/usr/share/calc/lucas.cal is in apcalc-common 2.12.4.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 | /*
* lucas - perform a Lucas primality test on h*2^n-1
*
* Copyright (C) 1999 Landon Curt Noll
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* @(#) $Revision: 30.1 $
* @(#) $Id: lucas.cal,v 30.1 2007/03/16 11:09:54 chongo Exp $
* @(#) $Source: /usr/local/src/cmd/calc/cal/RCS/lucas.cal,v $
*
* Under source code control: 1990/05/03 16:49:51
* File existed as early as: 1990
*
* chongo <was here> /\oo/\ http://www.isthe.com/chongo/
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
/*
* NOTE: This is a standard calc resource file. For information on calc see:
*
* http://www.isthe.com/chongo/tech/comp/calc/index.html
*
* To obtain your own copy of calc, see:
*
* http://www.isthe.com/chongo/tech/comp/calc/calc-download.html
*/
/*
* HISTORICAL NOTE:
*
* On 6 August 1989 at 00:53 PDT, the 'Amdahl 6', a team consisting of
* John Brown, Landon Curt Noll, Bodo Parady, Gene Smith, Joel Smith and
* Sergio Zarantonello proved the following 65087 digit number to be prime:
*
* 216193
* 391581 * 2 -1
*
* At the time of discovery, this number was the largest known prime.
* The primality was demonstrated by a program implementing the test
* found in these routines. An Amdahl 1200 takes 1987 seconds to test
* the primality of this number. A Cray 2 took several hours to
* confirm this prime. As of 31 Dec 1995, this prime was the 3rd
* largest known prime and the largest known non-Mersenne prime.
*
* The same team also discovered the following twin prime pair:
*
* 11235 11235
* 1706595 * 2 -1 1706595 * 2 +1
*
* At the time of discovery, this was the largest known twin prime pair.
*
* See:
*
* http://www.isthe.com/chongo/tech/math/prime/amdahl6.html
*
* for more information on the Amdahl 6 group.
*
* NOTE: Both largest known and largest known twin prime records have been
* broken. Rather than update this file each time, I'll just
* congratulate the finders and encourage others to try for
* larger finds. Records were made to be broken afterall!
*/
/* ON GAINING A WORLD RECORD:
*
* The routines in calc were designed to be portable, and to work on
* numbers of 'sane' size. The Amdahl 6 team used a 'ultra-high speed
* multi-precision' package that a machine dependent collection of routines
* tuned for a long trace vector processor to work with very large numbers.
* The heart of the package was a multiplication and square routine that
* was based on the PFA Fast Fourier Transform and on Winograd's radix FFTs.
*
* Having a fast computer, and a good multi-precision package are
* critical, but one also needs to know where to look in order to have
* a good chance at a record. Knowing what to test is beyond the scope
* of this routine. However the following observations are noted:
*
* test numbers of the form h*2^n-1
* fix a value of n and vary the value h
* n mod 2^x == 0 for some value of x, say > 7 or more
* h*2^n-1 is not divisible by any small prime < 2^40
* 0 < h < 2^39
* h*2^n+1 is not divisible by any small prime < 2^40
*
* The Mersenne test for '2^n-1' is the fastest known primality test
* for a given large numbers. However, it is faster to search for
* primes of the form 'h*2^n-1'. When n is around 200000, one can find
* a prime of the form 'h*2^n-1' in about 1/2 the time.
*
* Critical to understanding why 'h*2^n-1' is to observe that primes of
* the form '2^n-1' seem to bunch around "islands". Such "islands"
* seem to be getting fewer and farther in-between, forcing the time
* for each test to grow longer and longer (worse then O(n^2 log n)).
* On the other hand, when one tests 'h*2^n-1', fixes 'n' and varies
* 'h', the time to test each number remains relatively constant.
*
* It is clearly a win to eliminate potential test candidates by
* rejecting numbers that that are divisible by 'small' primes. We
* (the "Amdahl 6") rejected all numbers that were divisible by primes
* less than '2^40'. We stopped looking for small factors at '2^40'
* when the rate of candidates being eliminated was slowed down to
* just a trickle.
*
* The 'n mod 128 == 0' restriction allows one to test for divisibility
* of small primes more quickly. To test of 'q' is a factor of 'k*2^n-1',
* one check to see if 'k*2^n mod q' == 1, which is the same a checking
* if 'h*(2^n mod q) mod q' == 1. One can compute '2^n mod q' by making
* use of the following:
*
* if
* y = 2^x mod q
* then
* 2^(2x) mod q == y^2 mod q 0 bit
* 2^(2x+1) mod q == 2*y^2 mod q 1 bit
*
* The choice of which expression depends on the binary pattern of 'n'.
