This file is indexed.

/usr/share/agda-stdlib/Function/Related.agda is in agda-stdlib 0.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
------------------------------------------------------------------------
-- The Agda standard library
--
-- A universe which includes several kinds of "relatedness" for sets,
-- such as equivalences, surjections and bijections
------------------------------------------------------------------------

module Function.Related where

open import Level
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence as Eq      using (Equivalence)
open import Function.Injection   as Inj     using (Injection; _↣_)
open import Function.Inverse     as Inv     using (Inverse; _↔_)
open import Function.LeftInverse as LeftInv using (LeftInverse)
open import Function.Surjection  as Surj    using (Surjection)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)

------------------------------------------------------------------------
-- Wrapper types

-- Synonyms which are used to make _∼[_]_ below "constructor-headed"
-- (which implies that Agda can deduce the universe code from an
-- expression matching any of the right-hand sides).

record _←_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
  constructor lam
  field app-← : B → A

open _←_ public

record _↢_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
  constructor lam
  field app-↢ : B ↣ A

open _↢_ public

------------------------------------------------------------------------
-- Relatedness

-- There are several kinds of "relatedness".

-- The idea to include kinds other than equivalence and bijection came
-- from Simon Thompson and Bengt Nordström. /NAD

data Kind : Set where
  implication reverse-implication
    equivalence
    injection reverse-injection
    left-inverse surjection
    bijection
    : Kind

-- Interpretation of the codes above. The code "bijection" is
-- interpreted as Inverse rather than Bijection; the two types are
-- equivalent.

infix 4 _∼[_]_

_∼[_]_ : ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Kind → Set ℓ₂ → Set _
A ∼[ implication         ] B = A → B
A ∼[ reverse-implication ] B = A ← B
A ∼[ equivalence         ] B = Equivalence (P.setoid A) (P.setoid B)
A ∼[ injection           ] B = Injection   (P.setoid A) (P.setoid B)
A ∼[ reverse-injection   ] B = A ↢ B
A ∼[ left-inverse        ] B = LeftInverse (P.setoid A) (P.setoid B)
A ∼[ surjection          ] B = Surjection  (P.setoid A) (P.setoid B)
A ∼[ bijection           ] B = Inverse     (P.setoid A) (P.setoid B)

-- A non-infix synonym.

Related : Kind → ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set _
Related k A B = A ∼[ k ] B

-- The bijective equality implies any kind of relatedness.

↔⇒ : ∀ {k x y} {X : Set x} {Y : Set y} →
     X ∼[ bijection ] Y → X ∼[ k ] Y
↔⇒ {implication}         = _⟨$⟩_ ∘ Inverse.to
↔⇒ {reverse-implication} = lam ∘′ _⟨$⟩_ ∘ Inverse.from
↔⇒ {equivalence}         = Inverse.equivalence
↔⇒ {injection}           = Inverse.injection
↔⇒ {reverse-injection}   = lam ∘′ Inverse.injection ∘ Inv.sym
↔⇒ {left-inverse}        = Inverse.left-inverse
↔⇒ {surjection}          = Inverse.surjection
↔⇒ {bijection}           = id

-- Actual equality also implies any kind of relatedness.

≡⇒ : ∀ {k ℓ} {X Y : Set ℓ} → X ≡ Y → X ∼[ k ] Y
≡⇒ P.refl = ↔⇒ Inv.id

------------------------------------------------------------------------
-- Special kinds of kinds

-- Kinds whose interpretation is symmetric.

data Symmetric-kind : Set where
  equivalence bijection : Symmetric-kind

-- Forgetful map.

⌊_⌋ : Symmetric-kind → Kind
⌊ equivalence ⌋ = equivalence
⌊ bijection   ⌋ = bijection

-- The proof of symmetry can be found below.

-- Kinds whose interpretation include a function which "goes in the
-- forward direction".

data Forward-kind : Set where
  implication equivalence injection
    left-inverse surjection bijection : Forward-kind

-- Forgetful map.

