/usr/share/pyshared/numpy/polynomial/polytemplate.py is in python-numpy 1:1.6.1-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 | """
Template for the Chebyshev and Polynomial classes.
This module houses a Python string module Template object (see, e.g.,
http://docs.python.org/library/string.html#template-strings) used by
the `polynomial` and `chebyshev` modules to implement their respective
`Polynomial` and `Chebyshev` classes. It provides a mechanism for easily
creating additional specific polynomial classes (e.g., Legendre, Jacobi,
etc.) in the future, such that all these classes will have a common API.
"""
import string
import sys
if sys.version_info[0] >= 3:
rel_import = "from . import"
else:
rel_import = "import"
polytemplate = string.Template('''
from __future__ import division
REL_IMPORT polyutils as pu
import numpy as np
class $name(pu.PolyBase) :
"""A $name series class.
$name instances provide the standard Python numerical methods '+',
'-', '*', '//', '%', 'divmod', '**', and '()' as well as the listed
methods.
Parameters
----------
coef : array_like
$name coefficients, in increasing order. For example,
``(1, 2, 3)`` implies ``P_0 + 2P_1 + 3P_2`` where the
``P_i`` are a graded polynomial basis.
domain : (2,) array_like, optional
Domain to use. The interval ``[domain[0], domain[1]]`` is mapped to
the interval ``[window[0], window[1]]`` by shifting and scaling.
The default value is $domain.
window : (2,) array_like, optional
Window, see ``domain`` for its use. The default value is $domain.
.. versionadded:: 1.6.0
Attributes
----------
coef : (N,) array
$name coefficients, from low to high.
domain : (2,) array
Domain that is mapped to ``window``.
window : (2,) array
Window that ``domain`` is mapped to.
Class Attributes
----------------
maxpower : int
Maximum power allowed, i.e., the largest number ``n`` such that
``p(x)**n`` is allowed. This is to limit runaway polynomial size.
domain : (2,) ndarray
Default domain of the class.
window : (2,) ndarray
Default window of the class.
Notes
-----
It is important to specify the domain in many cases, for instance in
fitting data, because many of the important properties of the
polynomial basis only hold in a specified interval and consequently
the data must be mapped into that interval in order to benefit.
Examples
--------
"""
# Limit runaway size. T_n^m has degree n*2^m
maxpower = 16
# Default domain
domain = np.array($domain)
# Default window
window = np.array($domain)
# Don't let participate in array operations. Value doesn't matter.
__array_priority__ = 0
def has_samecoef(self, other):
"""Check if coefficients match.
Parameters
----------
other : class instance
The other class must have the ``coef`` attribute.
Returns
-------
bool : boolean
True if the coefficients are the same, False otherwise.
Notes
-----
.. versionadded:: 1.6.0
"""
if len(self.coef) != len(other.coef):
return False
elif not np.all(self.coef == other.coef):
return False
else:
return True
def has_samedomain(self, other):
"""Check if domains match.
Parameters
----------
other : class instance
The other class must have the ``domain`` attribute.
Returns
-------
bool : boolean
True if the domains are the same, False otherwise.
Notes
-----
.. versionadded:: 1.6.0
"""
return np.all(self.domain == other.domain)
def has_samewindow(self, other):
"""Check if windows match.
Parameters
----------
other : class instance
The other class must have the ``window`` attribute.
Returns
-------
bool : boolean
True if the windows are the same, False otherwise.
Notes
-----
.. versionadded:: 1.6.0
"""
return np.all(self.window == other.window)
def has_samewindow(self, other):
"""Check if windows match.
Parameters
----------
other : class instance
The other class must have the ``window`` attribute.
Returns
-------
bool : boolean
True if the windows are the same, False otherwise.