* Since '1' bits require an extra step (multiply by 2), one should
* select value of 'n' that contain mostly '0' bits. The restriction
* of 'n mod 128 == 0' ensures that the bottom 7 bits of 'n' are 0.
*
* By limiting 'h' to '2^39' and eliminating all values divisible by
* small primes < twice the 'h' limit (2^40), one knows that all
* remaining candidates are relatively prime. Thus, when a candidate
* is proven to be composite (not prime) by the big test, one knows
* that the factors for that number (whatever they may be) will not
* be the factors of another candidate.
*
* Finally, one should eliminate all values of 'h*2^n-1' where
* 'h*2^n+1' is divisible by a small primes. The ideas behind this
* point is beyond the scope of this program.
*/
global pprod256; /* product of "primes up to 256" / "primes up to 46" */
/*
* lucas - lucas primality test on h*2^n-1
*
* ABOUT THE TEST:
*
* This routine will perform a primality test on h*2^n-1 based on
* the mathematics of Lucas, Lehmer and Riesel. One should read
* the following article:
*
* Ref1:
* "Lucasian Criteria for the Primality of N=h*2^n-1", by Hans Riesel,
* Mathematics of Computation, Vol 23 #108, pp. 869-875, Oct 1969
*
* The following book is also useful:
*
* Ref2:
* "Prime numbers and Computer Methods for Factorization", by Hans Riesel,
* Birkhauser, 1985, pp 131-134, 278-285, 438-444
*
* A few useful Legendre identities may be found in:
*
* Ref3:
* "Introduction to Analytic Number Theory", by Tom A. Apostol,
* Springer-Verlag, 1984, p 188.
*
* This test is performed as follows: (see Ref1, Theorem 5)
*
* a) generate u(0) (see the function gen_u0() below)
*
* b) generate u(n-2) according to the rule:
*
* u(i+1) = u(i)^2-2 mod h*2^n-1
*
* c) h*2^n-1 is prime if and only if u(n-2) == 0 Q.E.D. :-)
*
* Now the following conditions must be true for the test to work:
*
* n >= 2
* h >= 1
* h < 2^n
* h mod 2 == 1
*
* A few misc notes:
*
* In order to reduce the number of tests, as attempt to eliminate
* any number that is divisible by a prime less than 257. Valid prime
* candidates less than 257 are declared prime as a special case.
*
* In real life, you would eliminate candidates by checking for
* divisibility by a prime much larger than 257 (perhaps as high
* as 2^39).
*
* The condition 'h mod 2 == 1' is not a problem. Say one is testing
* 'j*2^m-1', where j is even. If we note that:
*
* j mod 2^x == 0 for x>0 implies j*2^m-1 == ((j/2^x)*2^(m+x))-1,
*
* then we can let h=j/2^x and n=m+x and test 'h*2^n-1' which is the value.
* We need only consider odd values of h because we can rewrite our numbers
* do make this so.
*
* input:
* h the h as in h*2^n-1
* n the n as in h*2^n-1
*
* returns:
* 1 => h*2^n-1 is prime
* 0 => h*2^n-1 is not prime
* -1 => a test could not be formed, or h >= 2^n, h <= 0, n <= 0
*/
define
lucas(h, n)
{
local testval; /* h*2^n-1 */
local shiftdown; /* the power of 2 that divides h */
local u; /* the u(i) sequence value */
local v1; /* the v(1) generator of u(0) */
local i; /* u sequence cycle number */
local oldh; /* pre-reduced h */
local oldn; /* pre-reduced n */
local bits; /* highbit of h*2^n-1 */
/*
* check arg types
*/
if (!isint(h)) {
ldebug("lucas", "h is non-int");
quit "FATAL: bad args: h must be an integer";
}
if (!isint(n)) {
ldebug("lucas", "n is non-int");
quit "FATAL: bad args: n must be an integer";
}
/*
* reduce h if even
*
* we will force h to be odd by moving powers of two over to 2^n
*/
oldh = h;
oldn = n;
shiftdown = fcnt(h,2); /* h % 2^shiftdown == 0, max shiftdown */
if (shiftdown > 0) {
h >>= shiftdown;
n += shiftdown;
}
/*
* enforce the 0 < h < 2^n rule
*/
if (h <= 0 || n <= 0) {
print "ERROR: reduced args violate the rule: 0 < h < 2^n";
print " ERROR: h=":oldh, "n=":oldn, "reduced h=":h, "n=":n;
ldebug("lucas", "unknown: h <= 0 || n <= 0");
return -1;
}
if (highbit(h) >= n) {
print "ERROR: reduced args violate the rule: h < 2^n";
print " ERROR: h=":oldh, "n=":oldn, "reduced h=":h, "n=":n;
ldebug("lucas", "unknown: highbit(h) >= n");
return -1;
}
/*
* catch the degenerate case of h*2^n-1 == 1
*/
if (h == 1 && n == 1) {
ldebug("lucas", "not prime: h == 1 && n == 1");
return 0; /* 1*2^1-1 == 1 is not prime */
}
/*
* catch the degenerate case of n==2
*
* n==2 and 0<h<2^n ==> 0<h<4
*
* Since h is now odd ==> h==1 or h==3
*/
if (h == 1 && n == 2) {
ldebug("lucas", "prime: h == 1 && n == 2");
return 1; /* 1*2^2-1 == 3 is prime */
}
if (h == 3 && n == 2) {
ldebug("lucas", "prime: h == 3 && n == 2");
return 1; /* 3*2^2-1 == 11 is prime */
}
/*
* catch small primes < 257
*
* We check for only a few primes because the other primes < 257
* violate the checks above.
