a ParentsProvider or a get_parent_map-like callback may be
supplied. If it provides extra un-asked-for parents, they will be cached,
but filtered out of get_parent_map.
The cache is enabled by default, but may be disabled and re-enabled.
"""
def __init__(self, parent_provider=None, get_parent_map=None):
"""Constructor.
:param parent_provider: The ParentProvider to use. It or
get_parent_map must be supplied.
:param get_parent_map: The get_parent_map callback to use. It or
parent_provider must be supplied.
"""
self._real_provider = parent_provider
if get_parent_map is None:
self._get_parent_map = self._real_provider.get_parent_map
else:
self._get_parent_map = get_parent_map
self._cache = None
self.enable_cache(True)
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self._real_provider)
def enable_cache(self, cache_misses=True):
"""Enable cache."""
if self._cache is not None:
raise AssertionError('Cache enabled when already enabled.')
self._cache = {}
self._cache_misses = cache_misses
self.missing_keys = set()
def disable_cache(self):
"""Disable and clear the cache."""
self._cache = None
self._cache_misses = None
self.missing_keys = set()
def get_cached_map(self):
"""Return any cached get_parent_map values."""
if self._cache is None:
return None
return dict(self._cache)
def get_cached_parent_map(self, keys):
"""Return items from the cache.
This returns the same info as get_parent_map, but explicitly does not
invoke the supplied ParentsProvider to search for uncached values.
"""
cache = self._cache
if cache is None:
return {}
return dict([(key, cache[key]) for key in keys if key in cache])
def get_parent_map(self, keys):
"""See StackedParentsProvider.get_parent_map."""
cache = self._cache
if cache is None:
cache = self._get_parent_map(keys)
else:
needed_revisions = set(key for key in keys if key not in cache)
# Do not ask for negatively cached keys
needed_revisions.difference_update(self.missing_keys)
if needed_revisions:
parent_map = self._get_parent_map(needed_revisions)
cache.update(parent_map)
if self._cache_misses:
for key in needed_revisions:
if key not in parent_map:
self.note_missing_key(key)
result = {}
for key in keys:
value = cache.get(key)
if value is not None:
result[key] = value
return result
def note_missing_key(self, key):
"""Note that key is a missing key."""
if self._cache_misses:
self.missing_keys.add(key)
class CallableToParentsProviderAdapter(object):
"""A parents provider that adapts any callable to the parents provider API.
i.e. it accepts calls to self.get_parent_map and relays them to the
callable it was constructed with.
"""
def __init__(self, a_callable):
self.callable = a_callable
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self.callable)
def get_parent_map(self, keys):
return self.callable(keys)
class Graph(object):
"""Provide incremental access to revision graphs.
This is the generic implementation; it is intended to be subclassed to
specialize it for other repository types.
"""
def __init__(self, parents_provider):
"""Construct a Graph that uses several graphs as its input
This should not normally be invoked directly, because there may be
specialized implementations for particular repository types. See
Repository.get_graph().
:param parents_provider: An object providing a get_parent_map call
conforming to the behavior of
StackedParentsProvider.get_parent_map.
"""
if getattr(parents_provider, 'get_parents', None) is not None:
self.get_parents = parents_provider.get_parents
if getattr(parents_provider, 'get_parent_map', None) is not None:
self.get_parent_map = parents_provider.get_parent_map
self._parents_provider = parents_provider
def __repr__(self):
return 'Graph(%r)' % self._parents_provider
def find_lca(self, *revisions):
"""Determine the lowest common ancestors of the provided revisions
A lowest common ancestor is a common ancestor none of whose
descendants are common ancestors. In graphs, unlike trees, there may
be multiple lowest common ancestors.
This algorithm has two phases. Phase 1 identifies border ancestors,
and phase 2 filters border ancestors to determine lowest common
ancestors.
In phase 1, border ancestors are identified, using a breadth-first
search starting at the bottom of the graph. Searches are stopped
whenever a node or one of its descendants is determined to be common
In phase 2, the border ancestors are filtered to find the least
common ancestors. This is done by searching the ancestries of each
border ancestor.
Phase 2 is perfomed on the principle that a border ancestor that is
not an ancestor of any other border ancestor is a least common
ancestor.
Searches are stopped when they find a node that is determined to be a
common ancestor of all border ancestors, because this shows that it
cannot be a descendant of any border ancestor.
The scaling of this operation should be proportional to:
1. The number of uncommon ancestors
2. The number of border ancestors
3. The length of the shortest path between a border ancestor and an
ancestor of all border ancestors.
"""
border_common, common, sides = self._find_border_ancestors(revisions)
# We may have common ancestors that can be reached from each other.
# - ask for the heads of them to filter it down to only ones that
# cannot be reached from each other - phase 2.
return self.heads(border_common)
def find_difference(self, left_revision, right_revision):
"""Determine the graph difference between two revisions"""
border, common, searchers = self._find_border_ancestors(
[left_revision, right_revision])
self._search_for_extra_common(common, searchers)
left = searchers[0].seen
right = searchers[1].seen
return (left.difference(right), right.difference(left))
def find_descendants(self, old_key, new_key):
"""Find descendants of old_key that are ancestors of new_key."""
child_map = self.get_child_map(self._find_descendant_ancestors(
old_key, new_key))
graph = Graph(DictParentsProvider(child_map))
searcher = graph._make_breadth_first_searcher([old_key])
list(searcher)
return searcher.seen
def _find_descendant_ancestors(self, old_key, new_key):
"""Find ancestors of new_key that may be descendants of old_key."""
stop = self._make_breadth_first_searcher([old_key])
descendants = self._make_breadth_first_searcher([new_key])
for revisions in descendants:
old_stop = stop.seen.intersection(revisions)
descendants.stop_searching_any(old_stop)
seen_stop = descendants.find_seen_ancestors(stop.step())
descendants.stop_searching_any(seen_stop)
return descendants.seen.difference(stop.seen)
def get_child_map(self, keys):
"""Get a mapping from parents to children of the specified keys.
This is simply the inversion of get_parent_map. Only supplied keys
will be discovered as children.
:return: a dict of key:child_list for keys.