"""
return np.all(self.window == other.window)
def __init__(self, coef, domain=$domain, window=$domain) :
[coef, dom, win] = pu.as_series([coef, domain, window], trim=False)
if len(dom) != 2 :
raise ValueError("Domain has wrong number of elements.")
if len(win) != 2 :
raise ValueError("Window has wrong number of elements.")
self.coef = coef
self.domain = dom
self.window = win
def __repr__(self):
format = "%s(%s, %s, %s)"
coef = repr(self.coef)[6:-1]
domain = repr(self.domain)[6:-1]
window = repr(self.window)[6:-1]
return format % ('$name', coef, domain, window)
def __str__(self) :
format = "%s(%s)"
coef = str(self.coef)
return format % ('$nick', coef)
# Pickle and copy
def __getstate__(self) :
ret = self.__dict__.copy()
ret['coef'] = self.coef.copy()
ret['domain'] = self.domain.copy()
ret['window'] = self.window.copy()
return ret
def __setstate__(self, dict) :
self.__dict__ = dict
# Call
def __call__(self, arg) :
off, scl = pu.mapparms(self.domain, self.window)
arg = off + scl*arg
return ${nick}val(arg, self.coef)
def __iter__(self) :
return iter(self.coef)
def __len__(self) :
return len(self.coef)
# Numeric properties.
def __neg__(self) :
return self.__class__(-self.coef, self.domain, self.window)
def __pos__(self) :
return self
def __add__(self, other) :
"""Returns sum"""
if isinstance(other, self.__class__) :
if self.has_samedomain(other) and self.has_samewindow(other):
coef = ${nick}add(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
coef = ${nick}add(self.coef, other)
except :
return NotImplemented
return self.__class__(coef, self.domain, self.window)
def __sub__(self, other) :
"""Returns difference"""
if isinstance(other, self.__class__) :
if self.has_samedomain(other) and self.has_samewindow(other):
coef = ${nick}sub(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
coef = ${nick}sub(self.coef, other)
except :
return NotImplemented
return self.__class__(coef, self.domain, self.window)
def __mul__(self, other) :
"""Returns product"""
if isinstance(other, self.__class__) :
if self.has_samedomain(other) and self.has_samewindow(other):
coef = ${nick}mul(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
coef = ${nick}mul(self.coef, other)
except :
return NotImplemented
return self.__class__(coef, self.domain, self.window)
def __div__(self, other):
# set to __floordiv__ /.
return self.__floordiv__(other)
def __truediv__(self, other) :
# there is no true divide if the rhs is not a scalar, although it
# could return the first n elements of an infinite series.
# It is hard to see where n would come from, though.
if isinstance(other, self.__class__) :
if len(other.coef) == 1 :
coef = div(self.coef, other.coef)
else :
return NotImplemented
elif np.isscalar(other) :
# this might be overly restrictive
coef = self.coef/other
else :
return NotImplemented
return self.__class__(coef, self.domain, self.window)
def __floordiv__(self, other) :
"""Returns the quotient."""
if isinstance(other, self.__class__) :
if np.all(self.domain == other.domain) :
quo, rem = ${nick}div(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
quo, rem = ${nick}div(self.coef, other)
except :
return NotImplemented
return self.__class__(quo, self.domain, self.window)
def __mod__(self, other) :
"""Returns the remainder."""
if isinstance(other, self.__class__) :
if self.has_samedomain(other) and self.has_samewindow(other):
quo, rem = ${nick}div(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
quo, rem = ${nick}div(self.coef, other)
except :
return NotImplemented
return self.__class__(rem, self.domain, self.window)
def __divmod__(self, other) :
"""Returns quo, remainder"""
if isinstance(other, self.__class__) :
if self.has_samedomain(other) and self.has_samewindow(other):
quo, rem = ${nick}div(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
quo, rem = ${nick}div(self.coef, other)
except :
return NotImplemented
quo = self.__class__(quo, self.domain, self.window)
rem = self.__class__(rem, self.domain, self.window)
return quo, rem
def __pow__(self, other) :
try :
coef = ${nick}pow(self.coef, other, maxpower = self.maxpower)
except :
raise
return self.__class__(coef, self.domain, self.window)
def __radd__(self, other) :
try :
coef = ${nick}add(other, self.coef)
except :
return NotImplemented
return self.__class__(coef, self.domain, self.window)
def __rsub__(self, other):
try :
coef = ${nick}sub(other, self.coef)
except :
return NotImplemented
return self.__class__(coef, self.domain, self.window)
def __rmul__(self, other) :
try :
coef = ${nick}mul(other, self.coef)
except :
return NotImplemented
return self.__class__(coef, self.domain, self.window)
def __rdiv__(self, other):