*/
if (h == 1) {
if (n == 3 || n == 5 || n == 7) {
ldebug("lucas", "prime: 3, 7, 31, 127 are prime");
return 1; /* 3, 7, 31, 127 are prime */
}
}
if (h == 3) {
if (n == 2 || n == 3 || n == 4 || n == 6) {
ldebug("lucas", "prime: 11, 23, 47, 191 are prime");
return 1; /* 11, 23, 47, 191 are prime */
}
}
if (h == 5 && n == 4) {
ldebug("lucas", "prime: 79 is prime");
return 1; /* 79 is prime */
}
if (h == 7 && n == 5) {
ldebug("lucas", "prime: 223 is prime");
return 1; /* 223 is prime */
}
if (h == 15 && n == 4) {
ldebug("lucas", "prime: 239 is prime");
return 1; /* 239 is prime */
}
/*
* Avoid any numbers divisible by small primes
*/
/*
* check for 3 <= prime factors < 29
* pfact(28)/2 = 111546435
*/
testval = h*2^n - 1;
if (gcd(testval, 111546435) > 1) {
/* a small 3 <= prime < 29 divides h*2^n-1 */
ldebug("lucas","not-prime: 3<=prime<29 divides h*2^n-1");
return 0;
}
/*
* check for 29 <= prime factors < 47
* pfact(46)/pfact(28) = 5864229
*/
if (gcd(testval, 58642669) > 1) {
/* a small 29 <= prime < 47 divides h*2^n-1 */
ldebug("lucas","not-prime: 29<=prime<47 divides h*2^n-1");
return 0;
}
/*
* check for prime 47 <= factors < 257, if h*2^n-1 is large
* 2^282 > pfact(256)/pfact(46) > 2^281
*/
bits = highbit(testval);
if (bits >= 281) {
if (pprod256 <= 0) {
pprod256 = pfact(256)/pfact(46);
}
if (gcd(testval, pprod256) > 1) {
/* a small 47 <= prime < 257 divides h*2^n-1 */
ldebug("lucas",\
"not-prime: 47<=prime<257 divides h*2^n-1");
return 0;
}
}
/*
* try to compute u(0)
*
* We will use gen_v1() to give us a v(1) using the values
* of 'h' and 'n'. We will then use gen_u0() to convert
* the v(1) into u(0).
*
* If gen_v1() returns a negative value, then we failed to
* generate a test for h*2^n-1. This is because h mod 3 == 0
* is hard to do, and in rare cases, exceed the tables found
* in this program. We will generate an message and assume
* the number is not prime, even though if we had a larger
* table, we might have been able to show that it is prime.
