/usr/lib/acl2-4.2/interface/infix/sloop.lisp is in acl2-infix-source 4.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 | ;;; -*- Mode:LISP; Package: (SLOOP LISP); Syntax:COMMON-LISP; Base:10 -*- ;;;;;;;;
;;; ;;;;;
;;; Copyright (c) 1985,86 by William Schelter, ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;Report bugs to atp.schelter@r20.utexas.edu
;;It comes with ABSOLUTELY NO WARRANTY but we hope it is useful.
;;The following code is meant to run in COMMON LISP and to provide
;;extensive iteration facilities, with very high backwards compatibility
;;with the traditional loop macro. It is meant to be publicly available!
;;Anyone is hereby given permission to copy it provided he does not make
;;ANY changes to the file unless he is William Schelter. He may change
;;the behavior after loading it by resetting the global variables such
;;as like *Use-locatives*, *automatic-declarations*,.. listed at the
;;beginning of this file. The original of this file is on
;;r20.utexas.edu:<atp.schelter>sloop.lisp I am happy to accept suggestions
;;for different defaults for various implementations, or for improvements.
;;If you want to redefine the common lisp loop you may include in your code:
;;(defmacro loop (&body body)
;; (parse-loop body))
;; Principal New Features
;;Sloop is extremely user extensible so that you may easily redefine most
;;behavior, or add additional collections, and paths. There are a number
;;of such examples defined in this file, including such constructs as
;;"for V in-fringe X", "sum V", "averaging V", "for SYM in-package Y",
;;"collate V" (for collecting X into an ordered list), "for (ELT I) in-array AR",
;;"for (KEY ELT) in-table FOO" (if foo is a hash table). And of course
;;you can combine any collection method with any path.
;;Also there is iteration over products so that you may write
;;(sloop for I below K
;; sloop (for J below I
;; collecting (foo I J)))
;;Declare is fully supported. The syntax would be
;;(sloop for u in l with v = 0
;; declare (fixnum u v)
;; do ....)
;;This extensibility is gained by the ability to define a "loop-macro",
;;which plays a role analagous to an ordiary lisp macro. See eg.
;;definitions near that of "averaging". Essentially a "loop-macro"
;;takes some arguments (supplied from the body of the loop following its
;;occurrence, and returns a new form to be stuffed onto the front of the
;;loop form, in place of it and its arguments).
;;Compile notes:
;;For dec-20 clisp load the lisp file before compiling.
;;there seems to be no unanimity about what in-package etc. does on loading
;;and compiling a file. The following is as close to the examples in
;;the Common Lisp manual, as we could make it.
;;The user should put (require "SLOOP") and then (use-package "SLOOP")
;;early in his init file. Note use of the string to avoid interning 'sloop
;;in some other package.
(in-package "SLOOP" :use '(LISP))
(eval-when (compile eval load)
(provide "SLOOP")
(export '(loop-return sloop def-loop-collect def-loop-map
def-loop-for def-loop-macro local-finish
loop-finish) (find-package "SLOOP"))
)
;;some variables that may be changed to suit different implementations:
(eval-when (compile load eval)
(defparameter *use-locatives* nil "See sloop.lisp") ;#+lispm t #-lispm nil
;;If t should have locf, such that (setf b nil) (setq a (locf b)) then if
;;(setf (cdr a) (cons 3 nil)) b==>(3). This is useful for building lists
;;starting with a variable pointing to nil, since otherwise we must check
;;each time if the list has really been started, before we do a
;;(setf (cdr b) ..)
(defparameter *Automatic-declarations*
#+lispm nil
#-lispm
'(:from fixnum
:in #+kcl object #-kcl t
:collect #+kcl object #-kcl t ) "See sloop.lisp")
;; some other reasonable ones would be :count fixnum :max fixnum
;;Automatic declarations for variables in the stepping and collecting,
;;so for i below n, gives i and n a :from declaration (here fixnum)
;;for item in lis, gives (declare (t item))
(defvar *type-check* t "If t adds a type check on bounds of from loop if there
is and automatic declare")
(defparameter *macroexpand-hook-for-no-copy* #-(or lmi ti) 'funcall #+(or lmi ti) t)
;;some lisps remember a macro so that (loop-return) will expand eq forms
;;always in the same manner, even if the form is in a macrolet! To defeat this feature
;;we copy all macro expansions unless *macro-expand-hook* = *macroexpand-hook-for-no-copy*
)
#+kcl (eval-when (compile) (proclaim '(optimize (safety 2) (space 2))))
;;to do
;;Fix (declare (joe (type (array fixnum)))) type for declarations.
;;*****ONLY CONDITIONALIZATIONS BELOW HERE SHOULD BE FOR BUG FIXES******
;;eg. some kcls don't return nil from a prog by default!
;;all macros here in here.
