This file is indexed.

/usr/lib/avr/include/stdio.h is in avr-libc 1:1.7.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
/* Copyright (c) 2002, 2005, 2007 Joerg Wunsch
   All rights reserved.

   Portions of documentation Copyright (c) 1990, 1991, 1993
   The Regents of the University of California.

   All rights reserved.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are met:

   * Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.

   * Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in
     the documentation and/or other materials provided with the
     distribution.

   * Neither the name of the copyright holders nor the names of
     contributors may be used to endorse or promote products derived
     from this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.

  $Id: stdio.h 2135 2010-06-08 11:28:03Z joerg_wunsch $
*/

#ifndef _STDIO_H_
#define	_STDIO_H_ 1

#ifndef __ASSEMBLER__

#include <inttypes.h>
#include <stdarg.h>

#define __need_NULL
#define __need_size_t
#include <stddef.h>

/** \file */
/** \defgroup avr_stdio <stdio.h>: Standard IO facilities
    \code #include <stdio.h> \endcode

    <h3>Introduction to the Standard IO facilities</h3>

    This file declares the standard IO facilities that are implemented
    in \c avr-libc.  Due to the nature of the underlying hardware,
    only a limited subset of standard IO is implemented.  There is no
    actual file implementation available, so only device IO can be
    performed.  Since there's no operating system, the application
    needs to provide enough details about their devices in order to
    make them usable by the standard IO facilities.

    Due to space constraints, some functionality has not been
    implemented at all (like some of the \c printf conversions that
    have been left out).  Nevertheless, potential users of this
    implementation should be warned: the \c printf and \c scanf families of functions, although
    usually associated with presumably simple things like the
    famous "Hello, world!" program, are actually fairly complex
    which causes their inclusion to eat up a fair amount of code space.
    Also, they are not fast due to the nature of interpreting the
    format string at run-time.  Whenever possible, resorting to the
    (sometimes non-standard) predetermined conversion facilities that are
    offered by avr-libc will usually cost much less in terms of speed
    and code size.

    <h3>Tunable options for code size vs. feature set</h3>

    In order to allow programmers a code size vs. functionality tradeoff,
    the function vfprintf() which is the heart of the printf family can be
    selected in different flavours using linker options.  See the
    documentation of vfprintf() for a detailed description.  The same
    applies to vfscanf() and the \c scanf family of functions.

    <h3>Outline of the chosen API</h3>

    The standard streams \c stdin, \c stdout, and \c stderr are
    provided, but contrary to the C standard, since avr-libc has no
    knowledge about applicable devices, these streams are not already
    pre-initialized at application startup.  Also, since there is no
    notion of "file" whatsoever to avr-libc, there is no function
    \c fopen() that could be used to associate a stream to some device.
    (See \ref stdio_note1 "note 1".)  Instead, the function \c fdevopen()
    is provided to associate a stream to a device, where the device
    needs to provide a function to send a character, to receive a
    character, or both.  There is no differentiation between "text" and
    "binary" streams inside avr-libc.  Character \c \\n is sent
    literally down to the device's \c put() function.  If the device
    requires a carriage return (\c \\r) character to be sent before
    the linefeed, its \c put() routine must implement this (see
    \ref stdio_note2 "note 2").

    As an alternative method to fdevopen(), the macro
    fdev_setup_stream() might be used to setup a user-supplied FILE
    structure.

    It should be noted that the automatic conversion of a newline
    character into a carriage return - newline sequence breaks binary
    transfers.  If binary transfers are desired, no automatic
    conversion should be performed, but instead any string that aims
    to issue a CR-LF sequence must use <tt>"\r\n"</tt> explicitly.

    For convenience, the first call to \c fdevopen() that opens a
    stream for reading will cause the resulting stream to be aliased
    to \c stdin.  Likewise, the first call to \c fdevopen() that opens
    a stream for writing will cause the resulting stream to be aliased
    to both, \c stdout, and \c stderr.  Thus, if the open was done
    with both, read and write intent, all three standard streams will
    be identical.  Note that these aliases are indistinguishable from
    each other, thus calling \c fclose() on such a stream will also
    effectively close all of its aliases (\ref stdio_note3 "note 3").

    It is possible to tie additional user data to a stream, using
    fdev_set_udata().  The backend put and get functions can then
    extract this user data using fdev_get_udata(), and act
    appropriately.  For example, a single put function could be used
    to talk to two different UARTs that way, or the put and get
    functions could keep internal state between calls there.