⌊_⌋→ : Forward-kind → Kind
⌊ implication  ⌋→ = implication
⌊ equivalence  ⌋→ = equivalence
⌊ injection    ⌋→ = injection
⌊ left-inverse ⌋→ = left-inverse
⌊ surjection   ⌋→ = surjection
⌊ bijection    ⌋→ = bijection

-- The function.

⇒→ : ∀ {k x y} {X : Set x} {Y : Set y} → X ∼[ ⌊ k ⌋→ ] Y → X → Y
⇒→ {implication}  = id
⇒→ {equivalence}  = _⟨$⟩_ ∘ Equivalence.to
⇒→ {injection}    = _⟨$⟩_ ∘ Injection.to
⇒→ {left-inverse} = _⟨$⟩_ ∘ LeftInverse.to
⇒→ {surjection}   = _⟨$⟩_ ∘ Surjection.to
⇒→ {bijection}    = _⟨$⟩_ ∘ Inverse.to

-- Kinds whose interpretation include a function which "goes backwards".

data Backward-kind : Set where
  reverse-implication equivalence reverse-injection
    left-inverse surjection bijection : Backward-kind

-- Forgetful map.

⌊_⌋← : Backward-kind → Kind
⌊ reverse-implication ⌋← = reverse-implication
⌊ equivalence         ⌋← = equivalence
⌊ reverse-injection   ⌋← = reverse-injection
⌊ left-inverse        ⌋← = left-inverse
⌊ surjection          ⌋← = surjection
⌊ bijection           ⌋← = bijection

-- The function.

⇒← : ∀ {k x y} {X : Set x} {Y : Set y} → X ∼[ ⌊ k ⌋← ] Y → Y → X
⇒← {reverse-implication} = app-←
⇒← {equivalence}         = _⟨$⟩_ ∘ Equivalence.from
⇒← {reverse-injection}   = _⟨$⟩_ ∘ Injection.to ∘ app-↢
⇒← {left-inverse}        = _⟨$⟩_ ∘ LeftInverse.from
⇒← {surjection}          = _⟨$⟩_ ∘ Surjection.from
⇒← {bijection}           = _⟨$⟩_ ∘ Inverse.from

-- Kinds whose interpretation include functions going in both
-- directions.

data Equivalence-kind : Set where
    equivalence left-inverse surjection bijection : Equivalence-kind

-- Forgetful map.

⌊_⌋⇔ : Equivalence-kind → Kind
⌊ equivalence  ⌋⇔ = equivalence
⌊ left-inverse ⌋⇔ = left-inverse
⌊ surjection   ⌋⇔ = surjection
⌊ bijection    ⌋⇔ = bijection

-- The functions.

⇒⇔ : ∀ {k x y} {X : Set x} {Y : Set y} →
     X ∼[ ⌊ k ⌋⇔ ] Y → X ∼[ equivalence ] Y
⇒⇔ {equivalence}  = id
⇒⇔ {left-inverse} = LeftInverse.equivalence
⇒⇔ {surjection}   = Surjection.equivalence
⇒⇔ {bijection}    = Inverse.equivalence

-- Conversions between special kinds.

⇔⌊_⌋ : Symmetric-kind → Equivalence-kind
⇔⌊ equivalence ⌋ = equivalence
⇔⌊ bijection   ⌋ = bijection

→⌊_⌋ : Equivalence-kind → Forward-kind
→⌊ equivalence  ⌋ = equivalence
→⌊ left-inverse ⌋ = left-inverse
→⌊ surjection   ⌋ = surjection
→⌊ bijection    ⌋ = bijection

←⌊_⌋ : Equivalence-kind → Backward-kind
←⌊ equivalence  ⌋ = equivalence
←⌊ left-inverse ⌋ = left-inverse
←⌊ surjection   ⌋ = surjection
←⌊ bijection    ⌋ = bijection

------------------------------------------------------------------------
-- Opposites

-- For every kind there is an opposite kind.