(eval-when (compile eval load)
(defparameter *sloop-translations* '((appending . append)
((collecting collect) . collect)
((maximizing maximize) . maximize)
((minimizing minimize) . minimize)
(nconcing . nconc)
((count counting) . count)
(summing . sum)
(if . when)
(as . for)
(in-fringe . in-fringe)
(collate . collate)
(in-table . in-table)
(in-carefully . in-carefully)
(averaging . averaging)
(repeat . repeat)
(first-use . first-use)
(in-array . in-array))
"A list of cons's where the translation is the cdr, and the car
is a list of names or name to be translated. Essentially allows 'globalizing'
a symbol for the purposes of being a keyword in a sloop")
(defparameter *additional-collections* nil)
(defmacro lcase (item &body body)
(let (bod last-case tem)
(do ((rest body (cdr rest)) (v))
((or last-case (null rest)))
(setq v (car rest))
(push
(cond ((eql (car v) t) (setq last-case t) v)
((eql (car v) :collect)
`((loop-collect-keyword-p .item.) ,@ (cdr v)))
((eql (car v) :no-body)
`((parse-no-body .item.) ,@ (cdr v)))
((setq tem
(member (car v) '(:sloop-macro :sloop-for :sloop-map)))
`((and (symbolp .item.)(get .item. ,(car tem))) ,@ (cdr v)))
(t
`((l-equal .item. ',(car v)) ,@ (cdr v))))
bod))
(or last-case (push `(t (error "lcase fell off end ~a " .item.)) bod))
`(let ((.item. (translate-name ,item)))
(cond ,@ (nreverse bod)))))
;;some cl implementations lack define-setf-method and others have already defined this.
;;so we will change the definition of desetq to not use setf.
;(define-setf-method cons (a b)
; (let ((store (gensym "store")))
; (values nil nil (list store)
; `(progn ,@ (and a `((setf ,a (car ,store))))
; ,@ (and b `((setf ,b (cdr ,store)))))
; `(error "You should not be setting this"))))
;(defmacro cons-for-setf (form)
; (cond ((symbolp form) form)
; ((consp form)
; (cond ((cdr form)
; `(cons (cons-for-setf ,(car form)) (cons-for-setf ,(cdr form))))
; (t `(cons (cons-for-setf ,(car form)) nil))))))
;(defmacro desetq (form val)
; "(desetq (a b) '(3 4)) would work. This is destructured setq"
; (cond ((symbolp form) `(setq ,form ,val))
; (t
; `(setf (cons-for-setf ,form) ,val))))
(defun desetq1 (form val)
(cond ((symbolp form)
(and form `(setf ,form ,val)))
((consp form)
`(progn ,(desetq1 (car form) `(car ,val))
,@ (if (consp (cdr form)) (list(desetq1 (cdr form) `(cdr ,val)))
(and (cdr form) `((setf ,(cdr form) (cdr ,val)))))))
(t (error ""))))
(defmacro desetq (form val)
(cond ((atom val) (desetq1 form val))
(t (let ((value (gensym)))
`(let ((,value ,val)) , (desetq1 form value))))))
(defmacro loop-return (&rest vals)
(cond ((<= (length vals) 1)
`(return ,@ vals))
(t`(return (values ,@ vals)))))
(defmacro loop-finish ()
`(go finish-loop))
(defmacro local-finish ()
`(go finish-loop))
(defmacro sloop (&body body)
(parse-loop body))
(defmacro def-loop-map (name args &body body)
(def-loop-internal name args body 'map))
(defmacro def-loop-for (name args &body body )
(def-loop-internal name args body 'for nil 1))
(defmacro def-loop-macro (name args &body body)
(def-loop-internal name args body 'macro))
(defmacro def-loop-collect (name arglist &body body )
"Define function of 2 args arglist= (collect-var value-to-collect)"
(def-loop-internal name arglist body 'collect '*additional-collections* 2 2))
(defmacro sloop-swap ()
`(progn (rotatef a *loop-bindings*)
(rotatef b *loop-prologue*)
(rotatef c *loop-epilogue*)
(rotatef e *loop-end-test*)
(rotatef f *loop-increment*)
(setf *inner-sloop* (not *inner-sloop*))
))
)
(defun l-equal (a b)
(and (symbolp a)
(cond ((symbolp b)
(equal (symbol-name a) (symbol-name b)))
((listp b)
(member a b :test 'l-equal)))))
(defun loop-collect-keyword-p (command)
(or (member command '(collect append nconc sum count) :test 'l-equal)
(find command *additional-collections* :test 'l-equal)))
(defun translate-name (name)
(cond ((and (symbolp name)
(cdar (member name *sloop-translations* :test 'l-equal :key 'car))))
(t name)))
(defun loop-pop ()
(declare (special *last-val* *loop-form*))
(cond (*loop-form*
(setq *last-val* (pop *loop-form*)))
(t (setq *last-val* 'empty-form) nil)))
(defun loop-un-pop () (declare (special *last-val* *loop-form*))
(case *last-val*
(empty-form nil)
(already-un-popped (error "you are un-popping without popping"))
(t (push *last-val* *loop-form*) (setf *last-val* 'alread-un-popped))))
(defun loop-peek () (declare (special *last-val* *loop-form*))
(car *loop-form*))
(defun loop-let-bindings(binds)
(do ((v (car binds) (cdr v)))
((null v) (nreverse (car binds)))
(or (cdar v) (setf (car v) (caar v)))))
(defun parse-loop (form &aux inner-body)
(let ((*loop-form* form)
(*Automatic-declarations* *Automatic-declarations*)
*last-val* *loop-map*
*loop-body*
*loop-name*
*loop-prologue* *inner-sloop*
*loop-epilogue* *loop-increment*
*loop-collect-pointers* *loop-map-declares*
*loop-collect-var* *no-declare*
*loop-end-test*
*loop-bindings*
*product-for* local-macros
(finish-loop 'finish-loop)
)
(declare (special *loop-form* *last-val* *loop-map*
*loop-collect-pointers*
*loop-name* *inner-sloop*
*loop-body*
*loop-prologue*
*no-declare*
*loop-bindings*
*loop-collect-var* *loop-map-declares*
*loop-epilogue* *loop-increment*
*loop-end-test* *product-for*
))
(unless (and (symbolp (car *loop-form*)) (car *loop-form*))
(push 'do *loop-form*)) ;compatible with common lisp loop..