    <h3>Format strings in flash ROM</h3>

    All the \c printf and \c scanf family functions come in two flavours: the
    standard name, where the format string is expected to be in
    SRAM, as well as a version with the suffix "_P" where the format
    string is expected to reside in the flash ROM.  The macro
    \c PSTR (explained in \ref avr_pgmspace) becomes very handy
    for declaring these format strings.

    \anchor stdio_without_malloc
    <h3>Running stdio without malloc()</h3>

    By default, fdevopen() requires malloc().  As this is often
    not desired in the limited environment of a microcontroller, an
    alternative option is provided to run completely without malloc().

    The macro fdev_setup_stream() is provided to prepare a
    user-supplied FILE buffer for operation with stdio.

    <h4>Example</h4>

    \code
    #include <stdio.h>

    static int uart_putchar(char c, FILE *stream);

    static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL,
                                             _FDEV_SETUP_WRITE);

    static int
    uart_putchar(char c, FILE *stream)
    {

      if (c == '\n')
        uart_putchar('\r', stream);
      loop_until_bit_is_set(UCSRA, UDRE);
      UDR = c;
      return 0;
    }

    int
    main(void)
    {
      init_uart();
      stdout = &mystdout;
      printf("Hello, world!\n");

      return 0;
    }
    \endcode

    This example uses the initializer form FDEV_SETUP_STREAM() rather
    than the function-like fdev_setup_stream(), so all data
    initialization happens during C start-up.

    If streams initialized that way are no longer needed, they can be
    destroyed by first calling the macro fdev_close(), and then
    destroying the object itself.  No call to fclose() should be
    issued for these streams.  While calling fclose() itself is
    harmless, it will cause an undefined reference to free() and thus
    cause the linker to link the malloc module into the application.

    <h3>Notes</h3>

    \anchor stdio_note1 \par Note 1:
    It might have been possible to implement a device abstraction that
    is compatible with \c fopen() but since this would have required
    to parse a string, and to take all the information needed either
    out of this string, or out of an additional table that would need to be
    provided by the application, this approach was not taken.

    \anchor stdio_note2 \par Note 2:
    This basically follows the Unix approach: if a device such as a
    terminal needs special handling, it is in the domain of the
    terminal device driver to provide this functionality.  Thus, a
    simple function suitable as \c put() for \c fdevopen() that talks
    to a UART interface might look like this:

    \code
    int
    uart_putchar(char c, FILE *stream)
    {

      if (c == '\n')
        uart_putchar('\r');
      loop_until_bit_is_set(UCSRA, UDRE);
      UDR = c;
      return 0;
    }
    \endcode

    \anchor stdio_note3 \par Note 3:
    This implementation has been chosen because the cost of maintaining
    an alias is considerably smaller than the cost of maintaining full
    copies of each stream.  Yet, providing an implementation that offers
    the complete set of standard streams was deemed to be useful.  Not
    only that writing \c printf() instead of <tt>fprintf(mystream, ...)</tt>
    saves typing work, but since avr-gcc needs to resort to pass all
    arguments of variadic functions on the stack (as opposed to passing
    them in registers for functions that take a fixed number of
    parameters), the ability to pass one parameter less by implying
    \c stdin or stdout will also save some execution time.
*/

#if !defined(__DOXYGEN__)

/*
 * This is an internal structure of the library that is subject to be
 * changed without warnings at any time.  Please do *never* reference
 * elements of it beyond by using the official interfaces provided.
 */
struct __file {
	char	*buf;		/* buffer pointer */
	unsigned char unget;	/* ungetc() buffer */
	uint8_t	flags;		/* flags, see below */
#define __SRD	0x0001		/* OK to read */
#define __SWR	0x0002		/* OK to write */
#define __SSTR	0x0004		/* this is an sprintf/snprintf string */
#define __SPGM	0x0008		/* fmt string is in progmem */
#define __SERR	0x0010		/* found error */
#define __SEOF	0x0020		/* found EOF */
#define __SUNGET 0x040		/* ungetc() happened */
#define __SMALLOC 0x80		/* handle is malloc()ed */
#if 0
/* possible future extensions, will require uint16_t flags */
#define __SRW	0x0100		/* open for reading & writing */
#define __SLBF	0x0200		/* line buffered */
#define __SNBF	0x0400		/* unbuffered */
#define __SMBF	0x0800		/* buf is from malloc */
#endif
	int	size;		/* size of buffer */
	int	len;		/* characters read or written so far */
	int	(*put)(char, struct __file *);	/* function to write one char to device */
	int	(*get)(struct __file *);	/* function to read one char from device */
	void	*udata;		/* User defined and accessible data. */
};

#endif /* not __DOXYGEN__ */

/*@{*/
/**
   \c FILE is the opaque structure that is passed around between the
   various standard IO functions.
*/
#define FILE	struct __file

/**
   Stream that will be used as an input stream by the simplified
   functions that don't take a \c stream argument.