*/
v1 = gen_v1(h, n);
if (v1 < 0) {
/* failure to test number */
print "unable to compute v(1) for", h : "*2^" : n : "-1";
ldebug("lucas", "unknown: no v(1)");
return -1;
}
u = gen_u0(h, n, v1);
/*
* compute u(n-2)
*/
for (i=3; i <= n; ++i) {
/* u = (u^2 - 2) % testval; */
u = hnrmod(u^2 - 2, h, n, -1);
}
/*
* return 1 if prime, 0 is not prime
*/
if (u == 0) {
ldebug("lucas", "prime: end of test");
return 1;
} else {
ldebug("lucas", "not-prime: end of test");
return 0;
}
}
/*
* gen_u0 - determine the initial Lucas sequence for h*2^n-1
*
* According to Ref1, Theorem 5:
*
* u(0) = alpha^h + alpha^(-h)
*
* Now:
*
* v(x) = alpha^x + alpha^(-x) (Ref1, bottom of page 872)
*
* Therefore:
*
* u(0) = v(h)
*
* We calculate v(h) as follows: (Ref1, top of page 873)
*
* v(0) = alpha^0 + alpha^(-0) = 2
* v(1) = alpha^1 + alpha^(-1) = gen_v1(h,n)
* v(n+2) = v(1)*v(n+1) - v(n)
*
* This function does not concern itself with the value of 'alpha'.
* The gen_v1() function is used to compute v(1), and identity
* functions take it from there.
*
* It can be shown that the following are true:
*
* v(2*n) = v(n)^2 - 2
* v(2*n+1) = v(n+1)*v(n) - v(1)
*
* To prevent v(x) from growing too large, one may replace v(x) with
* `v(x) mod h*2^n-1' at any time.
*
* See the function gen_v1() for details on the value of v(1).
*
* input:
* h - h as in h*2^n-1 (h mod 2 != 0)
* n - n as in h*2^n-1
* v1 - gen_v1(h,n) (see function below)
*
* returns:
* u(0) - initial value for Lucas test on h*2^n-1
* -1 - failed to generate u(0)
*/
define
gen_u0(h, n, v1)
{
local shiftdown; /* the power of 2 that divides h */
local r; /* low value: v(n) */
local s; /* high value: v(n+1) */
local hbits; /* highest bit set in h */
local i;
/*
* check arg types
*/
if (!isint(h)) {
quit "bad args: h must be an integer";
}
if (!isint(n)) {
quit "bad args: n must be an integer";
}
if (!isint(v1)) {
quit "bad args: v1 must be an integer";
}
if (v1 <= 0) {
quit "bogus arg: v1 is <= 0";
}
/*
* enforce the h mod rules
*/
if (h%2 == 0) {
quit "h must not be even";
}
/*
* enforce the h > 0 and n >= 2 rules
*/
if (h <= 0 || n < 1) {
quit "reduced args violate the rule: 0 < h < 2^n";
}
hbits = highbit(h);
if (hbits >= n) {
quit "reduced args violate the rule: 0 < h < 2^n";
}
/*
* build up u2 based on the reversed bits of h
*/
/* setup for bit loop */
r = v1;
s = (r^2 - 2);
/*
* deal with small h as a special case
*
* The h value is odd > 0, and it needs to be
* at least 2 bits long for the loop below to work.
*/
if (h == 1) {
ldebug("gen_u0", "quick h == 1 case");
/* return r%(h*2^n-1); */
return hnrmod(r, h, n, -1);
}
/* cycle from second highest bit to second lowest bit of h */
for (i=hbits-1; i > 0; --i) {
/* bit(i) is 1 */
if (bit(h,i)) {
/* compute v(2n+1) = v(r+1)*v(r)-v1 */
/* r = (r*s - v1) % (h*2^n-1); */
r = hnrmod((r*s - v1), h, n, -1);
/* compute v(2n+2) = v(r+1)^2-2 */
/* s = (s^2 - 2) % (h*2^n-1); */
s = hnrmod((s^2 - 2), h, n, -1);
/* bit(i) is 0 */
} else {
/* compute v(2n+1) = v(r+1)*v(r)-v1 */
/* s = (r*s - v1) % (h*2^n-1); */
s = hnrmod((r*s - v1), h, n, -1);
/* compute v(2n) = v(r)^-2 */
/* r = (r^2 - 2) % (h*2^n-1); */
r = hnrmod((r^2 - 2), h, n, -1);
}
}
/* we know that h is odd, so the final bit(0) is 1 */
/* r = (r*s - v1) % (h*2^n-1); */
r = hnrmod((r*s - v1), h, n, -1);
/* compute the final u2 return value */
return r;
}
/*
* Trial tables used by gen_v1()
*
* When h mod 3 == 0, one needs particular values of D, a and b (see gen_v1
* documentation) in order to find a value of v(1).
*
* This table defines 'quickmax' possible tests to be taken in ascending
* order. The v1_qval[x] refers to a v(1) value from Ref1, Table 1. A
* related D value is found in d_qval[x]. All D values expect d_qval[1]
* are also taken from Ref1, Table 1. The case of D == 21 as listed in
* Ref1, Table 1 can be changed to D == 7 for the sake of the test because
* of {note 6}.