(parse-loop1)
(when (or *loop-map* *product-for*)
(or *loop-name* (setf *loop-name* (gensym "SLOOP")))
(and (eql 'finish-loop finish-loop)
(setf finish-loop (gensym "FINISH"))))
;some one might use local-finish,local-return or loop-finish they might be bound at an outer level.
;we have to always include this since loop-return may be being bound outside.
(and ; *loop-name*
(push
`(loop-return (&rest vals) `(return-from ,',*loop-name* (values ,@ vals)))
local-macros))
(when t ;; (or (> *loop-level* 1) (not (eql finish-loop 'finish-loop)))
(push `(loop-finish () `(go ,',finish-loop)) local-macros)
(push `(local-finish () `(go ,',finish-loop)) local-macros))
(and *loop-collect-var*
(push `(return-from ,*loop-name* , *loop-collect-var*)
*loop-epilogue*))
(setq inner-body (append *loop-end-test*
(nreverse *loop-body*)
(nreverse *loop-increment*)))
(cond (*loop-map*
(setq inner-body (substitute-sloop-body inner-body)))
(t (setf inner-body (cons 'next-loop
(append inner-body '((go next-loop)))))))
(let ((bod
`(macrolet ,local-macros
(block ,*loop-name*
(tagbody
,@ (append
(nreverse *loop-prologue*)
inner-body
`(,finish-loop)
(nreverse *loop-epilogue*)
#+kcl '((loop-return nil))))))
))
;;temp-fix..should not be necessary but some lisps cache macro expansions.
;;and ignore the macrolet!!
(unless (eql *macroexpand-hook* *macroexpand-hook-for-no-copy*)
(setf bod (copy-tree bod)))
(dolist (v *loop-bindings*)
(setf bod
`(let ,(loop-let-bindings v) ,@(and (cdr v) `(,(cons 'declare (cdr v))))
,bod)))
bod
)))
(defun parse-loop1 ()
(declare (special *loop-form*
*loop-body* *loop-increment*
*no-declare* *loop-end-test*
*loop-name* ))
(lcase (loop-peek)
(named (loop-pop) (setq *loop-name* (loop-pop)))
(t nil))
(do ((v (loop-pop) (loop-pop)))
((and (null v) (null *loop-form*)))
(lcase v
(:no-body)
(for (parse-loop-for))
(while (push
`(or ,(loop-pop) (local-finish)) *loop-body*))
(until (push
`(and ,(loop-pop) (local-finish)) *loop-body*))
(do (setq *loop-body* (append (parse-loop-do) *loop-body*)))
((when unless) (setq *loop-body* (append (parse-loop-when) *loop-body*)))
(:collect (setq *loop-body* (append (parse-loop-collect) *loop-body*)))
)))
(defun parse-no-body (com &aux (found t) (first t))
"Reads successive no-body-contribution type forms, like declare, initially, etc.
which can occur anywhere. Returns t if it finds some
otherwise nil"
(declare (special *loop-form*
*loop-body*
*loop-increment*
*no-declare* *loop-end-test*
*loop-name* ))
(do ((v com (loop-pop)))
((null (or first *loop-form*)))
(lcase v
((initially finally)(parse-loop-initially v))
(nil nil)
(with (parse-loop-with))
(declare (parse-loop-declare (loop-pop) t))
(nodeclare (setq *no-declare* (loop-pop))) ;take argument to be consistent.
