This file is indexed.

/usr/share/pyshared/numpy/ma/bench.py is in python-numpy 1:1.6.1-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#! python
# encoding: utf-8

import timeit
#import IPython.ipapi
#ip = IPython.ipapi.get()
#from IPython import ipmagic
import numpy
#from numpy import ma
#from numpy.ma import filled
#from numpy.ma.testutils import assert_equal


#####---------------------------------------------------------------------------
#---- --- Global variables ---
#####---------------------------------------------------------------------------

# Small arrays ..................................
xs = numpy.random.uniform(-1,1,6).reshape(2,3)
ys = numpy.random.uniform(-1,1,6).reshape(2,3)
zs = xs + 1j * ys
m1 = [[True, False, False], [False, False, True]]
m2 = [[True, False, True], [False, False, True]]
nmxs = numpy.ma.array(xs, mask=m1)
nmys = numpy.ma.array(ys, mask=m2)
nmzs = numpy.ma.array(zs, mask=m1)
# Big arrays ....................................
xl = numpy.random.uniform(-1,1,100*100).reshape(100,100)
yl = numpy.random.uniform(-1,1,100*100).reshape(100,100)
zl = xl + 1j * yl
maskx = xl > 0.8
masky = yl < -0.8
nmxl = numpy.ma.array(xl, mask=maskx)
nmyl = numpy.ma.array(yl, mask=masky)
nmzl = numpy.ma.array(zl, mask=maskx)

#####---------------------------------------------------------------------------
#---- --- Functions ---
#####---------------------------------------------------------------------------

def timer(s, v='', nloop=500, nrep=3):
    units = ["s", "ms", "µs", "ns"]
    scaling = [1, 1e3, 1e6, 1e9]
    print "%s : %-50s : " % (v,s),
    varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
    setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
    Timer = timeit.Timer(stmt=s, setup=setup)
    best = min(Timer.repeat(nrep, nloop)) / nloop
    if best > 0.0:
        order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
    else:
        order = 3
    print "%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
                                                      3,
                                                      best * scaling[order],
                                                      units[order])
#    ip.magic('timeit -n%i %s' % (nloop,s))



def compare_functions_1v(func, nloop=500,
                       xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    funcname = func.__name__
    print "-"*50
    print "%s on small arrays" % funcname
    module, data = "numpy.ma","nmxs"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    #
    print "%s on large arrays" % funcname
    module, data = "numpy.ma","nmxl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return

def compare_methods(methodname, args, vars='x', nloop=500, test=True,
                    xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
    print "-"*50
    print "%s on small arrays" % methodname
    data, ver = "nm%ss" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    #
    print "%s on large arrays" % methodname
    data, ver = "nm%sl" % vars, 'numpy.ma'
    timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
    return

def compare_functions_2v(func, nloop=500, test=True,
                       xs=xs, nmxs=nmxs,
                       ys=ys, nmys=nmys,
                       xl=xl, nmxl=nmxl,
                       yl=yl, nmyl=nmyl):
    funcname = func.__name__
    print "-"*50
    print "%s on small arrays" % funcname
    module, data = "numpy.ma","nmxs,nmys"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    #
    print "%s on large arrays" % funcname
    module, data = "numpy.ma","nmxl,nmyl"
    timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
    return


###############################################################################


################################################################################
if __name__ == '__main__':
#    # Small arrays ..................................
#    xs = numpy.random.uniform(-1,1,6).reshape(2,3)
#    ys = numpy.random.uniform(-1,1,6).reshape(2,3)
#    zs = xs + 1j * ys
#    m1 = [[True, False, False], [False, False, True]]
#    m2 = [[True, False, True], [False, False, True]]
#    nmxs = numpy.ma.array(xs, mask=m1)
#    nmys = numpy.ma.array(ys, mask=m2)
#    nmzs = numpy.ma.array(zs, mask=m1)
#    mmxs = maskedarray.array(xs, mask=m1)
#    mmys = maskedarray.array(ys, mask=m2)
#    mmzs = maskedarray.array(zs, mask=m1)
#    # Big arrays ....................................
#    xl = numpy.random.uniform(-1,1,100*100).reshape(100,100)
#    yl = numpy.random.uniform(-1,1,100*100).reshape(100,100)
#    zl = xl + 1j * yl
#    maskx = xl > 0.8
#    masky = yl < -0.8
#    nmxl = numpy.ma.array(xl, mask=maskx)
#    nmyl = numpy.ma.array(yl, mask=masky)
#    nmzl = numpy.ma.array(zl, mask=maskx)
#    mmxl = maskedarray.array(xl, mask=maskx, shrink=True)
#    mmyl = maskedarray.array(yl, mask=masky, shrink=True)
#    mmzl = maskedarray.array(zl, mask=maskx, shrink=True)
#
    compare_functions_1v(numpy.sin)
    compare_functions_1v(numpy.log)
    compare_functions_1v(numpy.sqrt)
    #....................................................................
    compare_functions_2v(numpy.multiply)
    compare_functions_2v(numpy.divide)
    compare_functions_2v(numpy.power)
    #....................................................................
    compare_methods('ravel','', nloop=1000)
    compare_methods('conjugate','','z', nloop=1000)
    compare_methods('transpose','', nloop=1000)
    compare_methods('compressed','', nloop=1000)
    compare_methods('__getitem__','0', nloop=1000)
    compare_methods('__getitem__','(0,0)', nloop=1000)
    compare_methods('__getitem__','[0,-1]', nloop=1000)
    compare_methods('__setitem__','0, 17', nloop=1000, test=False)
    compare_methods('__setitem__','(0,0), 17', nloop=1000, test=False)
    #....................................................................
    print "-"*50
    print "__setitem__ on small arrays"
    timer('nmxs.__setitem__((-1,0),numpy.ma.masked)', 'numpy.ma   ',nloop=10000)

    print "-"*50
    print "__setitem__ on large arrays"
    timer('nmxl.__setitem__((-1,0),numpy.ma.masked)', 'numpy.ma   ',nloop=10000)

    #....................................................................
    print "-"*50
    print "where on small arrays"
    timer('numpy.ma.where(nmxs>2,nmxs,nmys)', 'numpy.ma   ',nloop=1000)
    print "-"*50
    print "where on large arrays"
    timer('numpy.ma.where(nmxl>2,nmxl,nmyl)', 'numpy.ma   ',nloop=100)