*
* It should be noted that the D values all satisfy the selection values
* as outlined in the gen_v1() function comments. That is:
*
* D == P*(2^f)*(3^g)
*
* where f == 0 and g == 0, P == D. So we simply need to check that
* one of the following two cases are true:
*
* P mod 4 == 1 and J(h*2^n-1 mod P, P) == -1
* P mod 4 == -1 and J(h*2^n-1 mod P, P) == 1
*
* In all cases, the value of r is:
*
* r == Q*(2^j)*(3^k)*(z^2)
*
* where Q == 1. No further processing is needed to compute v(1) when r
* is of this form.
*/
quickmax = 8;
mat d_qval[quickmax];
mat v1_qval[quickmax];
d_qval[0] = 5; v1_qval[0] = 3; /* a=1 b=1 r=4 */
d_qval[1] = 7; v1_qval[1] = 5; /* a=3 b=1 r=12 D=21 */
d_qval[2] = 13; v1_qval[2] = 11; /* a=3 b=1 r=4 */
d_qval[3] = 11; v1_qval[3] = 20; /* a=3 b=1 r=2 */
d_qval[4] = 29; v1_qval[4] = 27; /* a=5 b=1 r=4 */
d_qval[5] = 53; v1_qval[5] = 51; /* a=53 b=1 r=4 */
d_qval[6] = 17; v1_qval[6] = 66; /* a=17 b=1 r=1 */
d_qval[7] = 19; v1_qval[7] = 74; /* a=38 b=1 r=2 */
/*
* gen_v1 - compute the v(1) for a given h*2^n-1 if we can
*
* This function assumes:
*
* n > 2 (n==2 has already been eliminated)
* h mod 2 == 1
* h < 2^n
* h*2^n-1 mod 3 != 0 (h*2^n-1 has no small factors, such as 3)
*
* The generation of v(1) depends on the value of h. There are two cases
* to consider, h mod 3 != 0, and h mod 3 == 0.
*
***
*
* Case 1: (h mod 3 != 0)
*
* This case is easy and always finds v(1).
*
* In Ref1, page 869, one finds that if: (or see Ref2, page 131-132)
*
* h mod 6 == +/-1
* h*2^n-1 mod 3 != 0
*
* which translates, gives the functions assumptions, into the condition:
*
* h mod 3 != 0
*
* If this case condition is true, then:
*
* u(0) = (2+sqrt(3))^h + (2-sqrt(3))^h (see Ref1, page 869)
* = (2+sqrt(3))^h + (2+sqrt(3))^(-h)
*
* and since Ref1, Theorem 5 states:
*
* u(0) = alpha^h + alpha^(-h)
* r = abs(2^2 - 1^2*3) = 1
*
* and the bottom of Ref1, page 872 states:
*
* v(x) = alpha^x + alpha^(-x)
*
* If we let:
*
* alpha = (2+sqrt(3))
*
* then
*
* u(0) = v(h)
*
* so we simply return
*
* v(1) = alpha^1 + alpha^(-1)
* = (2+sqrt(3)) + (2-sqrt(3))
* = 4
*
***
*
* Case 2: (h mod 3 == 0)
*
* This case is not so easy and finds v(1) in most all cases. In this
* version of this program, we will simply return -1 (failure) if we
* hit one of the cases that fall thru the cracks. This does not happen
* often, so this is not too bad.
*
* Ref1, Theorem 5 contains the following definitions:
*
* r = abs(a^2 - b^2*D)
* alpha = (a + b*sqrt(D))^2/r
*
* where D is 'square free', and 'alpha = epsilon^s' (for some s>0) are units
* in the quadratic field K(sqrt(D)).
*
* One can find possible values for a, b and D in Ref1, Table 1 (page 872).
* (see the file lucas_tbl.cal)
*
* Now Ref1, Theorem 5 states that if:
*
* L(D, h*2^n-1) = -1 [condition 1]
* L(r, h*2^n-1) * (a^2 - b^2*D)/r = -1 [condition 2]
*
* where L(x,y) is the Legendre symbol (see below), then:
*
* u(0) = alpha^h + alpha^(-h)
*
* The bottom of Ref1, page 872 states:
*
* v(x) = alpha^x + alpha^(-x)
*
* thus since:
*
* u(0) = v(h)
*
* so we want to return:
*
* v(1) = alpha^1 + alpha^(-1)
*
* Therefore we need to take a given (D,a,b), determine if the two conditions
* are true, and return the related v(1).