   The first stream opened with read intent using \c fdevopen()
   will be assigned to \c stdin.
*/
#define stdin (__iob[0])

/**
   Stream that will be used as an output stream by the simplified
   functions that don't take a \c stream argument.

   The first stream opened with write intent using \c fdevopen()
   will be assigned to both, \c stdin, and \c stderr.
*/
#define stdout (__iob[1])

/**
   Stream destined for error output.  Unless specifically assigned,
   identical to \c stdout.

   If \c stderr should point to another stream, the result of
   another \c fdevopen() must be explicitly assigned to it without
   closing the previous \c stderr (since this would also close
   \c stdout).
*/
#define stderr (__iob[2])

/**
   \c EOF declares the value that is returned by various standard IO
   functions in case of an error.  Since the AVR platform (currently)
   doesn't contain an abstraction for actual files, its origin as
   "end of file" is somewhat meaningless here.
*/
#define EOF	(-1)

/** This macro inserts a pointer to user defined data into a FILE
    stream object.

    The user data can be useful for tracking state in the put and get
    functions supplied to the fdevopen() function. */
#define fdev_set_udata(stream, u) do { (stream)->udata = u; } while(0)

/** This macro retrieves a pointer to user defined data from a FILE
    stream object. */
#define fdev_get_udata(stream) ((stream)->udata)

#if defined(__DOXYGEN__)
/**
   \brief Setup a user-supplied buffer as an stdio stream

   This macro takes a user-supplied buffer \c stream, and sets it up
   as a stream that is valid for stdio operations, similar to one that
   has been obtained dynamically from fdevopen(). The buffer to setup
   must be of type FILE.

   The arguments \c put and \c get are identical to those that need to
   be passed to fdevopen().

   The \c rwflag argument can take one of the values _FDEV_SETUP_READ,
   _FDEV_SETUP_WRITE, or _FDEV_SETUP_RW, for read, write, or read/write
   intent, respectively.

   \note No assignments to the standard streams will be performed by
   fdev_setup_stream().  If standard streams are to be used, these
   need to be assigned by the user.  See also under
   \ref stdio_without_malloc "Running stdio without malloc()".
 */
#define fdev_setup_stream(stream, put, get, rwflag)
#else  /* !DOXYGEN */
#define fdev_setup_stream(stream, p, g, f) \
	do { \
		(stream)->put = p; \
		(stream)->get = g; \
		(stream)->flags = f; \
		(stream)->udata = 0; \
	} while(0)
#endif /* DOXYGEN */

#define _FDEV_SETUP_READ  __SRD	/**< fdev_setup_stream() with read intent */
#define _FDEV_SETUP_WRITE __SWR	/**< fdev_setup_stream() with write intent */
#define _FDEV_SETUP_RW    (__SRD|__SWR)	/**< fdev_setup_stream() with read/write intent */

/**
 * Return code for an error condition during device read.
 *
 * To be used in the get function of fdevopen().
 */
#define _FDEV_ERR (-1)

/**
 * Return code for an end-of-file condition during device read.
 *
 * To be used in the get function of fdevopen().
 */
#define _FDEV_EOF (-2)

#if defined(__DOXYGEN__)
/**
   \brief Initializer for a user-supplied stdio stream

   This macro acts similar to fdev_setup_stream(), but it is to be
   used as the initializer of a variable of type FILE.