(increment (setq *loop-increment* (append (parse-loop-do) *loop-increment*)))
(end-test (setq *loop-end-test* (append (parse-loop-do) *loop-end-test*)))
(with-unique (parse-loop-with nil t))
(:sloop-macro (parse-loop-macro v :sloop-macro))
(t
(cond (first
(setf found nil))
(t (loop-un-pop)))
(return 'done)))
(setf first nil))
found)
(defun parse-loop-with (&optional and-with only-if-not-there)
(let ((var (loop-pop)))
(lcase (loop-peek)
(= (loop-pop)
(or (symbolp var) (error "Not a variable ~a" var))
(loop-add-binding var (loop-pop) (not and-with) nil nil t only-if-not-there))
(t (loop-add-temps var nil nil (not and-with) only-if-not-there)))
(lcase (loop-peek)
(and (loop-pop)
(lcase (loop-pop)
(with (parse-loop-with t ))
(with-unique (parse-loop-with t t))
(t (loop-un-pop) (parse-loop-with t))
))
(t nil))))
(defun parse-loop-do (&aux result)
(declare (special *loop-form*))
(do ((v (loop-pop) (loop-pop)) )
(())
(cond
((listp v)
(push v result)
(or *loop-form* (return 'done)))
(t (loop-un-pop) (return 'done))))
(or result (error "empty clause"))
result)
(defun parse-loop-initially (command )
(declare (special *loop-prologue* *loop-epilogue* *loop-bindings*))
(lcase command
(initially (let ((form (parse-loop-do)))
(dolist (v (nreverse form))
(cond ((and (listp v)
(member (car v) '(setf setq))
(eql (length v) 3)
(symbolp (second v))
(constantp (third v))
(loop-add-binding (second v) (third v) nil nil nil t t)
))
(t (setf *loop-prologue* (cons v *loop-prologue*)))))))
(finally
(setf *loop-epilogue* (append (parse-loop-do) *loop-epilogue*)))))
(defun parse-one-when-clause ( &aux this-case (want 'body) v)
(declare (special *loop-form*))
(prog nil
next-loop
(and (null *loop-form*) (return 'done))
(setq v (loop-pop))
(lcase v
(:no-body)
(:collect (or (eql 'body want) (go finish))
(setq this-case (append (parse-loop-collect) this-case))
(setq want 'and))
(when (or (eql 'body want) (go finish))
(setq this-case (append (parse-loop-when) this-case))
(setq want 'and))
(do (or (eql 'body want) (go finish))
(setq this-case (append (parse-loop-do) this-case))
(setq want 'and))
(and (or (eql 'and want) (error "Premature AND"))
(setq want 'body))
(t (loop-un-pop)(return 'done)))
(go next-loop)
finish
(loop-un-pop))
(or this-case (error "Hanging conditional"))
this-case)
(defun parse-loop-when (&aux initial else else-clause )
(declare (special *last-val* ))
(let ((test (cond ((l-equal *last-val* 'unless) `(not , (loop-pop)))
(t (loop-pop)))))
(setq initial (parse-one-when-clause))
(lcase (loop-peek)
(else
(loop-pop)
(setq else t)
(setq else-clause (parse-one-when-clause)))
(t nil))
`((cond (,test ,@ (nreverse initial))
,@ (and else `((t ,@ (nreverse else-clause))))))))
(defun pointer-for-collect (collect-var)
(declare (special *loop-collect-pointers*))
(or (cdr (assoc collect-var *loop-collect-pointers*))
(let ((sym(loop-add-binding (gensym "POIN") nil nil :collect )))
(push (cons collect-var sym)
*loop-collect-pointers*)
sym)))
(defun parse-loop-collect ( &aux collect-var pointer name-val)
(declare (special *last-val* *loop-body* *loop-collect-var*
*loop-collect-pointers* *inner-sloop*
*loop-prologue* ))
(and *inner-sloop* (throw 'collect nil))
(let ((command *last-val*)
(val (loop-pop)))
(lcase (loop-pop)
(into (loop-add-binding (setq collect-var (loop-pop)) nil nil t nil t ))
(t (loop-un-pop)
(cond (*loop-collect-var* (setf collect-var *loop-collect-var*))
(t (setf collect-var
(setf *loop-collect-var*
(loop-add-binding (gensym "COLL") nil )))))))
(lcase command
((append nconc collect)
(setf pointer (pointer-for-collect collect-var))
(cond (*use-locatives*
(pushnew `(setf ,pointer
(locf ,collect-var)) *loop-prologue* :test 'equal)))
(lcase command
( append
(unless (and (listp val) (eql (car val) 'list))
(setf val `(copy-list ,val))))
(t nil)))
(t nil))
(cond ((and (listp val) (not *use-locatives*))
(setq name-val (loop-add-binding (gensym "VAL") nil nil)))
(t (setf name-val val)))
(let
((result
(lcase command
((nconc append)
(let ((set-pointer `(and (setf (cdr ,pointer) ,name-val)
(setf ,pointer (last (cdr ,pointer))))))
(cond (*use-locatives*
(list set-pointer))
(t
`((cond (,pointer ,set-pointer)
(t (setf ,pointer (last (setf ,collect-var ,name-val))))))))))
(collect
(cond (*use-locatives*
`((setf (cdr ,pointer) (setf ,pointer (cons ,name-val nil)))))
(t `((cond (,pointer (setf (cdr ,pointer)
(setf ,pointer (cons ,name-val nil))))
(t (setf ,collect-var
(setf ,pointer (cons ,name-val nil)))))))))
(t (setq command (translate-name command))
(cond ((find command *additional-collections* :test 'l-equal)
(loop-parse-additional-collections command collect-var name-val))
(t (error "loop fell off end ~a" command)))))))
(cond ((eql name-val val)
result)
(t (nconc result `((setf ,name-val ,val) )))))))
(defun loop-parse-additional-collections (command collect-var name-val &aux eachtime)
(declare (special *loop-prologue* *last-val* *loop-collect-var* *loop-epilogue* ))
(let* ((com (find command *additional-collections* :test 'l-equal))
(helper (get com :sloop-collect)))
(let ((form (funcall helper collect-var name-val)))
(let ((*loop-form* form) *last-val*)
(declare (special *loop-form* *last-val*))
(do ((v (loop-pop) (loop-pop)))
((null *loop-form*))
(lcase v
(:no-body)
(do (setq eachtime (parse-loop-do)))))
eachtime))))
(defun the-type (symbol type)
(declare (special *no-declare*))
(and *no-declare* (setf type nil))
(and type (setf type (or (getf *Automatic-declarations* type)
(and (not (keywordp type)) type))))
(and (consp type) (eq (car type) 'type) (setf type (second type)))
(cond (type (list 'the type symbol ))
(t symbol)))
;;
(defun type-error ()
(error "While checking a bound of a sloop, I found the wrong type
for something in *automatic-declarations*. Perhaps your limit is wrong?