*
* Before we address the two conditions, we need some background information
* on two symbols, Legendre and Jacobi. In Ref 2, pp 278, 284-285, we find
* the following definitions of J(a,p) and L(a,n):
*
* The Legendre symbol L(a,p) takes the value:
*
* L(a,p) == 1 => a is a quadratic residue of p
* L(a,p) == -1 => a is NOT a quadratic residue of p
*
* when
*
* p is prime
* p mod 2 == 1
* gcd(a,p) == 1
*
* The value x is a quadratic residue of y if there exists some integer z
* such that:
*
* z^2 mod y == x
*
* The Jacobi symbol J(x,y) takes the value:
*
* J(x,y) == 1 => y is not prime, or x is a quadratic residue of y
* J(x,y) == -1 => x is NOT a quadratic residue of y
*
* when
*
* y mod 2 == 1
* gcd(x,y) == 1
*
* In the following comments on Legendre and Jacobi identities, we shall
* assume that the arguments to the symbolic are valid over the symbol
* definitions as stated above.
*
* In Ref2, pp 280-284, we find that:
*
* L(a,p)*L(b,p) == L(a*b,p) {A3.5}
* J(x,y)*J(z,y) == J(x*z,y) {A3.14}
* L(a,p) == L(p,a) * (-1)^((a-1)*(p-1)/4) {A3.8}
* J(x,y) == J(y,x) * (-1)^((x-1)*(y-1)/4) {A3.17}
*
* The equality L(a,p) == J(a,p) when: {note 0}
*
* p is prime
* p mod 2 == 1
* gcd(a,p) == 1
*
* It can be shown that (see Ref3):
*
* L(a,p) == L(a mod p, p) {note 1}
* L(z^2, p) == 1 {note 2}
*
* From Ref2, table 32:
*
* p mod 8 == +/-1 implies L(2,p) == 1 {note 3}
* p mod 12 == +/-1 implies L(3,p) == 1 {note 4}
*
* Since h*2^n-1 mod 8 == -1, for n>2, note 3 implies:
*
* L(2, h*2^n-1) == 1 (n>2) {note 5}
*
* Since h=3*A, h*2^n-1 mod 12 == -1, for A>0, note 4 implies:
*
* L(3, h*2^n-1) == 1 {note 6}
*
* By use of {A3.5}, {note 2}, {note 5} and {note 6}, one can show:
*
* L((2^g)*(3^l)*(z^2), h*2^n-1) == 1 (g>=0,l>=0,z>0,n>2) {note 7}
*
* Returning to the testing of conditions, take condition 1:
*
* L(D, h*2^n-1) == -1 [condition 1]
*
* In order for J(D, h*2^n-1) to be defined, we must ensure that D
* is not a factor of h*2^n-1. This is done by pre-screening h*2^n-1 to
* not have small factors and selecting D less than that factor check limit.
*
* By use of {note 7}, we can show that when we choose D to be:
*
* D is square free
* D = P*(2^f)*(3^g) (P is prime>2)
*
* The square free condition implies f = 0 or 1, g = 0 or 1. If f and g
* are both 1, P must be a prime > 3.
*
* So given such a D value:
*
* L(D, h*2^n-1) == L(P*(2^g)*(3^l), h*2^n-1)
* == L(P, h*2^n-1) * L((2^g)*(3^l), h*2^n-1) {A3.5}
* == L(P, h*2^n-1) * 1 {note 7}
* == L(h*2^n-1, P)*(-1)^((h*2^n-2)*(P-1)/4) {A3.8}
* == L(h*2^n-1 mod P, P)*(-1)^((h*2^n-2)*(P-1)/4) {note 1}
* == J(h*2^n-1 mod P, P)*(-1)^((h*2^n-2)*(P-1)/4) {note 0}
*
* When does J(h*2^n-1 mod P, P)*(-1)^((h*2^n-2)*(P-1)/4) take the value of -1,
* thus satisfy [condition 1]? The answer depends on P. Now P is a prime>2,
* thus P mod 4 == 1 or -1.