"""
parent_map = self._parents_provider.get_parent_map(keys)
parent_child = {}
for child, parents in sorted(parent_map.items()):
for parent in parents:
parent_child.setdefault(parent, []).append(child)
return parent_child
def find_distance_to_null(self, target_revision_id, known_revision_ids):
"""Find the left-hand distance to the NULL_REVISION.
(This can also be considered the revno of a branch at
target_revision_id.)
:param target_revision_id: A revision_id which we would like to know
the revno for.
:param known_revision_ids: [(revision_id, revno)] A list of known
revno, revision_id tuples. We'll use this to seed the search.
"""
# Map from revision_ids to a known value for their revno
known_revnos = dict(known_revision_ids)
cur_tip = target_revision_id
num_steps = 0
NULL_REVISION = revision.NULL_REVISION
known_revnos[NULL_REVISION] = 0
searching_known_tips = list(known_revnos.keys())
unknown_searched = {}
while cur_tip not in known_revnos:
unknown_searched[cur_tip] = num_steps
num_steps += 1
to_search = set([cur_tip])
to_search.update(searching_known_tips)
parent_map = self.get_parent_map(to_search)
parents = parent_map.get(cur_tip, None)
if not parents: # An empty list or None is a ghost
raise errors.GhostRevisionsHaveNoRevno(target_revision_id,
cur_tip)
cur_tip = parents[0]
next_known_tips = []
for revision_id in searching_known_tips:
parents = parent_map.get(revision_id, None)
if not parents:
continue
next = parents[0]
next_revno = known_revnos[revision_id] - 1
if next in unknown_searched:
# We have enough information to return a value right now
return next_revno + unknown_searched[next]
if next in known_revnos:
continue
known_revnos[next] = next_revno
next_known_tips.append(next)
searching_known_tips = next_known_tips
# We reached a known revision, so just add in how many steps it took to
# get there.
return known_revnos[cur_tip] + num_steps
def find_lefthand_distances(self, keys):
"""Find the distance to null for all the keys in keys.
:param keys: keys to lookup.
:return: A dict key->distance for all of keys.
"""
# Optimisable by concurrent searching, but a random spread should get
# some sort of hit rate.
result = {}
known_revnos = []
ghosts = []
for key in keys:
try:
known_revnos.append(
(key, self.find_distance_to_null(key, known_revnos)))
except errors.GhostRevisionsHaveNoRevno:
ghosts.append(key)
for key in ghosts:
known_revnos.append((key, -1))
return dict(known_revnos)
def find_unique_ancestors(self, unique_revision, common_revisions):
"""Find the unique ancestors for a revision versus others.
This returns the ancestry of unique_revision, excluding all revisions
in the ancestry of common_revisions. If unique_revision is in the
ancestry, then the empty set will be returned.
:param unique_revision: The revision_id whose ancestry we are
interested in.
(XXX: Would this API be better if we allowed multiple revisions on
to be searched here?)
:param common_revisions: Revision_ids of ancestries to exclude.
:return: A set of revisions in the ancestry of unique_revision
"""
if unique_revision in common_revisions:
return set()
# Algorithm description
# 1) Walk backwards from the unique node and all common nodes.
# 2) When a node is seen by both sides, stop searching it in the unique
# walker, include it in the common walker.
# 3) Stop searching when there are no nodes left for the unique walker.
# At this point, you have a maximal set of unique nodes. Some of
# them may actually be common, and you haven't reached them yet.
# 4) Start new searchers for the unique nodes, seeded with the
# information you have so far.
# 5) Continue searching, stopping the common searches when the search
# tip is an ancestor of all unique nodes.
# 6) Aggregate together unique searchers when they are searching the
# same tips. When all unique searchers are searching the same node,
# stop move it to a single 'all_unique_searcher'.
# 7) The 'all_unique_searcher' represents the very 'tip' of searching.
# Most of the time this produces very little important information.
# So don't step it as quickly as the other searchers.
# 8) Search is done when all common searchers have completed.
unique_searcher, common_searcher = self._find_initial_unique_nodes(
[unique_revision], common_revisions)
unique_nodes = unique_searcher.seen.difference(common_searcher.seen)
if not unique_nodes:
return unique_nodes
(all_unique_searcher,
unique_tip_searchers) = self._make_unique_searchers(unique_nodes,
unique_searcher, common_searcher)
self._refine_unique_nodes(unique_searcher, all_unique_searcher,
unique_tip_searchers, common_searcher)
true_unique_nodes = unique_nodes.difference(common_searcher.seen)
if 'graph' in debug.debug_flags:
trace.mutter('Found %d truly unique nodes out of %d',
len(true_unique_nodes), len(unique_nodes))
return true_unique_nodes
def _find_initial_unique_nodes(self, unique_revisions, common_revisions):
"""Steps 1-3 of find_unique_ancestors.
Find the maximal set of unique nodes. Some of these might actually
still be common, but we are sure that there are no other unique nodes.
:return: (unique_searcher, common_searcher)
"""
unique_searcher = self._make_breadth_first_searcher(unique_revisions)
# we know that unique_revisions aren't in common_revisions, so skip
# past them.
unique_searcher.next()
common_searcher = self._make_breadth_first_searcher(common_revisions)
# As long as we are still finding unique nodes, keep searching
while unique_searcher._next_query:
next_unique_nodes = set(unique_searcher.step())
next_common_nodes = set(common_searcher.step())
# Check if either searcher encounters new nodes seen by the other
# side.
unique_are_common_nodes = next_unique_nodes.intersection(
common_searcher.seen)
unique_are_common_nodes.update(
next_common_nodes.intersection(unique_searcher.seen))
if unique_are_common_nodes:
ancestors = unique_searcher.find_seen_ancestors(
unique_are_common_nodes)
# TODO: This is a bit overboard, we only really care about
# the ancestors of the tips because the rest we
# already know. This is *correct* but causes us to
# search too much ancestry.
ancestors.update(common_searcher.find_seen_ancestors(ancestors))
unique_searcher.stop_searching_any(ancestors)
common_searcher.start_searching(ancestors)
return unique_searcher, common_searcher
def _make_unique_searchers(self, unique_nodes, unique_searcher,
common_searcher):
"""Create a searcher for all the unique search tips (step 4).
As a side effect, the common_searcher will stop searching any nodes
that are ancestors of the unique searcher tips.
