This file is indexed.

/usr/share/pyshared/rdflib/sparql/Query.py is in python-rdflib 2.4.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
import types, sets
from pprint import pprint
from rdflib import URIRef, BNode, Literal, Variable, RDF
from rdflib.Graph import Graph, ConjunctiveGraph, ReadOnlyGraphAggregate
from rdflib.Identifier import Identifier
from rdflib.util import check_subject, list2set
from rdflib.sparql import SPARQLError
from rdflib.sparql.sparqlGraph import SPARQLGraph
from rdflib.sparql.graphPattern import GraphPattern

class SessionBNode(BNode):
    """
    Special 'session' BNodes.  I.e., BNodes at the query side which refer to 
    BNodes in persistence
    """
    pass        

def _checkOptionals(pattern,optionals) :
    """
    The following remark in the SPARQL document is important:

    'If a new variable is mentioned in an optional block (as mbox and
    hpage are mentioned in the previous example), that variable can be
    mentioned in that block and can not be mentioned in a subsequent
    block.'

    What this means is that the various optional blocks do not
    interefere at this level and there is no need for a check whether
    a binding in a subsequent block clashes with an earlier optional
    block.

    This method checks whether this requirement is fulfilled. Raises a
    SPARQLError exception if it is not (the rest of the algorithm
    relies on this, so checking it is a good idea...)

    @param pattern: graph pattern
    @type pattern: L{GraphPattern<rdflib.sparql.GraphPattern>}
    @param optionals: graph pattern
    @type optionals: L{GraphPattern<rdflib.sparql.GraphPattern>}
    @raise SPARQLError: if the requirement is not fulfilled
    """
    for i in xrange(0,len(optionals)) :
        for c in optionals[i].unbounds :
            if c in pattern.unbounds :
                # this is fine, an optional query variable can appear in the main pattern, too
                continue
            if i > 0 :
                for j in xrange(0,i) :
                    if c in optionals[j].unbounds :
                        # This means that:
                        #   - the variable is not in the main pattern (because the previous if would have taken care of it)
                        #   - the variable is in the previous optional: ie, Error!
                        raise SPARQLError("%s is an illegal query string, it appear in a previous OPTIONAL clause" % c)


def _variablesToArray(variables,name='') :
    """Turn an array of Variables or query strings into an array of query strings. If the 'variables'
    is in fact a single string or Variable, then it is also put into an array.

    @param variables: a string, a unicode, or a Variable, or an array of those (can be mixed, actually). As a special case,
    if the value is "*", it returns None (this corresponds to the wildcard in SPARQL)
    @param name: the string to be used in the error message
    """
    if isinstance(variables,basestring) :
        if variables == "*" :
            return None
        else :
            return [variables]
    elif isinstance(variables,Variable) :
        return [variables]
    elif type(variables) == list or type(variables) == tuple :
        retval = []
        for s in variables :
            if isinstance(s,basestring) :
                retval.append(s)
            elif isinstance(s,Variable) :
                retval.append(s)
            else :
                raise SPARQLError("illegal type in '%s'; must be a string, unicode, or a Variable" % name)
    else :
        raise SPARQLError("'%s' argument must be a string, a Variable, or a list of those" % name)
    return retval

def _createInitialBindings(pattern) :
    """Creates an initial binding directory for the Graph Pattern by putting a None as a value for each
    query variable.

    @param pattern: graph pattern
    @type pattern: L{GraphPattern<rdflib.sparql.GraphPattern>}
    """
    bindings = {}
    for c in pattern.unbounds :
        bindings[c] = None
    return bindings
                       
def _ancestorTraversal(node,selected=False):
    if selected:
        yield node
    if node.parent:
        for i in _ancestorTraversal(node.parent,selected=True):
            yield i
                        
def _fetchBoundLeaves(node,previousBind=False,proxyTree=False):
    """
    Takes a SPARQLNode and returns a generator
    over its bound leaves (including OPTIONAL proxies)
    """
    isaProxyTree = proxyTree or node.priorLeftJoin
    if len(node.children) == 0 :
        if node.bound and not node.clash:
            #An OPTIONAL proxy is an expansion descendant which was 
            #bound and valid (compatible) at a prior point and thus
            #serves as the cumulative context for all subsequent operations
            proxy=False
            for optChild in reduce(lambda x,y: x+y,[list(_fetchBoundLeaves(o,previousBind,isaProxyTree))
                                                for o in node.optionalTrees],[]):
                proxy=True
                yield optChild
            if not proxy:
                yield node
        elif node.clash and previousBind and isaProxyTree:
            #prior evaluation of LeftJoin was successful but later became
            #excluded.  Note, this should not provide any bindings
            yield node
    else :
        for c in node.children :
            for proxy in _fetchBoundLeaves(c,previousBind,isaProxyTree):
                yield proxy

def isGroundQuad(quad):
    for term in quad:
        if isinstance(term,Variable):
            return False
    return True

class _SPARQLNode(object):
    """
    The SPARQL implementation is based on the creation of a tree, each
    level for each statement in the 'where' clause of SPARQL.