# set to __floordiv__ /.
return self.__rfloordiv__(other)
def __rtruediv__(self, other) :
# there is no true divide if the rhs is not a scalar, although it
# could return the first n elements of an infinite series.
# It is hard to see where n would come from, though.
if len(self.coef) == 1 :
try :
quo, rem = ${nick}div(other, self.coef[0])
except :
return NotImplemented
return self.__class__(quo, self.domain, self.window)
def __rfloordiv__(self, other) :
try :
quo, rem = ${nick}div(other, self.coef)
except :
return NotImplemented
return self.__class__(quo, self.domain, self.window)
def __rmod__(self, other) :
try :
quo, rem = ${nick}div(other, self.coef)
except :
return NotImplemented
return self.__class__(rem, self.domain, self.window)
def __rdivmod__(self, other) :
try :
quo, rem = ${nick}div(other, self.coef)
except :
return NotImplemented
quo = self.__class__(quo, self.domain, self.window)
rem = self.__class__(rem, self.domain, self.window)
return quo, rem
# Enhance me
# some augmented arithmetic operations could be added here
def __eq__(self, other) :
res = isinstance(other, self.__class__) \
and self.has_samecoef(other) \
and self.has_samedomain(other) \
and self.has_samewindow(other)
return res
def __ne__(self, other) :
return not self.__eq__(other)
#
# Extra methods.
#
def copy(self) :
"""Return a copy.
Return a copy of the current $name instance.
Returns
-------
new_instance : $name
Copy of current instance.
"""
return self.__class__(self.coef, self.domain, self.window)
def degree(self) :
"""The degree of the series.
Notes
-----
.. versionadded:: 1.5.0
"""
return len(self) - 1
def cutdeg(self, deg) :
"""Truncate series to the given degree.
Reduce the degree of the $name series to `deg` by discarding the
high order terms. If `deg` is greater than the current degree a
copy of the current series is returned. This can be useful in least
squares where the coefficients of the high degree terms may be very
small.
Parameters
----------
deg : non-negative int
The series is reduced to degree `deg` by discarding the high
order terms. The value of `deg` must be a non-negative integer.
Returns
-------
new_instance : $name
New instance of $name with reduced degree.
Notes
-----
.. versionadded:: 1.5.0
"""
return self.truncate(deg + 1)
def trim(self, tol=0) :
"""Remove small leading coefficients
Remove leading coefficients until a coefficient is reached whose
absolute value greater than `tol` or the beginning of the series is
reached. If all the coefficients would be removed the series is set to
``[0]``. A new $name instance is returned with the new coefficients.
The current instance remains unchanged.
Parameters
----------
tol : non-negative number.
All trailing coefficients less than `tol` will be removed.
Returns
-------
new_instance : $name
Contains the new set of coefficients.
"""
coef = pu.trimcoef(self.coef, tol)
return self.__class__(coef, self.domain, self.window)
def truncate(self, size) :
"""Truncate series to length `size`.
Reduce the $name series to length `size` by discarding the high
degree terms. The value of `size` must be a positive integer. This
can be useful in least squares where the coefficients of the
high degree terms may be very small.
Parameters
----------
size : positive int
The series is reduced to length `size` by discarding the high
degree terms. The value of `size` must be a positive integer.
Returns
-------
new_instance : $name
New instance of $name with truncated coefficients.