_op : Kind → Kind
implication         op = reverse-implication
reverse-implication op = implication
equivalence         op = equivalence
injection           op = reverse-injection
reverse-injection   op = injection
left-inverse        op = surjection
surjection          op = left-inverse
bijection           op = bijection

-- For every morphism there is a corresponding reverse morphism of the
-- opposite kind.

reverse : ∀ {k a b} {A : Set a} {B : Set b} →
          A ∼[ k ] B → B ∼[ k op ] A
reverse {implication}         = lam
reverse {reverse-implication} = app-←
reverse {equivalence}         = Eq.sym
reverse {injection}           = lam
reverse {reverse-injection}   = app-↢
reverse {left-inverse}        = Surj.fromRightInverse
reverse {surjection}          = Surjection.right-inverse
reverse {bijection}           = Inv.sym

------------------------------------------------------------------------
-- Equational reasoning

-- Equational reasoning for related things.

module EquationalReasoning where

  private

    refl : ∀ {k ℓ} → Reflexive (Related k {ℓ})
    refl {implication}         = id
    refl {reverse-implication} = lam id
    refl {equivalence}         = Eq.id
    refl {injection}           = Inj.id
    refl {reverse-injection}   = lam Inj.id
    refl {left-inverse}        = LeftInv.id
    refl {surjection}          = Surj.id
    refl {bijection}           = Inv.id

    trans : ∀ {k ℓ₁ ℓ₂ ℓ₃} →
            Trans (Related k {ℓ₁} {ℓ₂})
                  (Related k {ℓ₂} {ℓ₃})
                  (Related k {ℓ₁} {ℓ₃})
    trans {implication}         = flip _∘′_
    trans {reverse-implication} = λ f g → lam (app-← f ∘ app-← g)
    trans {equivalence}         = flip Eq._∘_
    trans {injection}           = flip Inj._∘_
    trans {reverse-injection}   = λ f g → lam (Inj._∘_ (app-↢ f) (app-↢ g))
    trans {left-inverse}        = flip LeftInv._∘_
    trans {surjection}          = flip Surj._∘_
    trans {bijection}           = flip Inv._∘_

  sym : ∀ {k ℓ₁ ℓ₂} →
        Sym (Related ⌊ k ⌋ {ℓ₁} {ℓ₂})
            (Related ⌊ k ⌋ {ℓ₂} {ℓ₁})
  sym {equivalence} = Eq.sym
  sym {bijection}   = Inv.sym

  infix  2 _∎
  infixr 2 _∼⟨_⟩_ _↔⟨_⟩_ _≡⟨_⟩_

  _∼⟨_⟩_ : ∀ {k x y z} (X : Set x) {Y : Set y} {Z : Set z} →
           X ∼[ k ] Y → Y ∼[ k ] Z → X ∼[ k ] Z
  _ ∼⟨ X↝Y ⟩ Y↝Z = trans X↝Y Y↝Z

  -- Isomorphisms can be combined with any other kind of relatedness.

  _↔⟨_⟩_ : ∀ {k x y z} (X : Set x) {Y : Set y} {Z : Set z} →
           X ↔ Y → Y ∼[ k ] Z → X ∼[ k ] Z
  X ↔⟨ X↔Y ⟩ Y⇔Z = X ∼⟨ ↔⇒ X↔Y ⟩ Y⇔Z

  _≡⟨_⟩_ : ∀ {k ℓ z} (X : Set ℓ) {Y : Set ℓ} {Z : Set z} →
           X ≡ Y → Y ∼[ k ] Z → X ∼[ k ] Z
  X ≡⟨ X≡Y ⟩ Y⇔Z = X ∼⟨ ≡⇒ X≡Y ⟩ Y⇔Z