    Each node maintains a 'binding' dictionary, with the variable
    names and either a None if not yet bound, or the binding
    itself. The method 'expand' tries to make one more step of binding
    by looking at the next statement: it takes the statement of the
    current node, binds the variables if there is already a binding,
    and looks at the triple store for the possibilities. If it finds
    valid new triplets, that will bind some more variables, and
    children will be created with the next statement in the 'where'
    array with a new level of bindings. This is done for each triplet
    found in the store, thereby branching off the tree. If all
    variables are already bound but the statement, with the bound
    variables, is not 'true' (ie, there is no such triple in the
    store), the node is marked as 'clash' and no more expansion is
    made; this node will then be thrown away by the parent. If I{all}
    children of a node is a clash, then it is marked as a clash
    itself.

    At the end of the process, the leaves of the tree are searched; if
    a leaf is such that:

      - all variables are bound
      - there is no clash

    then the bindings are returned as possible answers to the query.

    The optional clauses are treated separately: each 'valid' leaf is
    assigned an array of expansion trees that contain the optional
    clauses (that may have some unbound variables bound at the leaf,
    though).

    @ivar parent: parent in the tree
    @type parent: _SPARQLNode
    @ivar children: the children (in an array)
    @type children: array of _SPARQLNode
    @ivar bindings:  copy of the bindings locally
    @type bindings: dictionary
    @ivar statement:  the current statement
    @type statement: a (s,p,o,f) tuple ('f' is the local filter or None)
    @ivar rest:  the rest of the statements (an array)
    @ivar clash: intialized to False
    @type clash: Boolean
    @ivar bound:  True or False depending on whether all variables are bound in self.binding
    @type bound: Boolean
    @ivar optionalTrees: expansion trees for optional statements
    @type optionalTrees: array of _SPARQLNode instances
    """
    
    __slots__ = ("expr",
                 "tripleStore",
                 "bindings",
                 "optionalTrees",
                 "bound",
                 "clash",
                 "priorLeftJoin",
                 "dontSpawn",
                 "children",
                 "parent",
                 "statement",
                 "rest")
    
    def __init__(self,parent,bindings,statements,tripleStore,expr=None) :
        """
        @param parent:     parent node
        @param bindings:   a dictionary with the bindings that are already done or with None value if no binding yet
        @param statements: array of statements from the 'where' clause. The first element is
        for the current node, the rest for the children. If empty, then no
        expansion occurs (ie, the node is a leaf)
        @param tripleStore: the 'owner' triple store
        @type tripleStore: L{sparqlGraph<rdflib.sparql.sparqlGraph.sparqlGraph>}
        """
        self.priorLeftJoin       = False
        self.expr = expr
        self.tripleStore         = tripleStore
        self.bindings            = bindings
        self.optionalTrees       = []
        self.dontSpawn           = False
        if None in bindings.values() :
            self.bound = False
        else :
            self.bound = True
        self.clash     = False

        self.parent    = parent
        self.children  = []

        if len(statements) > 0 :
            self.statement = statements[0]
            self.rest      = statements[1:]
        else :
            self.statement = None
            self.rest      = None

    def __reduce__(self):
        if self.statement:
            statements = [self.statement]+ self.rest
        else:
            statements=[]
        return (_SPARQLNode,
                (self.parent,
                 self.bindings,
                 statements,
                 self.tripleStore,
                 self.expr),
                 self.__getstate__())

    def __getstate__(self):
        if self.statement:
            statements = [self.statement]+ self.rest
        else:
            statements=[]        
        return (self.clash,
                self.optionalTrees,
                self.children,
                self.parent,
                self.bindings,
                statements,
                self.tripleStore,
                self.expr,
                self.bound,
                self.priorLeftJoin,
                self.dontSpawn)

    def __setstate__(self, arg):
        clash,optionals,children,parent,bindings,statements,tripleStore,expr,bound,plj,spawn = arg
        #clash,optionals,children,proxy,spawn = arg
        self.priorLeftJoin = plj
        self.dontSpawn=spawn
        self.bound=bound
        self.clash=clash
        self.optionalTrees=optionals
        self.children=children
        self.parent=parent
        self.bindings=bindings
        if len(statements) > 0 :
            self.statement = statements[0]
            self.rest      = statements[1:]
        else :
            self.statement = None
            self.rest      = None
        self.tripleStore=tripleStore
        self.expr=expr        

    def __repr__(self):
        return "<SPARQLNode %s. %s children, %s OPTs.  clash: %s. bound: %s>"%(id(self),
                                                                             len(self.children),
                                                                             len(self.optionalTrees),
                                                                             self.clash,
                                                                             [k for k in self.bindings.keys()
                                                                                 if self.bindings[k] is not None])
        
    def setupGraph(self,store):
        self.tripleStore.setupGraph(store)

    def returnResult(self,select) :
        """
        Collect the result by search the leaves of the the tree. The
        variables in the select are exchanged against their bound
        equivalent (if applicable). This action is done on the valid
        leaf nodes only, the intermediate nodes only gather the
        children's results and combine it in one array.