"""
isize = int(size)
if isize != size or isize < 1 :
raise ValueError("size must be a positive integer")
if isize >= len(self.coef) :
coef = self.coef
else :
coef = self.coef[:isize]
return self.__class__(coef, self.domain, self.window)
def convert(self, domain=None, kind=None, window=None) :
"""Convert to different class and/or domain.
Parameters
----------
domain : array_like, optional
The domain of the converted series. If the value is None,
the default domain of `kind` is used.
kind : class, optional
The polynomial series type class to which the current instance
should be converted. If kind is None, then the class of the
current instance is used.
window : array_like, optional
The window of the converted series. If the value is None,
the default window of `kind` is used.
Returns
-------
new_series_instance : `kind`
The returned class can be of different type than the current
instance and/or have a different domain.
Notes
-----
Conversion between domains and class types can result in
numerically ill defined series.
Examples
--------
"""
if kind is None:
kind = $name
if domain is None:
domain = kind.domain
if window is None:
window = kind.window
return self(kind.identity(domain, window=window))
def mapparms(self) :
"""Return the mapping parameters.
The returned values define a linear map ``off + scl*x`` that is
applied to the input arguments before the series is evaluated. The
map depends on the ``domain`` and ``window``; if the current
``domain`` is equal to the ``window`` the resulting map is the
identity. If the coeffients of the ``$name`` instance are to be
used by themselves outside this class, then the linear function
must be substituted for the ``x`` in the standard representation of
the base polynomials.
Returns
-------
off, scl : floats or complex
The mapping function is defined by ``off + scl*x``.
Notes
-----
If the current domain is the interval ``[l_1, r_1]`` and the window
is ``[l_2, r_2]``, then the linear mapping function ``L`` is
defined by the equations::
L(l_1) = l_2
L(r_1) = r_2
"""
return pu.mapparms(self.domain, self.window)
def integ(self, m=1, k=[], lbnd=None) :
"""Integrate.
Return an instance of $name that is the definite integral of the
current series. Refer to `${nick}int` for full documentation.
Parameters
----------
m : non-negative int
The number of integrations to perform.
k : array_like
Integration constants. The first constant is applied to the
first integration, the second to the second, and so on. The
list of values must less than or equal to `m` in length and any
missing values are set to zero.
lbnd : Scalar
The lower bound of the definite integral.
Returns
-------
integral : $name
The integral of the series using the same domain.
See Also
--------
${nick}int : similar function.
${nick}der : similar function for derivative.
"""
off, scl = self.mapparms()
if lbnd is None :
lbnd = 0
else :
lbnd = off + scl*lbnd
coef = ${nick}int(self.coef, m, k, lbnd, 1./scl)
return self.__class__(coef, self.domain, self.window)
def deriv(self, m=1):
"""Differentiate.
Return an instance of $name that is the derivative of the current
series. Refer to `${nick}der` for full documentation.
Parameters
----------
m : non-negative int
The number of integrations to perform.
Returns
-------
derivative : $name
The derivative of the series using the same domain.
See Also
--------
${nick}der : similar function.
${nick}int : similar function for integration.
"""
off, scl = self.mapparms()
coef = ${nick}der(self.coef, m, scl)
return self.__class__(coef, self.domain, self.window)
def roots(self) :
"""Return list of roots.
Return ndarray of roots for this series. See `${nick}roots` for
full documentation. Note that the accuracy of the roots is likely to
decrease the further outside the domain they lie.
See Also
--------
${nick}roots : similar function
${nick}fromroots : function to go generate series from roots.
"""
roots = ${nick}roots(self.coef)
return pu.mapdomain(roots, self.window, self.domain)
def linspace(self, n=100, domain=None):
"""Return x,y values at equally spaced points in domain.
Returns x, y values at `n` equally spaced points across domain.
Here y is the value of the polynomial at the points x. This is
intended as a plotting aid.
Parameters
----------
n : int, optional
Number of point pairs to return. The default value is 100.
Returns
-------
x, y : ndarrays
``x`` is equal to linspace(self.domain[0], self.domain[1], n)
``y`` is the polynomial evaluated at ``x``.
