/usr/share/pyshared/numpy/fft/helper.py is in python-numpy 1:1.6.1-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | """
Discrete Fourier Transforms - helper.py
"""
# Created by Pearu Peterson, September 2002
__all__ = ['fftshift','ifftshift','fftfreq']
from numpy.core import asarray, concatenate, arange, take, \
integer, empty
import numpy.core.numerictypes as nt
import types
def fftshift(x,axes=None):
"""
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all).
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to shift. Default is None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
ifftshift : The inverse of `fftshift`.
Examples
--------
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
Shift the zero-frequency component only along the second axis:
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[ 2., 0., 1.],
[-4., 3., 4.],
[-1., -3., -2.]])
"""
tmp = asarray(x)
ndim = len(tmp.shape)
if axes is None:
axes = range(ndim)
elif isinstance(axes, (int, nt.integer)):
axes = (axes,)
y = tmp
for k in axes:
n = tmp.shape[k]
p2 = (n+1)//2
mylist = concatenate((arange(p2,n),arange(p2)))
y = take(y,mylist,k)
return y
def ifftshift(x,axes=None):
"""
The inverse of fftshift.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
fftshift : Shift zero-frequency component to the center of the spectrum.
Examples
--------
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
"""
tmp = asarray(x)
ndim = len(tmp.shape)
if axes is None:
axes = range(ndim)
elif isinstance(axes, (int, nt.integer)):
axes = (axes,)
y = tmp
for k in axes:
n = tmp.shape[k]
p2 = n-(n+1)//2
mylist = concatenate((arange(p2,n),arange(p2)))
y = take(y,mylist,k)
return y
def fftfreq(n,d=1.0):
"""
Return the Discrete Fourier Transform sample frequencies.
The returned float array contains the frequency bins in
cycles/unit (with zero at the start) given a window length `n` and a
sample spacing `d`::
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
Parameters
----------
n : int
Window length.
d : scalar
Sample spacing.
Returns
-------
out : ndarray
The array of length `n`, containing the sample frequencies.
Examples
--------
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([ 0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])
"""
assert isinstance(n,types.IntType) or isinstance(n, integer)
val = 1.0/(n*d)
results = empty(n, int)
N = (n-1)//2 + 1
p1 = arange(0,N,dtype=int)
results[:N] = p1
p2 = arange(-(n//2),0,dtype=int)
results[N:] = p2
return results * val
#return hstack((arange(0,(n-1)/2 + 1), arange(-(n/2),0))) / (n*d)
|