        @param select: the array of unbound variables in the original
        select that do not appear in any of the optionals. If None,
        the full binding should be considered (this is the case for
        the SELECT * feature of SPARQL)
        @returns: an array of dictionaries with non-None bindings.
        """
        if len(self.children) > 0 :
            # combine all the results of all the kids into one array
            retval = []
            for c in self.children :
                res = c.returnResult(select)
                # res is a list of dictionaries, so each tuple should be taken out and added to the result
                for t in res :
                    retval.append(t)
            return retval
        else :
            retval = []
            if self.bound == True and self.clash == False :
                # This node should be able to contribute to the final results
                # if it doesn't have any OPTIONAL proxies:
                result = {}
                #Determine if this node has an OPTIONAL 'proxy'
                proxies = []
                if self.optionalTrees:
                    proxies = reduce(lambda x,y: x+y,[list(_fetchBoundLeaves(o))
                                                for o in self.optionalTrees],[])
                # This where the essential happens: the binding values are used to construct the selection result
                # sparql-p fix: A node with valid optional expansion trees should not
                # contribute to bindings (the OPTIONAL expansion trees already account 
                # for it's bindings)
                # see: http://chatlogs.planetrdf.com/swig/2007-06-07.html#T19-28-43
                if not proxies:
                    prevBound=reduce(lambda x,y: x+y,
                               [list(_fetchBoundLeaves(o,previousBind=True))
                                                for o in self.optionalTrees],[])
                    if self.optionalTrees and \
                        reduce(lambda x,y: x+y,
                               [list(_fetchBoundLeaves(o,previousBind=True))
                                                for o in self.optionalTrees],[]):
                        pass
                    elif select :
                        for a in select :
                            if a in self.bindings :
                                result[a] = self.bindings[a]
                    else :
                        result = self.bindings.copy()
                    # Initial return block. If there is no optional processing, that is the result, in fact,
                    # because the for cycle below will not happen
                    retval = [result]
                else:
                    retval = reduce(lambda x,y: x+y,[o.returnResult(select) for o in proxies])
            return retval
                
    def expandSubgraph(self,subTriples,pattern) :
        """
        Method used to collect the results. There are two ways to
        invoke the method:

          - if the pattern argument is not None, then this means the
          construction of a separate triple store with the
          results. This means taking the bindings in the node, and
          constuct the graph via the
          L{construct<rdflib.sparql.graphPattern.GraphPattern.construct>}
          method. This happens on the valid leafs; intermediate nodes
          call the same method recursively - otherwise, a leaf returns
          an array of the bindings, and intermediate methods aggregate
          those.

        In both cases, leaf nodes may successifely expand the optional
        trees that they may have.

        @param subTriples: the triples so far
        @type subTriples: L{sparqlGraph<rdflib.sparql.sparqlGraph.sparqlGraph>}
        @param pattern: a graph pattern used to construct a graph
        @type pattern: L{GraphPattern<rdflib.sparql.graphPattern.GraphPattern>}
        @return: if pattern is not None, an array of binding dictionaries
        """
        def b(r,bind) :
            if type(r) == str :
                val = bind[r]
                if val == None :
                    raise RuntimeError()
                return bind[r]
            else :
                return r
        if len(self.children) > 0 :
            # all children return an array of bindings (each element being a dictionary)
            if pattern == None :
                retval = reduce(lambda x,y: x+y, [x.expandSubgraph(subTriples,None) for x in self.children],[])
                (s,p,o,func) = self.statement
                for bind in retval :
                    try :
                        st = (b(s,bind),b(p,bind),b(o,bind))
                        subTriples.add(st)
                    except :
                        # any exception means a None value creeping in, or something similar..
                        pass
                return retval
            else :
                for x in self.children :
                    x.expandSubgraph(subTriples,pattern)
        else :
            # return the local bindings if any. Not the optional trees should be added, too!
            if self.bound == True and self.clash == False :
                # Get the possible optional branches:
                for t in self.optionalTrees :
                    t.expandSubgraph(subTriples,pattern)
                if pattern == None :
                    return [self.bindings]
                else :
                    pattern.construct(subTriples,self.bindings)
            else :
                return []


    def _bind(self,r) :
        """
        @param r: string
        @return: returns None if no bindings occured yet, the binding otherwise
        """
        if isinstance(r,basestring) and not isinstance(r,Identifier) or \
           isinstance(r,Variable) :
            if self.bindings[r] == None :
                return None
            else :
                return self.bindings[r]
        elif isinstance(r,(SessionBNode)):
            return r            
        elif isinstance(r,(BNode)):
            return self.bindings.get(r)            
        else :
            return r