.. versionadded:: 1.5.0
"""
if domain is None:
domain = self.domain
x = np.linspace(domain[0], domain[1], n)
y = self(x)
return x, y
@staticmethod
def fit(x, y, deg, domain=None, rcond=None, full=False, w=None,
window=$domain):
"""Least squares fit to data.
Return a `$name` instance that is the least squares fit to the data
`y` sampled at `x`. Unlike `${nick}fit`, the domain of the returned
instance can be specified and this will often result in a superior
fit with less chance of ill conditioning. See `${nick}fit` for full
documentation of the implementation.
Parameters
----------
x : array_like, shape (M,)
x-coordinates of the M sample points ``(x[i], y[i])``.
y : array_like, shape (M,) or (M, K)
y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.
deg : int
Degree of the fitting polynomial.
domain : {None, [beg, end], []}, optional
Domain to use for the returned $name instance. If ``None``,
then a minimal domain that covers the points `x` is chosen. If
``[]`` the default domain ``$domain`` is used. The default
value is $domain in numpy 1.4.x and ``None`` in later versions.
The ``'[]`` value was added in numpy 1.5.0.
rcond : float, optional
Relative condition number of the fit. Singular values smaller
than this relative to the largest singular value will be
ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most
cases.
full : bool, optional
Switch determining nature of return value. When it is False
(the default) just the coefficients are returned, when True
diagnostic information from the singular value decomposition is
also returned.
w : array_like, shape (M,), optional
Weights. If not None the contribution of each point
``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
weights are chosen so that the errors of the products
``w[i]*y[i]`` all have the same variance. The default value is
None.
.. versionadded:: 1.5.0
window : {[beg, end]}, optional
Window to use for the returned $name instance. The default
value is ``$domain``
.. versionadded:: 1.6.0
Returns
-------
least_squares_fit : instance of $name
The $name instance is the least squares fit to the data and
has the domain specified in the call.
[residuals, rank, singular_values, rcond] : only if `full` = True
Residuals of the least-squares fit, the effective rank of the
scaled Vandermonde matrix and its singular values, and the
specified value of `rcond`. For more details, see
`linalg.lstsq`.
See Also
--------
${nick}fit : similar function
"""
if domain is None:
domain = pu.getdomain(x)
elif domain == []:
domain = $domain
if window == []:
window = $domain
xnew = pu.mapdomain(x, domain, window)
res = ${nick}fit(xnew, y, deg, w=w, rcond=rcond, full=full)
if full :
[coef, status] = res
return $name(coef, domain=domain, window=window), status
else :
coef = res
return $name(coef, domain=domain, window=window)
@staticmethod
def fromroots(roots, domain=$domain, window=$domain) :
"""Return $name instance with specified roots.
Returns an instance of $name representing the product
``(x - r[0])*(x - r[1])*...*(x - r[n-1])``, where ``r`` is the
list of roots.
Parameters
----------
roots : array_like
List of roots.
Returns
-------
object : $name
Series with the specified roots.
See Also
--------
${nick}fromroots : equivalent function
"""
if domain is None :
domain = pu.getdomain(roots)
rnew = pu.mapdomain(roots, domain, window)
coef = ${nick}fromroots(rnew)
return $name(coef, domain=domain, window=window)
@staticmethod
def identity(domain=$domain, window=$domain) :
"""Identity function.
If ``p`` is the returned $name object, then ``p(x) == x`` for all
values of x.
Parameters
----------
domain : array_like
The resulting array must be if the form ``[beg, end]``, where
``beg`` and ``end`` are the endpoints of the domain.
window : array_like
The resulting array must be if the form ``[beg, end]``, where
``beg`` and ``end`` are the endpoints of the window.
Returns
-------
identity : $name object
"""
off, scl = pu.mapparms(window, domain)
coef = ${nick}line(off, scl)
return $name(coef, domain, window)
'''.replace('REL_IMPORT', rel_import))
|