:return: (all_unique_searcher, unique_tip_searchers)
"""
unique_tips = self._remove_simple_descendants(unique_nodes,
self.get_parent_map(unique_nodes))
if len(unique_tips) == 1:
unique_tip_searchers = []
ancestor_all_unique = unique_searcher.find_seen_ancestors(unique_tips)
else:
unique_tip_searchers = []
for tip in unique_tips:
revs_to_search = unique_searcher.find_seen_ancestors([tip])
revs_to_search.update(
common_searcher.find_seen_ancestors(revs_to_search))
searcher = self._make_breadth_first_searcher(revs_to_search)
# We don't care about the starting nodes.
searcher._label = tip
searcher.step()
unique_tip_searchers.append(searcher)
ancestor_all_unique = None
for searcher in unique_tip_searchers:
if ancestor_all_unique is None:
ancestor_all_unique = set(searcher.seen)
else:
ancestor_all_unique = ancestor_all_unique.intersection(
searcher.seen)
# Collapse all the common nodes into a single searcher
all_unique_searcher = self._make_breadth_first_searcher(
ancestor_all_unique)
if ancestor_all_unique:
# We've seen these nodes in all the searchers, so we'll just go to
# the next
all_unique_searcher.step()
# Stop any search tips that are already known as ancestors of the
# unique nodes
stopped_common = common_searcher.stop_searching_any(
common_searcher.find_seen_ancestors(ancestor_all_unique))
total_stopped = 0
for searcher in unique_tip_searchers:
total_stopped += len(searcher.stop_searching_any(
searcher.find_seen_ancestors(ancestor_all_unique)))
if 'graph' in debug.debug_flags:
trace.mutter('For %d unique nodes, created %d + 1 unique searchers'
' (%d stopped search tips, %d common ancestors'
' (%d stopped common)',
len(unique_nodes), len(unique_tip_searchers),
total_stopped, len(ancestor_all_unique),
len(stopped_common))
return all_unique_searcher, unique_tip_searchers
def _step_unique_and_common_searchers(self, common_searcher,
unique_tip_searchers,
unique_searcher):
"""Step all the searchers"""
newly_seen_common = set(common_searcher.step())
newly_seen_unique = set()
for searcher in unique_tip_searchers:
next = set(searcher.step())
next.update(unique_searcher.find_seen_ancestors(next))
next.update(common_searcher.find_seen_ancestors(next))
for alt_searcher in unique_tip_searchers:
if alt_searcher is searcher:
continue
next.update(alt_searcher.find_seen_ancestors(next))
searcher.start_searching(next)
newly_seen_unique.update(next)
return newly_seen_common, newly_seen_unique
def _find_nodes_common_to_all_unique(self, unique_tip_searchers,
all_unique_searcher,
newly_seen_unique, step_all_unique):
"""Find nodes that are common to all unique_tip_searchers.
If it is time, step the all_unique_searcher, and add its nodes to the
result.
"""
common_to_all_unique_nodes = newly_seen_unique.copy()
for searcher in unique_tip_searchers:
common_to_all_unique_nodes.intersection_update(searcher.seen)
common_to_all_unique_nodes.intersection_update(
all_unique_searcher.seen)
# Step all-unique less frequently than the other searchers.
# In the common case, we don't need to spider out far here, so
# avoid doing extra work.
if step_all_unique:
tstart = time.clock()
nodes = all_unique_searcher.step()
common_to_all_unique_nodes.update(nodes)
if 'graph' in debug.debug_flags:
tdelta = time.clock() - tstart
trace.mutter('all_unique_searcher step() took %.3fs'
'for %d nodes (%d total), iteration: %s',
tdelta, len(nodes), len(all_unique_searcher.seen),
all_unique_searcher._iterations)
return common_to_all_unique_nodes
def _collapse_unique_searchers(self, unique_tip_searchers,
common_to_all_unique_nodes):
"""Combine searchers that are searching the same tips.
When two searchers are searching the same tips, we can stop one of the
searchers. We also know that the maximal set of common ancestors is the
intersection of the two original searchers.
:return: A list of searchers that are searching unique nodes.
"""
# Filter out searchers that don't actually search different
# nodes. We already have the ancestry intersection for them
unique_search_tips = {}
for searcher in unique_tip_searchers:
stopped = searcher.stop_searching_any(common_to_all_unique_nodes)
will_search_set = frozenset(searcher._next_query)
if not will_search_set:
if 'graph' in debug.debug_flags:
trace.mutter('Unique searcher %s was stopped.'
' (%s iterations) %d nodes stopped',
searcher._label,
searcher._iterations,
len(stopped))
elif will_search_set not in unique_search_tips:
# This searcher is searching a unique set of nodes, let it
unique_search_tips[will_search_set] = [searcher]
else:
unique_search_tips[will_search_set].append(searcher)
# TODO: it might be possible to collapse searchers faster when they
# only have *some* search tips in common.
next_unique_searchers = []
for searchers in unique_search_tips.itervalues():
if len(searchers) == 1:
# Searching unique tips, go for it
next_unique_searchers.append(searchers[0])
else:
# These searchers have started searching the same tips, we
# don't need them to cover the same ground. The
# intersection of their ancestry won't change, so create a
# new searcher, combining their histories.
next_searcher = searchers[0]
for searcher in searchers[1:]:
next_searcher.seen.intersection_update(searcher.seen)
if 'graph' in debug.debug_flags:
trace.mutter('Combining %d searchers into a single'
' searcher searching %d nodes with'
' %d ancestry',
len(searchers),
len(next_searcher._next_query),
len(next_searcher.seen))
next_unique_searchers.append(next_searcher)
return next_unique_searchers
def _refine_unique_nodes(self, unique_searcher, all_unique_searcher,
unique_tip_searchers, common_searcher):
"""Steps 5-8 of find_unique_ancestors.
This function returns when common_searcher has stopped searching for
more nodes.