    def expand(self,constraints):
        if self.tripleStore.graph.store.batch_unification:
            patterns=[]
            if self.statement:
                for statement in [self.statement]+self.rest: 
                    (s,p,o,func) = statement
                    searchTerms=[self._bind(term) is not None and \
                                 self._bind(term) or term
                                    for term in [s,p,o]]
                    (search_s,search_p,search_o) = searchTerms#(self._bind(s),self._bind(p),self._bind(o))
                    if self.tripleStore.graphVariable:
                        graphName=self.bindings.get(self.tripleStore.graphVariable,
                                                    self.tripleStore.graphVariable)
                    elif self.tripleStore.DAWG_DATASET_COMPLIANCE and \
                         isinstance(self.tripleStore.graph,ConjunctiveGraph):
                        #For query-constructed datasets, match against the 'default graph' - 
                        #the first Graph with a non-URIRef identifier (or an empty, default graph) 
                        if isinstance(self.tripleStore.graph,ReadOnlyGraphAggregate):
                            graphName=None
                            for g in self.tripleStore.graph.graphs:
                                searchRT = []
                                if isinstance(g.identifier,BNode):
                                    graphName=g.identifier
                                    break
                            if graphName is None:
                                #No default graph was created and the active greaph 
                                #is supposed to be the default graph
                                #so we should have no answers
                                continue
                        else:
                            #match against the default graph
                            graphName=self.tripleStore.graph.default_context.identifier
                    elif isinstance(self.tripleStore.graph,ConjunctiveGraph):
                        #match all graphs
                        graphName = Variable(BNode())
                    else:
                        #otherwise, the default graph is the graph queried
                        graphName = self.tripleStore.graph.identifier
                    patterns.append((search_s,search_p,search_o,graphName))
                #expand at server, accumulating results
                rt=[]
                nonGroundPatterns=[pattern for pattern in patterns 
                                       if not isGroundQuad(pattern)]
                if nonGroundPatterns:
                    #Only evaluate at the server if not all the terms are ground
                    for rtDict in self.tripleStore.graph.store.batch_unify(patterns):
                        if self.tripleStore.graphVariable:
                            if self.tripleStore.DAWG_DATASET_COMPLIANCE and \
                               isinstance(rtDict[self.tripleStore.graphVariable],BNode):
                                #We can't match the default graph when the active
                                #graph is set via the GRAPH expression
                                continue
                        rt.append(rtDict)
                        # create a copy of the current bindings, by also adding the new ones from result of the search
                        new_bindings = self.bindings.copy()
                        new_bindings.update(rtDict)
                        child = _SPARQLNode(self,new_bindings,[],self.tripleStore,expr=self.expr)
                        self.children.append(child)
                        assert not child.clash and child.bindings
                        for func in constraints :
                            try:
                                if func(new_bindings) == False :
                                    child.clash = True
                                    break
                            except TypeError:
                                child.clash=True
                else:
                    #If all the patterns are ground, there is no need
                    #to invoke server-side unification (no variables to batch unify)
                    self.expandAtClient(constraints)
                    return
            if self.statement:
                if nonGroundPatterns and len(self.children) == 0:
                    self.clash = True
            else:
                for func in constraints :
                    try:
                        if func(self.bindings) == False :
                            self.clash = True
                            break
                    except TypeError:
                        self.clash=True
        else:
            self.expandAtClient(constraints)

    def expandAtClient(self,constraints) :
        """
        The expansion itself. See class comments for details.

        @param constraints: array of global constraining (filter) methods
        """
        # if there are no more statements, that means that the constraints have been fully expanded
        if self.statement :
            # decompose the statement into subject, predicate and object
            # default setting for the search statement
            # see if subject (resp. predicate and object) is already bound. This
            # is done by taking over the content of self.dict if not None and replacing
            # the subject with that binding
            # the (search_subject,search_predicate,search_object) is then created
            (s,p,o,func) = self.statement
            # put the bindings we have so far into the statement; this may add None values,
            # but that is exactly what RDFLib uses in its own search methods!
            (search_s,search_p,search_o) = (self._bind(s),self._bind(p),self._bind(o))
            #We need to keep track of the original Graph associated with the tripleStore
            #so we can switch back to it after changing the active graph (if we do)
            #otherwise we will effect later evaluations which use the same tripleStore instance
            originalGraph = None
            if self.tripleStore.graphVariable:
                if hasattr(self.tripleStore.graph,'quads'):
                    if self.tripleStore.graphVariable not in self.bindings:
                        searchRT = self.tripleStore.graph.quads((search_s,
                                                                 search_p,
                                                                 search_o))
                    else:                    
                        graphName = self.bindings[self.tripleStore.graphVariable]
                        assert not self.tripleStore.DAWG_DATASET_COMPLIANCE or\
                           isinstance(graphName,URIRef),\
                           "Cannot formally return graph name solutions for the default graph!"                        
                        unifiedGraph = Graph(self.tripleStore.graph.store,
                                             identifier=graphName)
                        originalGraph = self.tripleStore.graph
                        self.tripleStore.graph = unifiedGraph
                        searchRT = [(_s,_p,_o,unifiedGraph) 
                                     for _s,_p,_o in \
                                       unifiedGraph.triples((search_s,search_p,search_o))]
                else:
                    assert not self.tripleStore.DAWG_DATASET_COMPLIANCE or\
                       isinstance(self.tripleStore.graph.identifier,URIRef),\
                       "Cannot formally return graph name solutions for the default graph"
                    searchRT = [(_s,_p,_o,self.tripleStore.graph) 
                                  for _s,_p,_o in self.tripleStore.graph.triples((search_s,search_p,search_o))]
            elif self.tripleStore.DAWG_DATASET_COMPLIANCE and \
                 isinstance(self.tripleStore.graph,ConjunctiveGraph):
                #For query-constructed datasets, match against the 'default graph' - 
                #the first Graph with a non-URIRef identifier (or an empty, default graph) 
                if isinstance(self.tripleStore.graph,ReadOnlyGraphAggregate):
                        for g in self.tripleStore.graph.graphs:
                            searchRT = []
                            if isinstance(g.identifier,BNode):
                                searchRT = g.triples((search_s,search_p,search_o))               
                                break
                else:
                    #match against the default graph
                    searchRT = self.tripleStore.graph.default_context.triples(
                                       (search_s,
                                        search_p,
                                        search_o))
            else:
                #otherwise, the default graph is the graph queried
                searchRT = self.tripleStore.graph.triples((search_s,search_p,search_o))
            if originalGraph:
                self.tripleStore.graph = originalGraph
            for tripleOrQuad in searchRT:
                if self.tripleStore.graphVariable:
                    (result_s,result_p,result_o,parentGraph) = tripleOrQuad
                    if isinstance(self.tripleStore.graph,ConjunctiveGraph) and \
                       self.tripleStore.DAWG_DATASET_COMPLIANCE and isinstance(parentGraph.identifier,BNode):
                        continue
                    assert isinstance(parentGraph.identifier,URIRef)
                else:
                    (result_s,result_p,result_o) = tripleOrQuad
                # if a user defined constraint has been added, it should be checked now
                if func != None and func(result_s,result_p,result_o) == False :
                    # Oops, this result is not acceptable, jump over it!
                    continue
                # create a copy of the current bindings, by also adding the new ones from result of the search
                new_bindings = self.bindings.copy()
                queryTerms = [s,p,o] 
                preClash = False
                for searchSlot,searchTerm,result in [(search_s,s,result_s),
                                                     (search_p,p,result_p),
                                                     (search_o,o,result_o)]:
                    #searchSlot is what we searched with (variables become none)
                    #searchTerm is the term in the triple pattern
                    #result is the unified term from the dataset
                    if searchSlot == None :
                        #An unknown
                        currBound = new_bindings.get(searchTerm)
                        if currBound is not None:
                            if currBound != result:
                                preClash = True
                        else:
                            new_bindings[searchTerm] = result
                if self.tripleStore.graphVariable:
                    new_bindings[self.tripleStore.graphVariable] = parentGraph.identifier
                # Recursion starts here: create and expand a new child
                child = _SPARQLNode(self,new_bindings,self.rest,self.tripleStore,expr=self.expr)
                if preClash:
                    child.clash = True
                else:
                    child.expand(constraints)
                # if the child is a clash then no use adding it to the tree, it can be forgotten
                if self.clash == False :
                    self.children.append(child)
            if len(self.children) == 0 :
                # this means that the constraints could not be met at all with this binding!!!!
                self.clash = True
        else :
            # this is if all bindings are done; the conditions (ie, global constraints) are still to be checked
            if self.bound == True and self.clash == False :
                for func in constraints :
                    try:
                        if func(self.bindings) == False :
                            self.clash = True
                            break
                    except TypeError:
                        self.clash=True