  _∎ : ∀ {k x} (X : Set x) → X ∼[ k ] X
  X ∎ = refl

-- For a symmetric kind and a fixed universe level we can construct a
-- setoid.

setoid : Symmetric-kind → (ℓ : Level) → Setoid _ _
setoid k ℓ = record
  { Carrier       = Set ℓ
  ; _≈_           = Related ⌊ k ⌋
  ; isEquivalence =
      record {refl = _ ∎; sym = sym; trans = _∼⟨_⟩_ _}
  } where open EquationalReasoning

-- For an arbitrary kind and a fixed universe level we can construct a
-- preorder.

preorder : Kind → (ℓ : Level) → Preorder _ _ _
preorder k ℓ = record
  { Carrier    = Set ℓ
  ; _≈_        = _↔_
  ; _∼_        = Related k
  ; isPreorder = record
    { isEquivalence = Setoid.isEquivalence (setoid bijection ℓ)
    ; reflexive     = ↔⇒
    ; trans         = _∼⟨_⟩_ _
    }
  } where open EquationalReasoning

------------------------------------------------------------------------
-- Some induced relations

-- Every unary relation induces a preorder and, for symmetric kinds,
-- an equivalence. (No claim is made that these relations are unique.)

InducedRelation₁ : Kind → ∀ {a s} {A : Set a} →
                   (A → Set s) → A → A → Set _
InducedRelation₁ k S = λ x y → S x ∼[ k ] S y

InducedPreorder₁ : Kind → ∀ {a s} {A : Set a} →
                   (A → Set s) → Preorder _ _ _
InducedPreorder₁ k S = record
  { _≈_        = P._≡_
  ; _∼_        = InducedRelation₁ k S
  ; isPreorder = record
    { isEquivalence = P.isEquivalence
    ; reflexive     = reflexive ∘
                      Setoid.reflexive (setoid bijection _) ∘
                      P.cong S
    ; trans         = trans
    }
  } where open Preorder (preorder _ _)

InducedEquivalence₁ : Symmetric-kind → ∀ {a s} {A : Set a} →
                      (A → Set s) → Setoid _ _
InducedEquivalence₁ k S = record
  { _≈_           = InducedRelation₁ ⌊ k ⌋ S
  ; isEquivalence = record {refl = refl; sym = sym; trans = trans}
  } where open Setoid (setoid _ _)

-- Every binary relation induces a preorder and, for symmetric kinds,
-- an equivalence. (No claim is made that these relations are unique.)

InducedRelation₂ : Kind → ∀ {a b s} {A : Set a} {B : Set b} →
                   (A → B → Set s) → B → B → Set _
InducedRelation₂ k _S_ = λ x y → ∀ {z} → (z S x) ∼[ k ] (z S y)

InducedPreorder₂ : Kind → ∀ {a b s} {A : Set a} {B : Set b} →
                   (A → B → Set s) → Preorder _ _ _
InducedPreorder₂ k _S_ = record
  { _≈_        = P._≡_
  ; _∼_        = InducedRelation₂ k _S_
  ; isPreorder = record
    { isEquivalence = P.isEquivalence
    ; reflexive     = λ x≡y {z} →
                        reflexive $
                        Setoid.reflexive (setoid bijection _) $
                        P.cong (_S_ z) x≡y

    ; trans         = λ i↝j j↝k → trans i↝j j↝k
    }
  } where open Preorder (preorder _ _)

InducedEquivalence₂ : Symmetric-kind →
                      ∀ {a b s} {A : Set a} {B : Set b} →
                      (A → B → Set s) → Setoid _ _
InducedEquivalence₂ k _S_ = record
  { _≈_           = InducedRelation₂ ⌊ k ⌋ _S_
  ; isEquivalence = record
    { refl  = refl
    ; sym   = λ i↝j → sym i↝j
    ; trans = λ i↝j j↝k → trans i↝j j↝k
    }
  } where open Setoid (setoid _ _)