"""
# We step the ancestor_all_unique searcher only every
# STEP_UNIQUE_SEARCHER_EVERY steps.
step_all_unique_counter = 0
# While we still have common nodes to search
while common_searcher._next_query:
(newly_seen_common,
newly_seen_unique) = self._step_unique_and_common_searchers(
common_searcher, unique_tip_searchers, unique_searcher)
# These nodes are common ancestors of all unique nodes
common_to_all_unique_nodes = self._find_nodes_common_to_all_unique(
unique_tip_searchers, all_unique_searcher, newly_seen_unique,
step_all_unique_counter==0)
step_all_unique_counter = ((step_all_unique_counter + 1)
% STEP_UNIQUE_SEARCHER_EVERY)
if newly_seen_common:
# If a 'common' node is an ancestor of all unique searchers, we
# can stop searching it.
common_searcher.stop_searching_any(
all_unique_searcher.seen.intersection(newly_seen_common))
if common_to_all_unique_nodes:
common_to_all_unique_nodes.update(
common_searcher.find_seen_ancestors(
common_to_all_unique_nodes))
# The all_unique searcher can start searching the common nodes
# but everyone else can stop.
# This is the sort of thing where we would like to not have it
# start_searching all of the nodes, but only mark all of them
# as seen, and have it search only the actual tips. Otherwise
# it is another get_parent_map() traversal for it to figure out
# what we already should know.
all_unique_searcher.start_searching(common_to_all_unique_nodes)
common_searcher.stop_searching_any(common_to_all_unique_nodes)
next_unique_searchers = self._collapse_unique_searchers(
unique_tip_searchers, common_to_all_unique_nodes)
if len(unique_tip_searchers) != len(next_unique_searchers):
if 'graph' in debug.debug_flags:
trace.mutter('Collapsed %d unique searchers => %d'
' at %s iterations',
len(unique_tip_searchers),
len(next_unique_searchers),
all_unique_searcher._iterations)
unique_tip_searchers = next_unique_searchers
def get_parent_map(self, revisions):
"""Get a map of key:parent_list for revisions.
This implementation delegates to get_parents, for old parent_providers
that do not supply get_parent_map.
"""
result = {}
for rev, parents in self.get_parents(revisions):
if parents is not None:
result[rev] = parents
return result
def _make_breadth_first_searcher(self, revisions):
return _BreadthFirstSearcher(revisions, self)
def _find_border_ancestors(self, revisions):
"""Find common ancestors with at least one uncommon descendant.
Border ancestors are identified using a breadth-first
search starting at the bottom of the graph. Searches are stopped
whenever a node or one of its descendants is determined to be common.
This will scale with the number of uncommon ancestors.
As well as the border ancestors, a set of seen common ancestors and a
list of sets of seen ancestors for each input revision is returned.
This allows calculation of graph difference from the results of this
operation.
"""
if None in revisions:
raise errors.InvalidRevisionId(None, self)
common_ancestors = set()
searchers = [self._make_breadth_first_searcher([r])
for r in revisions]
active_searchers = searchers[:]
border_ancestors = set()
while True:
newly_seen = set()
for searcher in searchers:
new_ancestors = searcher.step()
if new_ancestors:
newly_seen.update(new_ancestors)
new_common = set()
for revision in newly_seen:
if revision in common_ancestors:
# Not a border ancestor because it was seen as common
# already
new_common.add(revision)
continue
for searcher in searchers:
if revision not in searcher.seen:
break
else:
# This is a border because it is a first common that we see
# after walking for a while.
border_ancestors.add(revision)
new_common.add(revision)
if new_common:
for searcher in searchers:
new_common.update(searcher.find_seen_ancestors(new_common))
for searcher in searchers:
searcher.start_searching(new_common)
common_ancestors.update(new_common)
# Figure out what the searchers will be searching next, and if
# there is only 1 set being searched, then we are done searching,
# since all searchers would have to be searching the same data,
# thus it *must* be in common.
unique_search_sets = set()
for searcher in searchers:
will_search_set = frozenset(searcher._next_query)
if will_search_set not in unique_search_sets:
# This searcher is searching a unique set of nodes, let it
unique_search_sets.add(will_search_set)
if len(unique_search_sets) == 1:
nodes = unique_search_sets.pop()
uncommon_nodes = nodes.difference(common_ancestors)
if uncommon_nodes:
raise AssertionError("Somehow we ended up converging"
" without actually marking them as"
" in common."
"\nStart_nodes: %s"
"\nuncommon_nodes: %s"
% (revisions, uncommon_nodes))
break
return border_ancestors, common_ancestors, searchers
def heads(self, keys):
"""Return the heads from amongst keys.
This is done by searching the ancestries of each key. Any key that is
reachable from another key is not returned; all the others are.
This operation scales with the relative depth between any two keys. If
any two keys are completely disconnected all ancestry of both sides
will be retrieved.
:param keys: An iterable of keys.
:return: A set of the heads. Note that as a set there is no ordering
information. Callers will need to filter their input to create
order if they need it.
"""
candidate_heads = set(keys)
if revision.NULL_REVISION in candidate_heads:
# NULL_REVISION is only a head if it is the only entry
candidate_heads.remove(revision.NULL_REVISION)
if not candidate_heads:
return set([revision.NULL_REVISION])
if len(candidate_heads) < 2:
return candidate_heads
searchers = dict((c, self._make_breadth_first_searcher([c]))
for c in candidate_heads)
active_searchers = dict(searchers)
# skip over the actual candidate for each searcher
for searcher in active_searchers.itervalues():
searcher.next()
# The common walker finds nodes that are common to two or more of the
# input keys, so that we don't access all history when a currently
# uncommon search point actually meets up with something behind a
# common search point. Common search points do not keep searches
# active; they just allow us to make searches inactive without
# accessing all history.
common_walker = self._make_breadth_first_searcher([])
while len(active_searchers) > 0:
ancestors = set()
# advance searches
try:
common_walker.next()
except StopIteration:
# No common points being searched at this time.
pass
for candidate in active_searchers.keys():
try:
searcher = active_searchers[candidate]
except KeyError:
# rare case: we deleted candidate in a previous iteration
# through this for loop, because it was determined to be
# a descendant of another candidate.
continue
try:
ancestors.update(searcher.next())
except StopIteration:
del active_searchers[candidate]
continue
# process found nodes
new_common = set()
for ancestor in ancestors:
if ancestor in candidate_heads:
candidate_heads.remove(ancestor)
del searchers[ancestor]
if ancestor in active_searchers:
del active_searchers[ancestor]
# it may meet up with a known common node
if ancestor in common_walker.seen:
# some searcher has encountered our known common nodes:
# just stop it
ancestor_set = set([ancestor])
for searcher in searchers.itervalues():
searcher.stop_searching_any(ancestor_set)
else:
# or it may have been just reached by all the searchers:
for searcher in searchers.itervalues():
if ancestor not in searcher.seen:
break
else:
# The final active searcher has just reached this node,
# making it be known as a descendant of all candidates,
# so we can stop searching it, and any seen ancestors
new_common.add(ancestor)
for searcher in searchers.itervalues():
seen_ancestors =\
searcher.find_seen_ancestors([ancestor])
searcher.stop_searching_any(seen_ancestors)
common_walker.start_searching(new_common)
return candidate_heads
def find_merge_order(self, tip_revision_id, lca_revision_ids):
"""Find the order that each revision was merged into tip.