    def expandOptions(self,bindings,statements,constraints) :
        """
        Managing optional statements. These affect leaf nodes only, if
        they contain 'real' results. A separate Expansion tree is
        appended to such a node, one for each optional call.

        @param bindings: current bindings dictionary

        @param statements: array of statements from the 'where'
        clause. The first element is for the current node, the rest
        for the children. If empty, then no expansion occurs (ie, the
        node is a leaf). The bindings at this node are taken into
        account (replacing the unbound variables with the real
        resources) before expansion

        @param constraints: array of constraint (filter) methods
        """
        def replace(key,resource,tupl) :
            s,p,o,func = tupl
            if key == s : s = resource
            if key == p : p = resource
            if key == o : o = resource
            return (s,p,o,func)

        if len(self.children) == 0  :
            # this is a leaf in the original expansion
            if self.bound == True and self.clash == False :
                # see if the optional bindings can be reduced because they are already
                # bound by this node
                toldBNodeLookup = {}
                for key in self.bindings :
                    normalizedStatements = []
                    for t in statements:
                        val = self.bindings[key]
                        if isinstance(val,BNode) and val not in toldBNodeLookup:
                            toldBNodeLookup[val] = val
                        normalizedStatements.append(replace(key,self.bindings[key],t))
                    statements = normalizedStatements
                    if key in bindings :
                        del bindings[key]
                bindings.update(toldBNodeLookup)
                optTree = _SPARQLNode(None,bindings,statements,self.tripleStore,expr=self.expr)
                self.optionalTrees.append(optTree)
                optTree.expand(constraints)
        else :
            for c in self.children :
                c.expandOptions(bindings,statements,constraints)

def _processResults(select,arr) :
    '''
    The result in an expansion node is in the form of an array of
    binding dictionaries.  The caller should receive an array of
    tuples, each tuple representing the final binding (or None) I{in
    the order of the original select}. This method is the last step of
    processing by processing these values to produce the right result.

    @param select: the original selection list. If None, then the
    binding should be taken as a whole (this corresponds to the SELECT * feature of SPARQL)
    @param arr: the array of bindings
    @type arr:
    an array of dictionaries
    @return: a list of tuples with the selection results
    '''
    retval = []
    if select :
        for bind in arr :
            # each result binding must be taken separately
            qresult = []
            for s in select :
                if s in bind :
                    qresult.append(bind[s])
                else :
                    qresult.append(None)
            # as a courtesy to the user, if the selection has one single element only, than we do no
            # put in a tuple, just add it that way:
            if len(select) == 1 :
                retval.append(qresult[0])
            else :
                retval.append(tuple(qresult))
    else :
        # this is the case corresponding to a SELECT * query call
        for bind in arr:
            qresult = [val for key,val in bind.items()]
            if len(qresult) == 1 :
                retval.append(qresult[0])
            else :
                retval.append(tuple(qresult))
    return retval


def query(graph, selection, patterns, optionalPatterns=[], initialBindings = {}) :
    """
    A shorthand for the creation of a L{Query} instance, returning
    the result of a L{Query.select} right away. Good for most of
    the usage, when no more action (clustering, etc) is required.