If not either use nodeclare t or set *automatic-declarations* to nil.
recompile."))
;;this puts down code to check that automatic declarations induced by
;; :from are indeed valid! It checks both ends of the interval, and
;;so need not check the numbers in between.
(defun make-value (value type-key &aux type )
(declare (special *no-declare*))
(cond ((and
(not *no-declare*)
*type-check*
(eq type-key :from)
(setq type (getf *Automatic-declarations* type-key)))
(setq type
(cond ((and (consp type)
(eq (car type) 'type))
(second type))
(t type)))
(cond ((constantp value)
(or (typep value type)
(error
"Sloop found the type of ~a was not type ~a,~
Maybe you want to insert SLOOP NODECLARE T ..."
value
type))
(list value))
(t (let (chk)
`((let ,(cond ((atom value)
nil)
(t `((,(setq chk(gensym)) ,value))))
(or (typep ,(or chk value) ',type) (type-error))
,(or chk value)))))))
(t (list value))))
;;keep track of the bindings in a list *loop-bindings*
;;each element of the list will give rise to a different let.
;;the car will be the variable bindings,
;;the cdr the declarations.
(defun loop-add-binding
(variable value &optional (new-level t) type force-type (force-new-value t)
only-if-not-there &aux tem)
"Add a variable binding to the current or new level.
If FORCE-TYPE, ignore a *no-declare*.
If ONLY-IF-NOT-THERE, check all levels."
(declare (special *loop-bindings*))
(when (or new-level (null *loop-bindings*)) (push (cons nil nil) *loop-bindings*))
(cond ((setq tem (assoc variable (caar *loop-bindings*) ))
(and force-new-value
(setf (cdr tem) (and value (make-value value type)))))
((and (or only-if-not-there (and (null (symbol-package variable))
(constantp value)))
(dolist (v (cdr *loop-bindings*))
(cond ((setq tem (assoc variable (car v)))
(and force-new-value
(setf (cdr tem)
(and value (make-value value type))))
(return t))))))
(t (push (cons variable (and value (make-value value type)))
(caar *loop-bindings*))))
(and type (loop-declare-binding variable type force-type))
variable)
;(defmacro nth-level (n) `(nth ,n *loop-bindings*))
;if x = (nth i *loop-bindings*)
;(defmacro binding-declares (x) `(cdr ,x)) ;(cons 'declare (binding-declares x)) to get honest declare statement
;(defmacro binding-values (x) `(car ,x)) ;(let (binding-values x) ) to get let.
(defun loop-declare-binding (var type force-type &optional odd-type
&aux found tem)
(declare (special *loop-bindings* *Automatic-declarations*
*no-declare* *loop-map*))
odd-type ;;ignored
(and type (setf type (or (getf *Automatic-declarations* type)
(and (not (keywordp type)) type))))
(when (and type(or force-type (null *no-declare*)))
(dolist (v *loop-bindings*)
(cond ((assoc var (car v)) (setf found t)
(do ((decs (cdr v) (cdr decs)))
((null decs) (push nil (cdr v))(setf tem (cdr v)))
(when (or (and (eq (caar decs) 'type)
(eq (third (car decs)) var))
(eql (second (car decs)) var))
(setf tem decs) (return 'done)))
(setf (car tem)
(cond ((and (consp type) (eq (car type) 'type))
(list 'type (second type) var))
(t (list type var))))
(and found (return 'done)))))
(or found *loop-map* (error "Could not find variable ~a in bindings" var)))
var)
(defun parse-loop-declare (&optional (decl-list (loop-pop)) (force t))
(let ((type (car decl-list)) odd-type)
(cond ((eq type 'type)
(setf decl-list (cdr decl-list) type (car decl-list) odd-type t)))
(dolist (v (cdr decl-list))
(loop-declare-binding v (car decl-list) force odd-type))))
(defun loop-add-temps (form &optional val type new-level only-if-not-there)
(cond ((null form))
((symbolp form)
(loop-add-binding form val new-level type nil t only-if-not-there))
((listp form)
(loop-add-temps (car form))
(loop-add-temps (cdr form)))))
(defun parse-loop-for ( &aux direction inc)
(declare (special *loop-form* *loop-map-declares* *loop-map*
*loop-body* *loop-increment* *no-declare*
*loop-prologue*
*loop-epilogue*
*loop-end-test*
*loop-bindings*
))
(let* ((var (loop-pop)) test incr)
(do ((v (loop-pop) (loop-pop)))
(())
(lcase v
(in (let ((lis (gensym "LIS")))
(loop-add-temps var nil :in t)
(loop-add-binding lis (loop-pop) nil)
(push `(desetq ,var (car ,lis)) *loop-body*)
(setf incr `(setf ,lis (cdr ,lis)))
(setq test `(null ,lis) )
))
(on (let ((lis
(cond ((symbolp var) var)
(t (gensym "LIS")))))
(loop-add-temps var nil :in t)
(loop-add-binding lis (loop-pop) nil)
(setf incr `(setf ,lis (cdr ,lis)))
(unless (eql lis var)
(push `(desetq ,var ,lis) *loop-body*))
(setf test `(null ,lis))))
((upfrom from)
(loop-add-binding var (loop-pop) (not(prog1 direction (setf direction 'up))) :from)
(setf incr `(setf ,var ,(the-type `(+ ,var 1) :from))))
