This file is indexed.

/usr/share/doc/aspectj-doc/README-164.html is in aspectj-doc 1.6.12+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html> <head>
<title>AspectJ 1.6.4 Readme</title>
<style type="text/css">
<!--
  P   { margin-left:  20px; }
  PRE { margin-left:  20px; }
  LI  { margin-left:  20px; }
  H4  { margin-left:  20px; }
  H3  { margin-left:  10px; }
-->
</style>
</head>

<body>
<div align="right"><small>
&copy; Copyright 2009 Contributors.
All rights reserved.
</small></div>

<h1>AspectJ 1.6.4 Readme</h1>

<ul>
<li><a href="#compilation">Compilation times</a></li>
<li><a href="#language">Language enhancements</a></li>
<li><a href="#bugsfixed">Bugs fixed</a></li>
<li><a href="#whatsnext">What's next?</a></li>
</ul>
<hr>
<a name="compilation"/>
<H4>Compilation times</h4>
<p>In AspectJ 1.6.4 the goal was to improve the IDE experience, through a combination of improved compilation speed (both full 
builds and incremental builds), improved support for multiple-project configurations, and improved feedback in the editor.  The
following sections go into details on each of those topics.</p>

<p><B>Full Compilation</b></p>
<p>As an example project, all the measurements here are based on the modified JDT compiler that AspectJ uses internally.  It is 
1100 source files and includes aspects that affect around 850 join points.  Here are the full build times in AJDT:
</p>
<p>AJDT 1.6.3 (uses AspectJ 1.6.3)</p>
<code><pre>
21352ms
21597ms
21502ms
</pre></code>

<p>AJDT 1.6.5dev builds (use AspectJ 1.6.4)</p>
<code><pre>
19811ms
19802ms
19504ms
</pre></code>
<p>
About 1.5-2 seconds faster for this example.
</p>
<p><b>Incremental Compilation and multi-project scenarios</b></p>
<p>In most common project configurations there are multiple eclipse projects in some kind of dependency hierarchy.  Depending on
what changes in a top level project, those downstream may need to be rebuilt.  The analysis around this area has greatly improved
in AspectJ 1.6.4, and this has resulted in much reduced incremental build times.  The example timed here is around 20 AspectJ
projects in a hierarchy, and a change is made to a source file in the top level project and build times are observed for the
downstream projects.</p>
<p>The timings reported here are accessible to anyone with AJDT installed - just open the 'AJDT Event Trace View' and it will
report ongoing information about what the compiler/weaver and AJDT are up to.  Be aware that data is only recorded in this view 
if it is open - so for optimal performance it should be shutdown, but it is useful for debugging scenarios or collecting
basic benchmark numbers.  Within the event trace view output, the time recorded for 'time spent in AJDE' represents the time
spent in the compiler: analysing what has changed on the classpath, building code, weaving code.
</p>
<p>Initially this is using AJDT 1.6.2 (which embeds AspectJ 1.6.3):</p>
<p>
<code><pre>
Type of change: adding a new method to a type
Project build times (first one is the compile of our change, the rest are for downstream projects):
462ms, 4ms, 145ms, 8ms, 9ms, 287ms, 471ms, 222ms, 1028ms, 143ms, 505ms, 199ms, 261ms, 1224ms, 
321ms, 704ms, 75ms, 233ms, 257ms
Summary: Total time spent in the compiler for that change: <b>6558ms</b>
---
Type of change: whitespace change (adding just a harmless space character)
Project build times (first one is the compile of our change, the rest are for downstream projects):
229ms, 5ms, 10ms, 9ms, 10ms, 79ms, 43ms, 62ms, 80ms, 37ms, 64ms, 32ms, 79ms,
154ms, 94ms, 189ms, 72ms, 144ms, 205ms
Summary: Total time spent in the compiler for that change: <b>1597ms</b>
</pre></code>
</p>
<p>Now with AspectJ 1.6.5 dev builds (which embed AspectJ 1.6.4):</p>
<p>
<code><pre>
Type of change: adding a new method to a type
Project build times (first one is the compile of our change, the rest are for downstream projects):
288ms, 3ms, 143ms, 2ms, 2ms, 162ms, 244ms, 89ms, 489ms, 113ms, 277ms, 108ms, 143ms, 626ms,
135ms, 260ms, 2ms, 96ms, 6ms
Summary: Total time spent in the compiler for that change: <b>3188ms</b> down from 6558ms

Type of change: whitespace change (adding just a harmless space character)
Project build times (first one is the compile of our change, the rest are for downstream projects):
101ms, 1ms, 1ms, 1ms, 0ms, 1ms, 1ms, 1ms, 1ms, 1ms, 0ms, 1ms, 1ms, 2ms, 0ms, 1ms, 0ms, 2ms, 2ms
Summary: Total time spent in the compiler for that change: <b>118ms</b> (down from 1597ms)
</pre></code>
</p>
<p>
Improvements all round, and almost instant builds now for whitespace changes, even in large
project setups.
</p>
<p>In addition the compilation times are also improved in situations where AspectJ projects depend upon Java projects and
where aspectpath is used.  AJDT 1.6.5 dev builds also include some changes that really speed up builds.
</p>
<h4>Better editor feedback</h4>
<p>Under <a href="https://bugs.eclipse.org/bugs/show_bug.cgi?id=246393">bug 246393</a> the problem has been addressed where
sometimes spurious errors would appear throughout the editor for a file in AJDT when just one single simple syntax errors exists.  More
detail on this problem can be found 
<a href="http://andrewclement.blogspot.com/2009/02/aspectj-fixing-reverse-cascade-errors.html">here</a>.
</p>
<hr>
<a name="language"/>
<H4>Language Enhancements</h4>
<p><b>Optimizing support for maintaining per join point state</b></p>
<p>The traditional way to maintain state on a per join point basis involves using the JoinPoint.StaticPart as a key
into a map:
<code><pre>
aspect X pertypewithin(*) {
  Map&lt;JoinPoint.StaticPart,Timer&gt; timerMap = ...
  