*
* Take P mod 4 == 1:
*
* P mod 4 == 1 implies (-1)^((h*2^n-2)*(P-1)/4) == 1
*
* Thus:
*
* L(D, h*2^n-1) == L(h*2^n-1 mod P, P) * (-1)^((h*2^n-2)*(P-1)/4)
* == L(h*2^n-1 mod P, P)
* == J(h*2^n-1 mod P, P)
*
* Take P mod 4 == -1:
*
* P mod 4 == -1 implies (-1)^((h*2^n-2)*(P-1)/4) == -1
*
* Thus:
*
* L(D, h*2^n-1) == L(h*2^n-1 mod P, P) * (-1)^((h*2^n-2)*(P-1)/4)
* == L(h*2^n-1 mod P, P) * -1
* == -J(h*2^n-1 mod P, P)
*
* Therefore [condition 1] is met if, and only if, one of the following
* to cases are true:
*
* P mod 4 == 1 and J(h*2^n-1 mod P, P) == -1
* P mod 4 == -1 and J(h*2^n-1 mod P, P) == 1
*
* Now consider [condition 2]:
*
* L(r, h*2^n-1) * (a^2 - b^2*D)/r == -1 [condition 2]
*
* We select only a, b, r and D values where:
*
* (a^2 - b^2*D)/r == -1
*
* Therefore in order for [condition 2] to be met, we must show that:
*
* L(r, h*2^n-1) == 1
*
* If we select r to be of the form:
*
* r == Q*(2^j)*(3^k)*(z^2) (Q == 1, j>=0, k>=0, z>0)
*
* then by use of {note 7}:
*
* L(r, h*2^n-1) == L(Q*(2^j)*(3^k)*(z^2), h*2^n-1)
* == L((2^j)*(3^k)*(z^2), h*2^n-1)
* == 1 {note 2}
*
* and thus, [condition 2] is met.
*
* If we select r to be of the form:
*
* r == Q*(2^j)*(3^k)*(z^2) (Q is prime>2, j>=0, k>=0, z>0)
*
* then by use of {note 7}:
*
* L(r, h*2^n-1) == L(Q*(2^j)*(3^k)*(z^2), h*2^n-1)
* == L(Q, h*2^n-1) * L((2^j)*(3^k)*(z^2), h*2^n-1) {A3.5}
* == L(Q, h*2^n-1) * 1 {note 2}
* == L(h*2^n-1, Q) * (-1)^((h*2^n-2)*(Q-1)/4) {A3.8}
* == L(h*2^n-1 mod Q, Q)*(-1)^((h*2^n-2)*(Q-1)/4) {note 1}
* == J(h*2^n-1 mod Q, Q)*(-1)^((h*2^n-2)*(Q-1)/4) {note 0}
*
* When does J(h*2^n-1 mod Q, Q)*(-1)^((h*2^n-2)*(Q-1)/4) take the value of 1,
* thus satisfy [condition 2]? The answer depends on Q. Now Q is a prime>2,
* thus Q mod 4 == 1 or -1.
*
* Take Q mod 4 == 1:
*
* Q mod 4 == 1 implies (-1)^((h*2^n-2)*(Q-1)/4) == 1
*
* Thus:
*
* L(D, h*2^n-1) == L(h*2^n-1 mod Q, Q) * (-1)^((h*2^n-2)*(Q-1)/4)
* == L(h*2^n-1 mod Q, Q)
* == J(h*2^n-1 mod Q, Q)
*
* Take Q mod 4 == -1:
*
* Q mod 4 == -1 implies (-1)^((h*2^n-2)*(Q-1)/4) == -1
*
* Thus:
*
* L(D, h*2^n-1) == L(h*2^n-1 mod Q, Q) * (-1)^((h*2^n-2)*(Q-1)/4)
* == L(h*2^n-1 mod Q, Q) * -1
* == -J(h*2^n-1 mod Q, Q)
*
* Therefore [condition 2] is met by selecting D = Q*(2^j)*(3^k)*(z^2),
* where Q is prime>2, j>=0, k>=0, z>0; if and only if one of the following
* to cases are true:
*
* Q mod 4 == 1 and J(h*2^n-1 mod Q, Q) == 1
* Q mod 4 == -1 and J(h*2^n-1 mod Q, Q) == -1
*
***
*
* In conclusion, we can compute v(1) by attempting to do the following:
*
* h mod 3 != 0
*
* we return:
*
* v(1) == 4
*
* h mod 3 == 0
*
* define:
*
* r == abs(a^2 - b^2*D)
* alpha == (a + b*sqrt(D))^2/r
*
* we return:
*
* v(1) = alpha^1 + alpha^(-1)
*
* if and only if we can find a given a, b, D that obey all the
* following selection rules:
*
* D is square free
*
* D == P*(2^f)*(3^g) (P is prime>2, f,g == 0 or 1)
*
* (a^2 - b^2*D)/r == -1
*
* r == Q*(2^j)*(3^k)*(z^2) (Q==1 or Q is prime>2, j>=0, k>=0, z>0)
*
* one of the following is true:
* P mod 4 == 1 and J(h*2^n-1 mod P, P) == -1
* P mod 4 == -1 and J(h*2^n-1 mod P, P) == 1
*
* if Q is prime, then one of the following is true:
* Q mod 4 == 1 and J(h*2^n-1 mod Q, Q) == 1
* Q mod 4 == -1 and J(h*2^n-1 mod Q, Q) == -1
*
* If we cannot find a v(1) quickly enough, then we will give up
* testing h*2^n-1. This does not happen too often, so this hack
* is not too bad.