(downfrom
(loop-add-binding var (loop-pop) (not(prog1 direction (setf direction 'down))) :from)
(setf incr `(setf ,var ,(the-type `(- ,var 1) :from))))
(by(setq inc (loop-pop))
(cond ((and (listp inc)(eql (car inc) 'quote))
(setf inc (second inc))
))
(cond (direction
(setf incr (subst inc 1 incr)))
(t (setf incr (subst inc 'cdr incr)))))
(below
(let ((lim (gensym "LIM")))
(loop-add-binding var 0 (not(prog1 direction (setf direction 'up)))
:from nil nil)
(loop-add-binding lim (loop-pop) nil :from )
(or incr (setf incr `(setf ,var ,(the-type `(+ ,var 1) :from))))
(setq test `(>= ,var ,lim))))
(above
(let ((lim (gensym "ABOVE")))
(loop-add-binding var 0 (not(prog1 direction (setf direction 'down)))
:from nil nil)
(loop-add-binding lim (loop-pop) nil :from )
(or incr (setf incr `(setf ,var ,(the-type `(- ,var 1) :from))))
(setq test `(<= ,var ,lim))))
(to
(let ((lim (gensym "LIM")))
(loop-add-binding var 0 (not(prog1 direction (or direction (setf direction 'up))))
:from nil nil)
(loop-add-binding lim (loop-pop) nil :from )
(or incr (setf incr `(setf ,var ,(the-type `(+ ,var 1) :from))))
(setq test `(,(if (eql direction 'down) '< '>),var ,lim))))
(:sloop-for (parse-loop-macro (translate-name v) :sloop-for var )
(return 'done))
(:sloop-map (parse-loop-map (translate-name v) var ) (return nil))
(t(or ; (null *loop-form*)
(loop-un-pop))
(return 'done)
)
))
(let (type)
;;whew maybe this is a for from type loop
;;with no bound so to be safe need a fixnum bound..
(cond ((and direction (not *no-declare*)
(not test)
*type-check*
(setq type (getf *automatic-declarations* :from))
(progn (if (and (consp type)(eq (car type) 'type))
(setf type (second type)))
(subtypep type 'fixnum)))
(or (constantp inc) (error "increment must be constant."))
(push
(cond ((eq direction 'up)
`(or (< ,var ,(- most-positive-fixnum
(or inc 1)))
(type-error)))
(t
`(or (> ,var ,(+ most-negative-fixnum
(or inc 1))))
(type-error))
) *loop-increment* )
)))
(and test (push (copy-tree `(and ,test (local-finish))) *loop-end-test*))
(and incr (push incr *loop-increment*))
))
(defun parse-loop-macro (v type &optional initial &aux result)
(declare (special *loop-form*))
(let ((helper (get v type)) args)
(setq args
(ecase type
(:sloop-for
(let ((tem (get v :sloop-for-args)))
(or (cdr tem) (error "sloop-for macro needs at least one arg"))
(cdr tem)))
(:sloop-macro(get v :sloop-macro-args))))
(let ((last-helper-apply-arg
(cond ((member '&rest args) (prog1 *loop-form* (setf *loop-form* nil)))
(t (dotimes (i (length args) (nreverse result))
(push (car *loop-form*) result)
(setf *loop-form* (cdr *loop-form*)))))))
(setq *loop-form*
(append
(case type
(:sloop-for (apply helper initial last-helper-apply-arg))
(:sloop-macro(apply helper last-helper-apply-arg)))
*loop-form*)))))
(defun parse-loop-map (v var)
(declare (special *loop-map* *loop-map-declares* *loop-form*))
(and *loop-map* (error "Sorry only one allowed loop-map per sloop"))
(let ((helper (get v :sloop-map))
(args (get v :sloop-map-args)))
(or args (error "map needs one arg before the key word"))
(cond ((member '&rest args)(error "Build this in two steps if you want &rest")))
(let* (result
(last-helper-apply-arg
(dotimes (i (1- (length args)) (nreverse result))
(push (car *loop-form*) result) (setf *loop-form* (cdr *loop-form*)))))
(setq *loop-map-declares*
(do ((v (loop-pop)(loop-pop)) (result))
((null (l-equal v 'declare))
(loop-un-pop)
(and result (cons 'declare result)))
(push (loop-pop) result)))
(setq *loop-map* (apply helper var last-helper-apply-arg))
nil)))
(defun substitute-sloop-body (inner-body)
(declare (special *loop-map* *loop-map-declares*))
(cond (*loop-map*
(setf inner-body (list (subst (cons 'progn inner-body)
:sloop-body *loop-map*)))
(and *loop-map-declares*
(setf inner-body(subst *loop-map-declares*
:sloop-map-declares inner-body)))))
inner-body)
;;;**User Extensible Iteration Facility**
(eval-when (compile eval load)
(defun def-loop-internal (name args body type &optional list min-args max-args
&aux (*print-case* :upcase) (helper (intern (format nil "~a-SLOOP-~a" name type))))
(and min-args (or (>= (length args) min-args)(error "need more args")))
(and max-args (or (<= (length args) max-args)(error "need less args")))
`(eval-when (load compile eval)
(defun ,helper ,args
,@ body)
,@ (and list `((pushnew ',name ,list)))
(setf (get ',name ,(intern (format nil "SLOOP-~a" type) (find-package 'keyword))) ',helper)
(setf (get ',name ,(intern (format nil "SLOOP-~a-ARGS" type)(find-package 'keyword))) ',args)))
)
;;DEF-LOOP-COLLECT
;;lets you get a handle on the collection var.
