/usr/share/pyshared/numpy/ma/bench.py is in python-numpy 1:1.6.1-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | #! python
# encoding: utf-8
import timeit
#import IPython.ipapi
#ip = IPython.ipapi.get()
#from IPython import ipmagic
import numpy
#from numpy import ma
#from numpy.ma import filled
#from numpy.ma.testutils import assert_equal
#####---------------------------------------------------------------------------
#---- --- Global variables ---
#####---------------------------------------------------------------------------
# Small arrays ..................................
xs = numpy.random.uniform(-1,1,6).reshape(2,3)
ys = numpy.random.uniform(-1,1,6).reshape(2,3)
zs = xs + 1j * ys
m1 = [[True, False, False], [False, False, True]]
m2 = [[True, False, True], [False, False, True]]
nmxs = numpy.ma.array(xs, mask=m1)
nmys = numpy.ma.array(ys, mask=m2)
nmzs = numpy.ma.array(zs, mask=m1)
# Big arrays ....................................
xl = numpy.random.uniform(-1,1,100*100).reshape(100,100)
yl = numpy.random.uniform(-1,1,100*100).reshape(100,100)
zl = xl + 1j * yl
maskx = xl > 0.8
masky = yl < -0.8
nmxl = numpy.ma.array(xl, mask=maskx)
nmyl = numpy.ma.array(yl, mask=masky)
nmzl = numpy.ma.array(zl, mask=maskx)
#####---------------------------------------------------------------------------
#---- --- Functions ---
#####---------------------------------------------------------------------------
def timer(s, v='', nloop=500, nrep=3):
units = ["s", "ms", "µs", "ns"]
scaling = [1, 1e3, 1e6, 1e9]
print "%s : %-50s : " % (v,s),
varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
Timer = timeit.Timer(stmt=s, setup=setup)
best = min(Timer.repeat(nrep, nloop)) / nloop
if best > 0.0:
order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
else:
order = 3
print "%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
3,
best * scaling[order],
units[order])
# ip.magic('timeit -n%i %s' % (nloop,s))
def compare_functions_1v(func, nloop=500,
xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
funcname = func.__name__
print "-"*50
print "%s on small arrays" % funcname
module, data = "numpy.ma","nmxs"
timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
#
print "%s on large arrays" % funcname
module, data = "numpy.ma","nmxl"
timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
return
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
print "-"*50
print "%s on small arrays" % methodname
data, ver = "nm%ss" % vars, 'numpy.ma'
timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
#
print "%s on large arrays" % methodname
data, ver = "nm%sl" % vars, 'numpy.ma'
timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
return
def compare_functions_2v(func, nloop=500, test=True,
xs=xs, nmxs=nmxs,
ys=ys, nmys=nmys,
xl=xl, nmxl=nmxl,
yl=yl, nmyl=nmyl):
funcname = func.__name__
print "-"*50
print "%s on small arrays" % funcname
module, data = "numpy.ma","nmxs,nmys"
timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
#
print "%s on large arrays" % funcname
module, data = "numpy.ma","nmxl,nmyl"
timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
return
###############################################################################
################################################################################
if __name__ == '__main__':
# # Small arrays ..................................
# xs = numpy.random.uniform(-1,1,6).reshape(2,3)
# ys = numpy.random.uniform(-1,1,6).reshape(2,3)
# zs = xs + 1j * ys
# m1 = [[True, False, False], [False, False, True]]
# m2 = [[True, False, True], [False, False, True]]
# nmxs = numpy.ma.array(xs, mask=m1)
# nmys = numpy.ma.array(ys, mask=m2)
# nmzs = numpy.ma.array(zs, mask=m1)
# mmxs = maskedarray.array(xs, mask=m1)
# mmys = maskedarray.array(ys, mask=m2)
# mmzs = maskedarray.array(zs, mask=m1)
# # Big arrays ....................................
# xl = numpy.random.uniform(-1,1,100*100).reshape(100,100)
# yl = numpy.random.uniform(-1,1,100*100).reshape(100,100)
# zl = xl + 1j * yl
# maskx = xl > 0.8
# masky = yl < -0.8
# nmxl = numpy.ma.array(xl, mask=maskx)
# nmyl = numpy.ma.array(yl, mask=masky)
# nmzl = numpy.ma.array(zl, mask=maskx)
# mmxl = maskedarray.array(xl, mask=maskx, shrink=True)
# mmyl = maskedarray.array(yl, mask=masky, shrink=True)
# mmzl = maskedarray.array(zl, mask=maskx, shrink=True)
#
compare_functions_1v(numpy.sin)
compare_functions_1v(numpy.log)
compare_functions_1v(numpy.sqrt)
#....................................................................
compare_functions_2v(numpy.multiply)
compare_functions_2v(numpy.divide)
compare_functions_2v(numpy.power)
#....................................................................
compare_methods('ravel','', nloop=1000)
compare_methods('conjugate','','z', nloop=1000)
compare_methods('transpose','', nloop=1000)
compare_methods('compressed','', nloop=1000)
compare_methods('__getitem__','0', nloop=1000)
compare_methods('__getitem__','(0,0)', nloop=1000)
compare_methods('__getitem__','[0,-1]', nloop=1000)
compare_methods('__setitem__','0, 17', nloop=1000, test=False)
compare_methods('__setitem__','(0,0), 17', nloop=1000, test=False)
#....................................................................
print "-"*50
print "__setitem__ on small arrays"
timer('nmxs.__setitem__((-1,0),numpy.ma.masked)', 'numpy.ma ',nloop=10000)
print "-"*50
print "__setitem__ on large arrays"
timer('nmxl.__setitem__((-1,0),numpy.ma.masked)', 'numpy.ma ',nloop=10000)
#....................................................................
print "-"*50
print "where on small arrays"
timer('numpy.ma.where(nmxs>2,nmxs,nmys)', 'numpy.ma ',nloop=1000)
print "-"*50
print "where on large arrays"
timer('numpy.ma.where(nmxl>2,nmxl,nmyl)', 'numpy.ma ',nloop=100)
|