*
***
*
* input:
* h h as in h*2^n-1
* n n as in h*2^n-1
*
* output:
* returns v(1), or -1 is there is no quick way
*/
define
gen_v1(h, n)
{
local d; /* the 'D' value to try */
local val_mod; /* h*2^n-1 mod 'D' */
local i;
/*
* check for case 1
*/
if (h % 3 != 0) {
/* v(1) is easy to compute */
return 4;
}
/*
* We will try all 'D' values until we find a proper v(1)
* or run out of 'D' values.
*/
for (i=0; i < quickmax; ++i) {
/* grab our 'D' value */
d = d_qval[i];
/* compute h*2^n-1 mod 'D' quickly */
val_mod = (h*pmod(2,n%(d-1),d)-1) % d;
/*
* if 'D' mod 4 == 1, then
* (h*2^n-1) mod 'D' can not be a quadratic residue of 'D'
* else
* (h*2^n-1) mod 'D' must be a quadratic residue of 'D'
*/
if (d%4 == 1) {
/* D mod 4 == 1, so check for J(D, h*2^n-1) == -1 */
if (jacobi(val_mod, d) == -1) {
/* it worked, return the related v(1) value */
return v1_qval[i];
}
} else {
/* D mod 4 == -1, so check for J(D, h*2^n-1) == 1 */
if (jacobi(val_mod, d) == 1) {
/* it worked, return the related v(1) value */
return v1_qval[i];
}
}
}
/*
* This is an example of a more complex proof construction.
* The code above will not be able to find the v(1) for:
*
* 81*2^81-1
*
* We will check with:
*
* v(1)=81 D=6557 a=79 b=1 r=316
*
* Now, D==79*83 and r=79*2^2. If we show that:
*
* J(h*2^n-1 mod 79, 79) == -1
* J(h*2^n-1 mod 83, 83) == 1
*
* then we will satisfy [condition 1]. Observe:
*
* 79 mod 4 == -1 implies (-1)^((h*2^n-2)*(79-1)/4) == -1
* 83 mod 4 == -1 implies (-1)^((h*2^n-2)*(83-1)/4) == -1
*
* J(D, h*2^n-1) == J(83, h*2^n-1) * J(79, h*2^n-1)
* == J(h*2^n-1, 83) * (-1)^((h*2^n-2)*(83-1)/4) *
* J(h*2^n-1, 79) * (-1)^((h*2^n-2)*(79-1)/4)
* == J(h*2^n-1 mod 83, 83) * -1 *
* J(h*2^n-1 mod 79, 79) * -1
* == 1 * -1 *
* -1 * -1
* == -1
*
* We will also satisfy [condition 2]. Observe:
*
* (a^2 - b^2*D)/r == (79^2 - 1^1*6557)/316
* == -1
*
* L(r, h*2^n-1) == L(Q*(2^j)*(3^k)*(z^2), h*2^n-1)
* == L(79, h*2^n-1) * L(2^2, h*2^n-1)
* == L(79, h*2^n-1) * 1
* == L(h*2^n-1, 79) * (-1)^((h*2^n-2)*(79-1)/4)
* == L(h*2^n-1, 79) * -1
* == L(h*2^n-1 mod 79, 79) * -1
* == J(h*2^n-1 mod 79, 79) * -1
* == -1 * -1
* == 1
*/
if (jacobi( ((h*pmod(2,n%(79-1),79)-1)%79), 79 ) == -1 &&
jacobi( ((h*pmod(2,n%(83-1),83)-1)%83), 83 ) == 1) {
/* return the associated v(1)=81 */
return 81;
}
/* no quick and dirty v(1), so return -1 */
return -1;
}
/*
* ldebug - print a debug statement
*
* input:
* funct name of calling function
* str string to print
*/
define
ldebug(funct, str)
{
if (config("resource_debug") & 8) {
print "DEBUG:", funct:":", str;
}
return;
}
|