This basically just walks backwards with a stack, and walks left-first
until it finds a node to stop.
"""
if len(lca_revision_ids) == 1:
return list(lca_revision_ids)
looking_for = set(lca_revision_ids)
# TODO: Is there a way we could do this "faster" by batching up the
# get_parent_map requests?
# TODO: Should we also be culling the ancestry search right away? We
# could add looking_for to the "stop" list, and walk their
# ancestry in batched mode. The flip side is it might mean we walk a
# lot of "stop" nodes, rather than only the minimum.
# Then again, without it we may trace back into ancestry we could have
# stopped early.
stack = [tip_revision_id]
found = []
stop = set()
while stack and looking_for:
next = stack.pop()
stop.add(next)
if next in looking_for:
found.append(next)
looking_for.remove(next)
if len(looking_for) == 1:
found.append(looking_for.pop())
break
continue
parent_ids = self.get_parent_map([next]).get(next, None)
if not parent_ids: # Ghost, nothing to search here
continue
for parent_id in reversed(parent_ids):
# TODO: (performance) We see the parent at this point, but we
# wait to mark it until later to make sure we get left
# parents before right parents. However, instead of
# waiting until we have traversed enough parents, we
# could instead note that we've found it, and once all
# parents are in the stack, just reverse iterate the
# stack for them.
if parent_id not in stop:
# this will need to be searched
stack.append(parent_id)
stop.add(parent_id)
return found
def find_lefthand_merger(self, merged_key, tip_key):
"""Find the first lefthand ancestor of tip_key that merged merged_key.
We do this by first finding the descendants of merged_key, then
walking through the lefthand ancestry of tip_key until we find a key
that doesn't descend from merged_key. Its child is the key that
merged merged_key.
:return: The first lefthand ancestor of tip_key to merge merged_key.
merged_key if it is a lefthand ancestor of tip_key.
None if no ancestor of tip_key merged merged_key.
"""
descendants = self.find_descendants(merged_key, tip_key)
candidate_iterator = self.iter_lefthand_ancestry(tip_key)
last_candidate = None
for candidate in candidate_iterator:
if candidate not in descendants:
return last_candidate
last_candidate = candidate
def find_unique_lca(self, left_revision, right_revision,
count_steps=False):
"""Find a unique LCA.
Find lowest common ancestors. If there is no unique common
ancestor, find the lowest common ancestors of those ancestors.
Iteration stops when a unique lowest common ancestor is found.
The graph origin is necessarily a unique lowest common ancestor.
Note that None is not an acceptable substitute for NULL_REVISION.
in the input for this method.
:param count_steps: If True, the return value will be a tuple of
(unique_lca, steps) where steps is the number of times that
find_lca was run. If False, only unique_lca is returned.
"""
revisions = [left_revision, right_revision]
steps = 0
while True:
steps += 1
lca = self.find_lca(*revisions)
if len(lca) == 1:
result = lca.pop()
if count_steps:
return result, steps
else:
return result
if len(lca) == 0:
raise errors.NoCommonAncestor(left_revision, right_revision)
revisions = lca
def iter_ancestry(self, revision_ids):
"""Iterate the ancestry of this revision.
:param revision_ids: Nodes to start the search
:return: Yield tuples mapping a revision_id to its parents for the
ancestry of revision_id.
Ghosts will be returned with None as their parents, and nodes
with no parents will have NULL_REVISION as their only parent. (As
defined by get_parent_map.)
There will also be a node for (NULL_REVISION, ())
"""
pending = set(revision_ids)
processed = set()
while pending:
processed.update(pending)
next_map = self.get_parent_map(pending)
next_pending = set()
for item in next_map.iteritems():
yield item
next_pending.update(p for p in item[1] if p not in processed)
ghosts = pending.difference(next_map)
for ghost in ghosts:
yield (ghost, None)
pending = next_pending
def iter_lefthand_ancestry(self, start_key, stop_keys=None):
if stop_keys is None:
stop_keys = ()
next_key = start_key
def get_parents(key):
try:
return self._parents_provider.get_parent_map([key])[key]
except KeyError:
raise errors.RevisionNotPresent(next_key, self)
while True:
if next_key in stop_keys:
return
parents = get_parents(next_key)
yield next_key
if len(parents) == 0:
return
else:
next_key = parents[0]
def iter_topo_order(self, revisions):
"""Iterate through the input revisions in topological order.
This sorting only ensures that parents come before their children.
An ancestor may sort after a descendant if the relationship is not
visible in the supplied list of revisions.
"""
from bzrlib import tsort
sorter = tsort.TopoSorter(self.get_parent_map(revisions))
return sorter.iter_topo_order()
def is_ancestor(self, candidate_ancestor, candidate_descendant):
"""Determine whether a revision is an ancestor of another.
We answer this using heads() as heads() has the logic to perform the
smallest number of parent lookups to determine the ancestral
relationship between N revisions.
"""
return set([candidate_descendant]) == self.heads(
[candidate_ancestor, candidate_descendant])
def is_between(self, revid, lower_bound_revid, upper_bound_revid):
"""Determine whether a revision is between two others.
returns true if and only if:
lower_bound_revid <= revid <= upper_bound_revid
"""
return ((upper_bound_revid is None or
self.is_ancestor(revid, upper_bound_revid)) and
(lower_bound_revid is None or
self.is_ancestor(lower_bound_revid, revid)))
def _search_for_extra_common(self, common, searchers):
"""Make sure that unique nodes are genuinely unique.
After _find_border_ancestors, all nodes marked "common" are indeed
common. Some of the nodes considered unique are not, due to history
shortcuts stopping the searches early.