    @param selection: a list or tuple with the selection criteria,
    or a single string. Each entry is a string that begins with a"?".

    @param patterns: either a
    L{GraphPattern<rdflib.sparql.graphPattern.GraphPattern>}
    instance or a list of instances thereof. Each pattern in the
    list represent an 'OR' (or 'UNION') branch in SPARQL.

    @param optionalPatterns: either a
    L{GraphPattern<rdflib.sparql.graphPattern.GraphPattern>}
    instance or a list of instances thereof. For each elements in
    the 'patterns' parameter is combined with each of the optional
    patterns and the results are concatenated. The list may be
    empty.

    @return: list of query results
    @rtype: list of tuples
    """
    result = queryObject(graph, patterns,optionalPatterns,initialBindings)
    if result == None :
        # generate some proper output for the exception :-)
        msg = "Errors in the patterns, no valid query object generated; "
        if isinstance(patterns,GraphPattern) :
            msg += ("pattern:\n%s" % patterns)
        else :
            msg += ("pattern:\n%s\netc..." % patterns[0])
        raise SPARQLError(msg)
    return result.select(selection)

def queryObject(graph, patterns, optionalPatterns=[], initialBindings = None) :
    """
    Creation of a L{Query} instance.

    @param patterns: either a
    L{GraphPattern<rdflib.sparql.graphPattern.GraphPattern>}
    instance or a list of instances thereof. Each pattern in the
    list represent an 'OR' (or 'UNION') branch in SPARQL.

    @param optionalPatterns: either a
    L{GraphPattern<rdflib.sparql.graphPattern.GraphPattern>}
    instance or a list of instances thereof. For each elements in
    the 'patterns' parameter is combined with each of the optional
    patterns and the results are concatenated. The list may be
    empty.

    @return: Query object
    @rtype: L{Query}
    """
    def checkArg(arg,error) :
        if arg == None :
            return []
        elif isinstance(arg,GraphPattern) :
            return [arg]
        elif type(arg) == list or type(arg) == tuple :
            for p in arg :
                if not isinstance(p,GraphPattern) :
                    raise SPARQLError("'%s' argument must be a GraphPattern or a list of those" % error)
            return arg
        else :
            raise SPARQLError("'%s' argument must be a GraphPattern or a list of those" % error)

    finalPatterns         = checkArg(patterns,"patterns")
    finalOptionalPatterns = checkArg(optionalPatterns,"optionalPatterns")

    retval = None
    if not initialBindings:
        initialBinding = {}
    for pattern in finalPatterns :
        # Check whether the query strings in the optional clauses are fine. If a problem occurs,
        # an exception is raised by the function
        _checkOptionals(pattern,finalOptionalPatterns)
        bindings = _createInitialBindings(pattern)
        if initialBindings:
            bindings.update(initialBindings)
        # This is the crucial point: the creation of the expansion tree and the expansion. That
        # is where the real meal is, we had only an apetizer until now :-)
        top = _SPARQLNode(None,bindings,pattern.patterns, graph)
        top.expand(pattern.constraints)
        for opt in finalOptionalPatterns :
            bindings = _createInitialBindings(opt)
            if initialBindings:
                bindings.update(initialBindings)
            top.expandOptions(bindings,opt.patterns,opt.constraints)
        r = Query(top, graph)
        if retval == None :
            retval = r
        else :
            # This branch is, effectively, the UNION clause of the draft
            retval = retval + r
    return retval


class Query :
    """
    Result of a SPARQL query. It stores to the top of the query tree, and allows some subsequent
    inquiries on the expanded tree. B{This class should not be
    instantiated by the user,} it is done by the L{queryObject<SPARQL.queryObject>} method.

    """
    def __init__(self,sparqlnode,triples,parent1=None,parent2=None) :
        """
        @param sparqlnode: top of the expansion tree
        @type sparqlnode: _SPARQLNode
        @param triples: triple store
        @type triples: L{sparqlGraph<rdflib.sparql.sparqlGraph>}
        @param parent1: possible parent Query when queries are combined by summing them up
        @type parent1: L{Query}
        @param parent2: possible parent Query when queries are combined by summing them up
        @type parent2: L{Query}
        """
        self.top             = sparqlnode
        self.triples         = triples
        # if this node is the result of a sum...
        self.parent1         = parent1
        self.parent2         = parent2

    def __add__(self,other) :
        """This may be useful when several queries are performed and
        one wants the 'union' of those.  Caveat: the triple store must
        be the same for each argument. This method is used internally
        only anyway...  Efficiency trick (I hope it works): the
        various additions on subgraphs are not done here; the results
        are calculated only if really necessary, ie, in a lazy
        evaluation manner.  This is achieved by storing self and the
        'other' in the new object
        """
        return Query(None,self.triples,self,other)