;;exactly two args.
;;First arg=collection-variable
;;Second arg=value this time thru the loop.
(def-loop-collect sum (ans val)
`(initially (setq ,ans 0)
do (setq ,ans (+ ,ans ,val))))
(def-loop-collect logxor (ans val)
`(initially (setf ,ans 0)
do (setf ,ans (logxor ,ans ,val))
declare (fixnum ,ans ,val)))
(def-loop-collect maximize (ans val)
`(initially (setq ,ans nil)
do (if ,ans (setf ,ans (max ,ans ,val)) (setf ,ans ,val))))
(def-loop-collect minimize (ans val)
`(initially (setq ,ans nil)
do (if ,ans (setf ,ans (min ,ans ,val)) (setf ,ans ,val))))
(def-loop-collect count (ans val)
`(initially (setq ,ans 0)
do (and ,val (setf ,ans (1+ ,ans)))))
(def-loop-collect thereis (ans val)(declare(ignore ans))`(do (if ,val (loop-return ,val))))
(def-loop-collect always (ans val) `(initially (setq ,ans t) do (and (null ,val)(loop-return nil))))
(def-loop-collect never (ans val) `(initially (setq ,ans t) do (and ,val (loop-return nil))))
;;DEF-LOOP-MACRO
;;If we have done
;(def-loop-macro averaging (x)
; `(sum ,x into .tot. and count t into .how-many.
; finally (loop-return (/ .tot. (float .how-many.)))))
;(def-loop-collect average (ans val)
; `(initially (setf ,ans 0.0)
; with-unique .how-many. = 0
; do (setf ,ans (/ (+ (* .how-many. ,ans) ,val) (incf .how-many.)))
; ))
;;provides averaging with current value the acutal average.
(def-loop-macro averaging (x)
`(with-unique .average. = 0.0
and with-unique .n-to-average. = 0
declare (float .average. ) declare (fixnum .n-to-average.)
do (setf .average. (/ (+ (* .n-to-average. .average.) ,x) (incf .n-to-average.)))
finally (loop-return .average.)))
(def-loop-macro repeat (x)
(let ((ind (gensym)))
`(for ,ind below ,x)))
(def-loop-macro return (x)
`(do (loop-return ,x)))
;;then we can write:
;(sloop for x in l when (oddp x) averaging x)
;;DEF-LOOP-FOR
;;def-loop-for and def-loop-macro
;;are almost identical except that the def-loop-for construct can only occur
;;after a for:
;(def-loop-for in-array (vars array)
; (let ((elt (car vars))
; (ind (second vars)))
; `(for ,ind below (length ,array) do (setf ,elt (aref ,array ,ind)))))
;; (sloop for (elt ind) in-array ar when (oddp elt) collecting ind)
;;You are just building something understandable by loop but minus the for.
;;Since this is almost like a "macro", and users may want to customize their
;;own, the comparsion of tokens uses eq, ie. you must import IN-ARRAY to your package
;;if you define it in another one. Actually we make a fancier in-array
;;below which understands from, to, below, downfrom,.. and can have
;;either (elt ind) or elt as the argument vars.
;;DEF-LOOP-MAP
;;A rather general iteration construct which allows you to map over things
;;It can only occur after FOR.
;;There can only be one loop-map for a given loop, so you want to only
;;use them for complicated iterations.
(def-loop-map in-table (var table)
`(maphash #'(lambda ,var :sloop-map-declares :sloop-body) ,table))
;Usage (sloop for (key elt) in-table table
; declare (fixnum elt)
; when (oddp elt) collecting (cons key elt))
(def-loop-map in-package (var pkg)
`(do-symbols (,var (find-package ,pkg)) :sloop-body))
;(defun te()(sloop for sym in-package 'sloop when (fboundp sym) count t))
;;in-array that understands from,downfrowm,to, below, above,etc.
;;I used a do for the macro iteration to be able include it here.