We know that we have searched enough when all common search tips are
descended from all unique (uncommon) nodes because we know that a node
cannot be an ancestor of its own ancestor.
:param common: A set of common nodes
:param searchers: The searchers returned from _find_border_ancestors
:return: None
"""
# Basic algorithm...
# A) The passed in searchers should all be on the same tips, thus
# they should be considered the "common" searchers.
# B) We find the difference between the searchers, these are the
# "unique" nodes for each side.
# C) We do a quick culling so that we only start searching from the
# more interesting unique nodes. (A unique ancestor is more
# interesting than any of its children.)
# D) We start searching for ancestors common to all unique nodes.
# E) We have the common searchers stop searching any ancestors of
# nodes found by (D)
# F) When there are no more common search tips, we stop
# TODO: We need a way to remove unique_searchers when they overlap with
# other unique searchers.
if len(searchers) != 2:
raise NotImplementedError(
"Algorithm not yet implemented for > 2 searchers")
common_searchers = searchers
left_searcher = searchers[0]
right_searcher = searchers[1]
unique = left_searcher.seen.symmetric_difference(right_searcher.seen)
if not unique: # No unique nodes, nothing to do
return
total_unique = len(unique)
unique = self._remove_simple_descendants(unique,
self.get_parent_map(unique))
simple_unique = len(unique)
unique_searchers = []
for revision_id in unique:
if revision_id in left_searcher.seen:
parent_searcher = left_searcher
else:
parent_searcher = right_searcher
revs_to_search = parent_searcher.find_seen_ancestors([revision_id])
if not revs_to_search: # XXX: This shouldn't be possible
revs_to_search = [revision_id]
searcher = self._make_breadth_first_searcher(revs_to_search)
# We don't care about the starting nodes.
searcher.step()
unique_searchers.append(searcher)
# possible todo: aggregate the common searchers into a single common
# searcher, just make sure that we include the nodes into the .seen
# properties of the original searchers
ancestor_all_unique = None
for searcher in unique_searchers:
if ancestor_all_unique is None:
ancestor_all_unique = set(searcher.seen)
else:
ancestor_all_unique = ancestor_all_unique.intersection(
searcher.seen)
trace.mutter('Started %s unique searchers for %s unique revisions',
simple_unique, total_unique)
while True: # If we have no more nodes we have nothing to do
newly_seen_common = set()
for searcher in common_searchers:
newly_seen_common.update(searcher.step())
newly_seen_unique = set()
for searcher in unique_searchers:
newly_seen_unique.update(searcher.step())
new_common_unique = set()
for revision in newly_seen_unique:
for searcher in unique_searchers:
if revision not in searcher.seen:
break
else:
# This is a border because it is a first common that we see
# after walking for a while.
new_common_unique.add(revision)
if newly_seen_common:
# These are nodes descended from one of the 'common' searchers.
# Make sure all searchers are on the same page
for searcher in common_searchers:
newly_seen_common.update(
searcher.find_seen_ancestors(newly_seen_common))
# We start searching the whole ancestry. It is a bit wasteful,
# though. We really just want to mark all of these nodes as
# 'seen' and then start just the tips. However, it requires a
# get_parent_map() call to figure out the tips anyway, and all
# redundant requests should be fairly fast.
for searcher in common_searchers:
searcher.start_searching(newly_seen_common)
# If a 'common' node is an ancestor of all unique searchers, we
# can stop searching it.
stop_searching_common = ancestor_all_unique.intersection(
newly_seen_common)
if stop_searching_common:
for searcher in common_searchers:
searcher.stop_searching_any(stop_searching_common)
if new_common_unique:
# We found some ancestors that are common
for searcher in unique_searchers:
new_common_unique.update(
searcher.find_seen_ancestors(new_common_unique))
# Since these are common, we can grab another set of ancestors
# that we have seen
for searcher in common_searchers:
new_common_unique.update(
searcher.find_seen_ancestors(new_common_unique))
# We can tell all of the unique searchers to start at these
# nodes, and tell all of the common searchers to *stop*
# searching these nodes
for searcher in unique_searchers:
searcher.start_searching(new_common_unique)
for searcher in common_searchers:
searcher.stop_searching_any(new_common_unique)
ancestor_all_unique.update(new_common_unique)
# Filter out searchers that don't actually search different
# nodes. We already have the ancestry intersection for them
next_unique_searchers = []
unique_search_sets = set()
for searcher in unique_searchers:
will_search_set = frozenset(searcher._next_query)
if will_search_set not in unique_search_sets:
# This searcher is searching a unique set of nodes, let it
unique_search_sets.add(will_search_set)
next_unique_searchers.append(searcher)
unique_searchers = next_unique_searchers
for searcher in common_searchers:
if searcher._next_query:
break
else:
# All common searcher have stopped searching
return
def _remove_simple_descendants(self, revisions, parent_map):
"""remove revisions which are children of other ones in the set
This doesn't do any graph searching, it just checks the immediate
parent_map to find if there are any children which can be removed.
:param revisions: A set of revision_ids
:return: A set of revision_ids with the children removed
"""
simple_ancestors = revisions.copy()
# TODO: jam 20071214 we *could* restrict it to searching only the
# parent_map of revisions already present in 'revisions', but
# considering the general use case, I think this is actually
# better.
# This is the same as the following loop. I don't know that it is any
# faster.
## simple_ancestors.difference_update(r for r, p_ids in parent_map.iteritems()
## if p_ids is not None and revisions.intersection(p_ids))
## return simple_ancestors
# Yet Another Way, invert the parent map (which can be cached)
## descendants = {}
## for revision_id, parent_ids in parent_map.iteritems():
## for p_id in parent_ids:
## descendants.setdefault(p_id, []).append(revision_id)
## for revision in revisions.intersection(descendants):
## simple_ancestors.difference_update(descendants[revision])
## return simple_ancestors
for revision, parent_ids in parent_map.iteritems():
if parent_ids is None:
continue
for parent_id in parent_ids:
if parent_id in revisions:
# This node has a parent present in the set, so we can
# remove it
simple_ancestors.discard(revision)
break
return simple_ancestors
class HeadsCache(object):
"""A cache of results for graph heads calls."""
def __init__(self, graph):
self.graph = graph
self._heads = {}
def heads(self, keys):
"""Return the heads of keys.
This matches the API of Graph.heads(), specifically the return value is
a set which can be mutated, and ordering of the input is not preserved
in the output.