    def _getFullBinding(self) :
        """Retrieve the full binding, ie, an array of binding dictionaries
        """
        if self.parent1 != None and self.parent2 != None :
            results = self.parent1.select(None) + self.parent2.select(None)
        else :
            # remember: _processResult turns the expansion results (an array of dictionaries)
            # into an array of tuples in the right, original order
            results = self.top.returnResult(None)
        return results
        
        if self.parent1 != None and self.parent2 != None :
            return self.parent1._getFullBinding() + self.parent2._getFullBinding()
        else :
            # remember: returnResult returns an array of dictionaries
            return self.top.returnResult(None)

    def _getAllVariables(self):
        """Retrieve the list of all variables, to be returned"""
        if self.parent1 and self.parent2:
            return list2set(self.parent1._getAllVariables() + self.parent2._getAllVariables())
        else:
            maxKeys = []
            for bound in _fetchBoundLeaves(self.top):
                maxKeys.extend(bound.bindings.keys())
            return list2set(maxKeys)

    def _orderedSelect(self,selection,orderedBy,orderDirection) :
        """
        The variant of the selection (as below) that also includes the sorting. Because that is much less efficient, this is
        separated into a distinct method that is called only if necessary. It is called from the L{select<select>} method.
		
        Because order can be made on variables that are not part of the final selection, this method retrieves a I{full}
        binding from the result to be able to order it (whereas the core L{select<select>} method retrieves from the result
        the selected bindings only). The full binding is an array of (binding) dictionaries; the sorting sorts this array
        by comparing the bound variables in the respective dictionaries. Once this is done, the final selection is done.

        @param selection: Either a single query string, or an array or tuple thereof.
        @param orderBy: either a function or a list of strings (corresponding to variables in the query). If None, no sorting occurs
        on the results. If the parameter is a function, it must take two dictionary arguments (the binding dictionaries), return
        -1, 0, and 1, corresponding to smaller, equal, and greater, respectively.
        @param orderDirection: if not None, then an array of integers of the same length as orderBy, with values the constants
        ASC or DESC (defined in the module). If None, an ascending order is used.
        @return: selection results
        @rtype: list of tuples
        @raise SPARQLError: invalid sorting arguments
        """
        fullBinding = self._getFullBinding()
        if type(orderedBy) is types.FunctionType :
            _sortBinding = orderedBy
        else :
            orderKeys = _variablesToArray(orderedBy,"orderBy")
            # see the direction
            oDir = None # this is just to fool the interpreter's error message
            if orderDirection is None :
                oDir = [ True for i in xrange(0,len(orderKeys)) ]
            elif type(orderDirection) is types.BooleanType :
                oDir = [ orderDirection ]
            elif type(orderDirection) is not types.ListType and type(orderDirection) is not types.TupleType :
                raise SPARQLError("'orderDirection' argument must be a list")
            elif len(orderDirection) != len(orderKeys) :
                raise SPARQLError("'orderDirection' must be of an equal length to 'orderBy'")
            else :
                oDir = orderDirection
            def _sortBinding(b1,b2) :
                """The sorting method used by the array sort, with return values as required by the python run-time
                The to-be-compared data are dictionaries of bindings
                """
                for i in xrange(0,len(orderKeys)) :
					# each key has to be compared separately. If there is a clear comparison result on that key
					# then we are done, but when that is not the case, the next in line should be used
                    key       = orderKeys[i]
                    direction = oDir[i]
                    if key in b1 and key in b2 :
                        val1 = b1[key]
                        val2 = b2[key]
                        if val1 != None and val2 != None :
                            if direction :
                                if   val1 < val2 : return -1
                                elif val1 > val2 : return 1
                            else :
                                if   val1 > val2 : return -1
                                elif val1 < val2 : return 1
                return 0
        # get the full Binding sorted
        fullBinding.sort(_sortBinding)
        
        # remember: _processResult turns the expansion results (an array of dictionaries)
        # into an array of tuples in the right, original order
        retval = _processResults(selection,fullBinding)
        return retval

    def select(self,selection,distinct=True,limit=None,orderBy=None,orderAscend=None,offset=0) :
        """
        Run a selection on the query.

        @param selection: Either a single query string, or an array or tuple thereof.
        @param distinct: if True, identical results are filtered out
        @type distinct: Boolean
        @param limit: if set to an integer value, the first 'limit' number of results are returned; all of them otherwise
        @type limit: non negative integer
        @param orderBy: either a function or a list of strings (corresponding to variables in the query). If None, no sorting occurs
        on the results. If the parameter is a function, it must take two dictionary arguments (the binding dictionaries), return
        -1, 0, and 1, corresponding to smaller, equal, and greater, respectively.
        @param orderAscend: if not None, then an array of booelans of the same length as orderBy, True for ascending and False
		for descending. If None, an ascending order is used.
        @offset the starting point of return values in the array of results. Obviously, this parameter makes real sense if
        some sort of order is defined.
        @return: selection results
        @rtype: list of tuples
        @raise SPARQLError: invalid selection argument
        """
        def _uniquefyList(lst) :
            """Return a copy of the list but possible duplicate elements are taken out. Used to
            post-process the outcome of the query
            @param lst: input list
            @return: result list
            """
            if len(lst) <= 1 :
                return lst
            else :
                # must be careful! Using the quick method of Sets destroy the order. Ie, if this was ordered, then
                # a slower but more secure method should be used
                if orderBy != None :
                    retval = []
                    for i in xrange(0,len(lst)) :
                        v = lst[i]
                        skip = False
                        for w in retval :
                            if w == v :
                                skip = True
                                break
                        if not skip :
                            retval.append(v)
                    return retval
                else :
                    return list(sets.Set(lst))
        # Select may be a single query string, or an array/tuple thereof
        selectionF = _variablesToArray(selection,"selection")