(def-loop-for in-array (vars array &rest args)
(let (elt ind to)
(cond ((listp vars) (setf elt (car vars) ind (second vars)))
(t (setf elt vars ind (gensym "INDEX" ))))
(let ((skip (do ((v args (cddr v)) (result))
(())
(lcase (car v)
((from downfrom) )
((to below above) (setf to t))
(by)
(t (setq args (copy-list v))
(return (nreverse result))))
(push (car v) result) (push (second v) result))))
(or to (setf skip (nconc `(below (length ,array)) skip)))
`(for ,ind
,@ skip
with ,elt
do (setf ,elt (aref ,array ,ind)) ,@ args))))
;usage: IN-ARRAY
;(sloop for (elt i) in-array ar from 4
; when (oddp i)
; collecting elt)
;(sloop for elt in-array ar below 10 by 2
; do (print elt))
(def-loop-for = (var val)
(lcase (loop-peek)
(then (loop-pop) `(with ,var initially (desetq ,var ,val) increment (desetq ,var ,(loop-pop))))
(t `(with ,var do (desetq ,var ,val)))))
(def-loop-macro sloop (for-loop)
(lcase (car for-loop)
(for))
(let (*inner-sloop* *loop-body* *loop-map* inner-body
(finish-loop (gensym "FINISH"))
a b c e f (*loop-form* for-loop))
(declare (special *inner-sloop* *loop-end-test* *loop-increment*
*product-for* *loop-map*
*loop-form* *loop-body* *loop-prologue* *loop-epilogue* *loop-end-test*
*loop-bindings*
))
(setf *product-for* t)
(loop-pop)
(sloop-swap)
(parse-loop-for)
(sloop-swap)
(do ()
((null *loop-form*))
(cond ((catch 'collect (parse-loop1)))
((null *loop-form*)(return 'done))
(t ;(fsignal "hi")
(print *loop-form*)
(sloop-swap)
(parse-loop-collect)
(sloop-swap)
(print *loop-form*)
)))
(sloop-swap)
(setf inner-body (nreverse *loop-body*))
(and *loop-map* (setf inner-body (substitute-sloop-body inner-body)))
(let ((bod
`(macrolet ((local-finish () `(go ,',finish-loop)))
(tagbody
,@ (nreverse *loop-prologue*)
,@ (and (null *loop-map*) '(next-loop))
,@ (nreverse *loop-end-test*)
,@ inner-body
,@ (nreverse *loop-increment*)
,@ (and (null *loop-map*) '((go next-loop)))
,finish-loop
,@ (nreverse *loop-epilogue*)))))
(dolist (v *loop-bindings*)
(setf bod
`(let ,(loop-let-bindings v) ,@(and (cdr v) `(,(cons 'declare (cdr v))))
,bod)))
(sloop-swap)
`(do ,bod))))
;Usage: SLOOP FOR
;(defun te ()
; (sloop for i below 5
; sloop (for j to i collecting (list i j))))
(def-loop-for in-carefully (var lis)
"Path with var in lis except lis may end with a non nil cdr"
(let ((point (gensym "POINT")))
`(with ,point and with ,var initially (setf ,point ,lis)
do(desetq ,var (car ,point))
end-test (and (atom ,point)(local-finish))
increment (setf ,point (cdr ,point)))))
;usage: IN-CAREFULLY
;(defun te (l)
; (sloop for v in-carefully l collecting v))
;Note the following is much like the mit for i first expr1 then expr2
;but it is not identical, in that if expr1 refers to paralell for loop
;it will not get the correct initialization. But since we have such generality in the
;our definition of a for construct, it is unlikely that all people who define
;This is why we use a different name
(def-loop-for first-use (var expr1 then expr2)
(or (l-equal then 'then) (error "First must be followed by then"))
`(with ,var initially (desetq ,var ,expr1) increment (desetq ,var ,expr2)))
(defvar *collate-order* #'<)
;;of course this should be a search of the list based on the
;;order and splitting into halves. I have one such written,
;;but for short lists it may not be important. It takes more space.
(defun find-in-ordered-list
(it list &optional (order-function *collate-order*) &aux prev)
(do ((v list (cdr v)))
((null v) (values prev nil))
(cond ((eql (car v) it) (return (values v t)))
((funcall order-function it (car v))
(return (values prev nil))))
(setq prev v)))
(def-loop-collect collate (ans val)
"Collects values into a sorted list without duplicates.
Order based order function *collate-order*"
`(do (multiple-value-bind
(after already-there )
(find-in-ordered-list ,val ,ans)
(unless already-there
(cond (after (setf (cdr after) (cons ,val (cdr after))))
(t (setf ,ans (cons ,val ,ans))))))))
;usage: COLLATE
;(defun te ()
; (let ((res
; (sloop for i below 10
; sloop (for j downfrom 8 to 0
; collate (* i (mod j (max i 1)) (random 2))))))))
(defun map-fringe (fun tree)
(do ((v tree))
(())
(cond ((atom v)
(and v (funcall fun v))(return 'done))
((atom (car v))
(funcall fun (car v)))
(t (map-fringe fun (car v) )))
(setf v (cdr v))))
(def-loop-map in-fringe (var tree)
"Map over the non nil atoms in the fringe of tree"
`(map-fringe #'(lambda (,var) :sloop-map-declares :sloop-body) ,tree))
;;usage: IN-FRINGE
;(sloop for v in-fringe '(1 2 (3 (4 5) . 6) 8 1 2)
; declare (fixnum v)
; maximize v)
|