:see also: Graph.heads.
:param keys: The keys to calculate heads for.
:return: A set containing the heads, which may be mutated without
affecting future lookups.
"""
keys = frozenset(keys)
try:
return set(self._heads[keys])
except KeyError:
heads = self.graph.heads(keys)
self._heads[keys] = heads
return set(heads)
class FrozenHeadsCache(object):
"""Cache heads() calls, assuming the caller won't modify them."""
def __init__(self, graph):
self.graph = graph
self._heads = {}
def heads(self, keys):
"""Return the heads of keys.
Similar to Graph.heads(). The main difference is that the return value
is a frozen set which cannot be mutated.
:see also: Graph.heads.
:param keys: The keys to calculate heads for.
:return: A frozenset containing the heads.
"""
keys = frozenset(keys)
try:
return self._heads[keys]
except KeyError:
heads = frozenset(self.graph.heads(keys))
self._heads[keys] = heads
return heads
def cache(self, keys, heads):
"""Store a known value."""
self._heads[frozenset(keys)] = frozenset(heads)
class _BreadthFirstSearcher(object):
"""Parallel search breadth-first the ancestry of revisions.
This class implements the iterator protocol, but additionally
1. provides a set of seen ancestors, and
2. allows some ancestries to be unsearched, via stop_searching_any
"""
def __init__(self, revisions, parents_provider):
self._iterations = 0
self._next_query = set(revisions)
self.seen = set()
self._started_keys = set(self._next_query)
self._stopped_keys = set()
self._parents_provider = parents_provider
self._returning = 'next_with_ghosts'
self._current_present = set()
self._current_ghosts = set()
self._current_parents = {}
def __repr__(self):
if self._iterations:
prefix = "searching"
else:
prefix = "starting"
search = '%s=%r' % (prefix, list(self._next_query))
return ('_BreadthFirstSearcher(iterations=%d, %s,'
' seen=%r)' % (self._iterations, search, list(self.seen)))
def get_state(self):
"""Get the current state of this searcher.
:return: Tuple with started keys, excludes and included keys
"""
if self._returning == 'next':
# We have to know the current nodes children to be able to list the
# exclude keys for them. However, while we could have a second
# look-ahead result buffer and shuffle things around, this method
# is typically only called once per search - when memoising the
# results of the search.
found, ghosts, next, parents = self._do_query(self._next_query)
# pretend we didn't query: perhaps we should tweak _do_query to be
# entirely stateless?
self.seen.difference_update(next)
next_query = next.union(ghosts)
else:
next_query = self._next_query
excludes = self._stopped_keys.union(next_query)
included_keys = self.seen.difference(excludes)
return self._started_keys, excludes, included_keys
def _get_result(self):
"""Get a SearchResult for the current state of this searcher.
:return: A SearchResult for this search so far. The SearchResult is
static - the search can be advanced and the search result will not
be invalidated or altered.
"""
from bzrlib.vf_search import SearchResult
(started_keys, excludes, included_keys) = self.get_state()
return SearchResult(started_keys, excludes, len(included_keys),
included_keys)
def step(self):
try:
return self.next()
except StopIteration:
return ()
def next(self):
"""Return the next ancestors of this revision.
Ancestors are returned in the order they are seen in a breadth-first
traversal. No ancestor will be returned more than once. Ancestors are
returned before their parentage is queried, so ghosts and missing
revisions (including the start revisions) are included in the result.
This can save a round trip in LCA style calculation by allowing
convergence to be detected without reading the data for the revision
the convergence occurs on.
:return: A set of revision_ids.
"""
if self._returning != 'next':
# switch to returning the query, not the results.
self._returning = 'next'
self._iterations += 1
else:
self._advance()
if len(self._next_query) == 0:
raise StopIteration()
# We have seen what we're querying at this point as we are returning
# the query, not the results.
self.seen.update(self._next_query)
return self._next_query
def next_with_ghosts(self):
"""Return the next found ancestors, with ghosts split out.
Ancestors are returned in the order they are seen in a breadth-first
traversal. No ancestor will be returned more than once. Ancestors are
returned only after asking for their parents, which allows us to detect
which revisions are ghosts and which are not.
:return: A tuple with (present ancestors, ghost ancestors) sets.
"""
if self._returning != 'next_with_ghosts':
# switch to returning the results, not the current query.
self._returning = 'next_with_ghosts'
self._advance()
if len(self._next_query) == 0:
raise StopIteration()
self._advance()
return self._current_present, self._current_ghosts
def _advance(self):
"""Advance the search.
Updates self.seen, self._next_query, self._current_present,
self._current_ghosts, self._current_parents and self._iterations.
"""
self._iterations += 1
found, ghosts, next, parents = self._do_query(self._next_query)
self._current_present = found
self._current_ghosts = ghosts
self._next_query = next
self._current_parents = parents
# ghosts are implicit stop points, otherwise the search cannot be
# repeated when ghosts are filled.
self._stopped_keys.update(ghosts)
def _do_query(self, revisions):
"""Query for revisions.
Adds revisions to the seen set.
:param revisions: Revisions to query.
:return: A tuple: (set(found_revisions), set(ghost_revisions),
set(parents_of_found_revisions), dict(found_revisions:parents)).
"""
found_revisions = set()
parents_of_found = set()
# revisions may contain nodes that point to other nodes in revisions:
# we want to filter them out.
seen = self.seen
seen.update(revisions)
parent_map = self._parents_provider.get_parent_map(revisions)
found_revisions.update(parent_map)
for rev_id, parents in parent_map.iteritems():
if parents is None:
continue
new_found_parents = [p for p in parents if p not in seen]
if new_found_parents:
# Calling set.update() with an empty generator is actually
# rather expensive.
parents_of_found.update(new_found_parents)
ghost_revisions = revisions - found_revisions
return found_revisions, ghost_revisions, parents_of_found, parent_map
def __iter__(self):
return self
def find_seen_ancestors(self, revisions):
"""Find ancestors of these revisions that have already been seen.
This function generally makes the assumption that querying for the
parents of a node that has already been queried is reasonably cheap.
(eg, not a round trip to a remote host).