        if type(offset) is not types.IntType or offset < 0 :
            raise SPARQLError("'offset' argument is invalid")

        if limit != None :
            if type(limit) is not types.IntType or limit < 0 :
                raise SPARQLError("'offset' argument is invalid")

        if orderBy != None :
            results = self._orderedSelect(selectionF,orderBy,orderAscend)
        else :
            if self.parent1 != None and self.parent2 != None :
                results = self.parent1.select(selectionF) + self.parent2.select(selectionF)
            else :
                # remember: _processResult turns the expansion results (an array of dictionaries)
                # into an array of tuples in the right, original order
                results = _processResults(selectionF,self.top.returnResult(selectionF))
        if distinct :
            retval = _uniquefyList(results)
        else :
            retval = results

        if limit != None :
            if limit == 0:
                return []
            return retval[offset:limit+offset]
        elif offset > 0 :
            return retval[offset:]
        else :
            return retval

    def construct(self,pattern=None) :
        """
        Expand the subgraph based on the pattern or, if None, the
        internal bindings.

        In the former case the binding is used to instantiate the
        triplets in the patterns; in the latter, the original
        statements are used as patterns.

        The result is a separate triple store containing the subgraph.

        @param pattern: a L{GraphPattern<rdflib.sparql.graphPattern.GraphPattern>} instance or None
        @return: a new triple store
        @rtype: L{sparqlGraph<rdflib.sparql.sparqlGraph>}
        """
        if self.parent1 != None and self.parent2 != None :
            return self.parent1.construct(pattern) + self.parent2.construct(pattern)
        else :
            subgraph = SPARQLGraph()
            self.top.expandSubgraph(subgraph,pattern)
            return subgraph

    def ask(self) :
        """
        Whether a specific pattern has a solution or not.
        @rtype: Boolean
        """
        return len(self.select('*')) != 0

    #########################################################################################################
    # The methods below are not really part of SPARQL, or may be used to a form of DESCRIBE. However, that latter
    # is still in a flux in the draft, so we leave it here, pending

    def clusterForward(self,selection) :
        """
        Forward clustering, using all the results of the query as
        seeds (when appropriate). It is based on the usage of the
        L{cluster forward<rdflib.sparql.sparqlGraph.clusterForward>}
        method for triple store.

        @param selection: a selection to define the seeds for
        clustering via the selection; the result of select used for
        the clustering seed

        @return: a new triple store
        @rtype: L{sparqlGraph<rdflib.sparql.sparqlGraph>}
        """
        if self.parent1 != None and self.parent2 != None :
            return self.parent1.clusterForward(selection) + self.parent2.clusterForward(selection)
        else :
            clusterF = SPARQLGraph()
            for r in reduce(lambda x,y: list(x) + list(y),self.select(selection),()) :
                try :
                    check_subject(r)
                    self.triples.clusterForward(r,clusterF)
                except :
                    # no real problem, this is a literal, just forget about it
                    continue
            return clusterF

    def clusterBackward(self,selection) :
        """
        Backward clustering, using all the results of the query as
        seeds (when appropriate). It is based on the usage of the
        L{cluster backward<rdflib.sparql.sparqlGraph.clusterBackward>}
        method for triple store.

        @param selection: a selection to define the seeds for
        clustering via the selection; the result of select used for
        the clustering seed

        @return: a new triple store
        @rtype: L{sparqlGraph<rdflib.sparql.sparqlGraph>}
        """
        if self.parent1 != None and self.parent2 != None :
            return self.parent1.clusterBackward(selection) + self.parent2.clusterBackward(selection)
        else :
            clusterB = SPARQLGraph()
            # to be on the safe side, see if the query has been properly finished
            for r in reduce(lambda x,y: list(x) + list(y),self.select(selection),()) :
                self.triples.clusterBackward(r,clusterB)
            return clusterB

    def cluster(self,selection) :
        """
        Cluster: a combination of L{Query.clusterBackward} and
        L{Query.clusterForward}.  @param selection: a selection to
        define the seeds for clustering via the selection; the result
        of select used for the clustering seed
        """
        return self.clusterBackward(selection) + self.clusterForward(selection)

    def describe(self,selection,forward=True,backward=True) :
        """
        The DESCRIBE Form in the SPARQL draft is still in state of
        flux, so this is just a temporary method, in fact.  It may not
        correspond to what the final version of describe will be (if
        it stays in the draft at all, that is).  At present, it is
        simply a wrapper around L{cluster}.

        @param selection: a selection to define the seeds for
        clustering via the selection; the result of select used for
        the clustering seed

        @param forward: cluster forward yes or no
        @type forward: Boolean
        @param backward: cluster backward yes or no
        @type backward: Boolean
        """
        if forward and backward :
            return self.cluster(selection)
        elif forward :
            return self.clusterForward(selection)
        elif backward :
            return self.clusterBackward(selection)
        else :
            return SPARQLGraph()