  Object around(): execution(public * *(..)) {
    Timer timerToUse = timerMap.get(thisJoinPointStaticPart);
    timerToUse.start();
    Object o =  proceed();
    timerToUse.stop();
    return o;
  }
}
</pre></code>
<p>These map lookups are slow.  In AspectJ 1.6.4 there is a new getId() method on the JoinPoint.StaticPart object.
The ids for all affected join points within a target type are unique (and start from 0) - they are ideal for
array lookups.  So using this the above aspect can be rewritten:
</p>

<code><pre>
aspect X pertypewithin(*) {
  Timer[] timerArray = ...
  
  Object around(): execution(public * *(..)) {
    Timer timerToUse = timerArray[thisJoinPointStaticPart.getId()];
    timerToUse.start();
    Object o =  proceed();
    timerToUse.stop();
    return o;
  }
}
</pre></code>
<p>much faster.  Just be aware that the ids are only unique within an affected target type - hence the use of pertypewithin 
in this example to ensure there is an aspect instance (and so a different array) for each advised type.</p>
<p>See related <a href="https://bugs.eclipse.org/bugs/show_bug.cgi?id=89009">bug 89009</a> for the full discussion</p>

<h4>@DeclareMixin</h4>
<p>The annotation style declare parents support (@DeclareParents) has been (rightly) criticized because it really does not offer 
an equivalent to what is possible with code style declare parents, it really offers a mixin strategy.  It also has limitations
such as the delegate instance used to satisfy any method invocations on an affected target cannot access the object instance for 
which it is acting as a delegate.  To address these concerns a proper mixin notation has been introduced that makes it more clear 
that a mixin strategy is being employed and it addresses the problem of the mixin delegate accessing the affected target instance.
</p>
<p>
The @DeclareMixin annotation is attached to a factory method which returns instances of the delegate.  Here is a basic example:
</p>
<code><pre>
        // The factory method that can build the delegate instance is annotated with @DeclareMixin.
        // The annotation value defines the type pattern for targets of the mixin.
        // The parameter is the object for which a delegate is being constructed.
        // The interface that will be mixed in is the return value of the factory method.
        @DeclareMixin("org.xyz..*")
        public static SomeInterface createDelegate(Object instance) {
          return new SomeImplementation(instance);
        }
</pre></code>
<p>More examples are <a href="http://www.eclipse.org/aspectj/doc/released/adk15notebook/ataspectj-itds.html">here in the online
documentation</a>.</p>
<p>Going forward attempts will be made to try and make @DeclareParents behave more like code style - if this cannot
be done it is likely to be deprecated.</p>
<hr>
<a name="bugsfixed"/>
<h4>Bugs fixed</h4>
<p>The complete list of issues resolved for AspectJ 1.6.4 (more than 70) can be found with
this bugzilla query:
<ul>
<li><a href="https://bugs.eclipse.org/bugs/buglist.cgi?query_format=advanced&short_desc_type=allwordssubstr&short_desc=&product=AspectJ&target_milestone=1.6.4&long_desc_type=allwordssubstr&long_desc=&bug_file_loc_type=allwordssubstr&bug_file_loc=&status_whiteboard_type=allwordssubstr&status_whiteboard=&keywords_type=allwords&keywords=&bug_status=RESOLVED&bug_status=VERIFIED&bug_status=CLOSED&emailtype1=substring&email1=&emailtype2=substring&email2=&bugidtype=include&bug_id=&votes=&chfieldfrom=&chfieldto=Now&chfieldvalue=&cmdtype=doit&order=Reuse+same+sort+as+last+time&field0-0-0=noop&type0-0-0=noop&value0-0-0=">Bugs resolved</a>
</ul>
<hr>
<a name="whatsnext"/>
<h4>What's next?</h4>
<p><b>More incremental build enhancements</b></p>
<p>A number of situations still exist where incremental compile speeds still needs optimizing, particular when capabilities
like aspectpath or inpath are used.</p>
<p><b>Build state persistence</b></p>
<p>Between restarts of Eclipse the state of each project is not recorded - hence full builds are required upon restart.  The 
state (and associated relationship model) should be persisted between restarts, but both of these need a review first to ensure
they are not larger than they need to be.
</p>
<p><b>Memory consumption</b</p>
<p>Both for source compilation and load-time weaving scenarios.  The size of the model in the IDE needs reviewing, and also the
type map within the weaver.  Although the type map uses Weak/Soft references to try and better control how it uses memory, the JVM
policies for managing these references vary wildly and so some work needs to be done to allow for these differences.
<hr>

<!-- ============================== -->  
</body>
</html>