"""
# TODO: Often we might ask one searcher for its seen ancestors, and
# then ask another searcher the same question. This can result in
# searching the same revisions repeatedly if the two searchers
# have a lot of overlap.
all_seen = self.seen
pending = set(revisions).intersection(all_seen)
seen_ancestors = set(pending)
if self._returning == 'next':
# self.seen contains what nodes have been returned, not what nodes
# have been queried. We don't want to probe for nodes that haven't
# been searched yet.
not_searched_yet = self._next_query
else:
not_searched_yet = ()
pending.difference_update(not_searched_yet)
get_parent_map = self._parents_provider.get_parent_map
while pending:
parent_map = get_parent_map(pending)
all_parents = []
# We don't care if it is a ghost, since it can't be seen if it is
# a ghost
for parent_ids in parent_map.itervalues():
all_parents.extend(parent_ids)
next_pending = all_seen.intersection(all_parents).difference(seen_ancestors)
seen_ancestors.update(next_pending)
next_pending.difference_update(not_searched_yet)
pending = next_pending
return seen_ancestors
def stop_searching_any(self, revisions):
"""
Remove any of the specified revisions from the search list.
None of the specified revisions are required to be present in the
search list.
It is okay to call stop_searching_any() for revisions which were seen
in previous iterations. It is the callers responsibility to call
find_seen_ancestors() to make sure that current search tips that are
ancestors of those revisions are also stopped. All explicitly stopped
revisions will be excluded from the search result's get_keys(), though.
"""
# TODO: does this help performance?
# if not revisions:
# return set()
revisions = frozenset(revisions)
if self._returning == 'next':
stopped = self._next_query.intersection(revisions)
self._next_query = self._next_query.difference(revisions)
else:
stopped_present = self._current_present.intersection(revisions)
stopped = stopped_present.union(
self._current_ghosts.intersection(revisions))
self._current_present.difference_update(stopped)
self._current_ghosts.difference_update(stopped)
# stopping 'x' should stop returning parents of 'x', but
# not if 'y' always references those same parents
stop_rev_references = {}
for rev in stopped_present:
for parent_id in self._current_parents[rev]:
if parent_id not in stop_rev_references:
stop_rev_references[parent_id] = 0
stop_rev_references[parent_id] += 1
# if only the stopped revisions reference it, the ref count will be
# 0 after this loop
for parents in self._current_parents.itervalues():
for parent_id in parents:
try:
stop_rev_references[parent_id] -= 1
except KeyError:
pass
stop_parents = set()
for rev_id, refs in stop_rev_references.iteritems():
if refs == 0:
stop_parents.add(rev_id)
self._next_query.difference_update(stop_parents)
self._stopped_keys.update(stopped)
self._stopped_keys.update(revisions)
return stopped
def start_searching(self, revisions):
"""Add revisions to the search.
The parents of revisions will be returned from the next call to next()
or next_with_ghosts(). If next_with_ghosts was the most recently used
next* call then the return value is the result of looking up the
ghost/not ghost status of revisions. (A tuple (present, ghosted)).
"""
revisions = frozenset(revisions)
self._started_keys.update(revisions)
new_revisions = revisions.difference(self.seen)
if self._returning == 'next':
self._next_query.update(new_revisions)
self.seen.update(new_revisions)
else:
# perform a query on revisions
revs, ghosts, query, parents = self._do_query(revisions)
self._stopped_keys.update(ghosts)
self._current_present.update(revs)
self._current_ghosts.update(ghosts)
self._next_query.update(query)
self._current_parents.update(parents)
return revs, ghosts
def invert_parent_map(parent_map):
"""Given a map from child => parents, create a map of parent=>children"""
child_map = {}
for child, parents in parent_map.iteritems():
for p in parents:
# Any given parent is likely to have only a small handful
# of children, many will have only one. So we avoid mem overhead of
# a list, in exchange for extra copying of tuples
if p not in child_map:
child_map[p] = (child,)
else:
child_map[p] = child_map[p] + (child,)
return child_map
def collapse_linear_regions(parent_map):
"""Collapse regions of the graph that are 'linear'.
For example::
A:[B], B:[C]
can be collapsed by removing B and getting::
A:[C]
:param parent_map: A dictionary mapping children to their parents
:return: Another dictionary with 'linear' chains collapsed
"""
# Note: this isn't a strictly minimal collapse. For example:
# A
# / \
# B C
# \ /
# D
# |
# E
# Will not have 'D' removed, even though 'E' could fit. Also:
# A
# | A
# B => |
# | C
# C
# A and C are both kept because they are edges of the graph. We *could* get
# rid of A if we wanted.
# A
# / \
# B C
# | |
# D E
# \ /
# F
# Will not have any nodes removed, even though you do have an
# 'uninteresting' linear D->B and E->C
children = {}
for child, parents in parent_map.iteritems():
children.setdefault(child, [])
for p in parents:
children.setdefault(p, []).append(child)
orig_children = dict(children)
removed = set()
result = dict(parent_map)
for node in parent_map:
parents = result[node]
if len(parents) == 1:
parent_children = children[parents[0]]
if len(parent_children) != 1:
# This is not the only child
continue
node_children = children[node]
if len(node_children) != 1:
continue
child_parents = result.get(node_children[0], None)
if len(child_parents) != 1:
# This is not its only parent
continue
# The child of this node only points at it, and the parent only has
# this as a child. remove this node, and join the others together
result[node_children[0]] = parents
children[parents[0]] = node_children
del result[node]
del children[node]
removed.add(node)
return result
class GraphThunkIdsToKeys(object):
"""Forwards calls about 'ids' to be about keys internally."""
def __init__(self, graph):
self._graph = graph
def topo_sort(self):
return [r for (r,) in self._graph.topo_sort()]
def heads(self, ids):
"""See Graph.heads()"""
as_keys = [(i,) for i in ids]
head_keys = self._graph.heads(as_keys)
return set([h[0] for h in head_keys])
def merge_sort(self, tip_revision):
nodes = self._graph.merge_sort((tip_revision,))
for node in nodes:
node.key = node.key[0]
return nodes
def add_node(self, revision, parents):
self._graph.add_node((revision,), [(p,) for p in parents])
_counters = [0,0,0,0,0,0,0]
try:
from bzrlib._known_graph_pyx import KnownGraph
except ImportError, e:
osutils.failed_to_load_extension(e)
from bzrlib._known_graph_py import KnownGraph
|