   The remaining arguments are to be used as explained in
   fdev_setup_stream().
 */
#define FDEV_SETUP_STREAM(put, get, rwflag)
#else  /* !DOXYGEN */
#define FDEV_SETUP_STREAM(p, g, f) \
	{ \
		.put = p, \
		.get = g, \
		.flags = f, \
		.udata = 0, \
	}
#endif /* DOXYGEN */

#ifdef __cplusplus
extern "C" {
#endif

#if !defined(__DOXYGEN__)
/*
 * Doxygen documentation can be found in fdevopen.c.
 */

extern struct __file *__iob[];

#if defined(__STDIO_FDEVOPEN_COMPAT_12)
/*
 * Declare prototype for the discontinued version of fdevopen() that
 * has been in use up to avr-libc 1.2.x.  The new implementation has
 * some backwards compatibility with the old version.
 */
extern FILE *fdevopen(int (*__put)(char), int (*__get)(void),
                      int __opts __attribute__((unused)));
#else  /* !defined(__STDIO_FDEVOPEN_COMPAT_12) */
/* New prototype for avr-libc 1.4 and above. */
extern FILE *fdevopen(int (*__put)(char, FILE*), int (*__get)(FILE*));
#endif /* defined(__STDIO_FDEVOPEN_COMPAT_12) */

#endif /* not __DOXYGEN__ */

/**
   This function closes \c stream, and disallows and further
   IO to and from it.

   When using fdevopen() to setup the stream, a call to fclose() is
   needed in order to free the internal resources allocated.

   If the stream has been set up using fdev_setup_stream() or
   FDEV_SETUP_STREAM(), use fdev_close() instead.

   It currently always returns 0 (for success).
*/
extern int	fclose(FILE *__stream);

/**
   This macro frees up any library resources that might be associated
   with \c stream.  It should be called if \c stream is no longer
   needed, right before the application is going to destroy the
   \c stream object itself.

   (Currently, this macro evaluates to nothing, but this might change
   in future versions of the library.)
*/
#if defined(__DOXYGEN__)
# define fdev_close()
#else
# define fdev_close() ((void)0)
#endif

/**
   \c vfprintf is the central facility of the \c printf family of
   functions.  It outputs values to \c stream under control of a
   format string passed in \c fmt.  The actual values to print are
   passed as a variable argument list \c ap.

   \c vfprintf returns the number of characters written to \c stream,
   or \c EOF in case of an error.  Currently, this will only happen
   if \c stream has not been opened with write intent.

   The format string is composed of zero or more directives: ordinary
   characters (not \c %), which are copied unchanged to the output
   stream; and conversion specifications, each of which results in
   fetching zero or more subsequent arguments.  Each conversion
   specification is introduced by the \c % character.  The arguments must
   properly correspond (after type promotion) with the conversion
   specifier.  After the \c %, the following appear in sequence:

   - Zero or more of the following flags:
      <ul>
      <li> \c # The value should be converted to an "alternate form".  For
            c, d, i, s, and u conversions, this option has no effect.
            For o conversions, the precision of the number is
            increased to force the first character of the output
            string to a zero (except if a zero value is printed with
            an explicit precision of zero).  For x and X conversions,
            a non-zero result has the string `0x' (or `0X' for X
            conversions) prepended to it.</li>
      <li> \c 0 (zero) Zero padding.  For all conversions, the converted
            value is padded on the left with zeros rather than blanks.
            If a precision is given with a numeric conversion (d, i,
            o, u, i, x, and X), the 0 flag is ignored.</li>
      <li> \c - A negative field width flag; the converted value is to be
            left adjusted on the field boundary.  The converted value
            is padded on the right with blanks, rather than on the
            left with blanks or zeros.  A - overrides a 0 if both are
            given.</li>
      <li> ' ' (space) A blank should be left before a positive number
            produced by a signed conversion (d, or i).</li>
      <li> \c + A sign must always be placed before a number produced by a
            signed conversion.  A + overrides a space if both are
            used.</li>
      </ul>
      
   -   An optional decimal digit string specifying a minimum field width.
       If the converted value has fewer characters than the field width, it
       will be padded with spaces on the left (or right, if the left-adjustment
       flag has been given) to fill out the field width.
   -   An optional precision, in the form of a period . followed by an
       optional digit string.  If the digit string is omitted, the
       precision is taken as zero.  This gives the minimum number of
       digits to appear for d, i, o, u, x, and X conversions, or the
       maximum number of characters to be printed from a string for \c s
       conversions.
   -   An optional \c l or \c h length modifier, that specifies that the
       argument for the d, i, o, u, x, or X conversion is a \c "long int"
       rather than \c int. The \c h is ignored, as \c "short int" is
       equivalent to \c int.
   -   A character that specifies the type of conversion to be applied.

   The conversion specifiers and their meanings are:

   - \c diouxX The int (or appropriate variant) argument is converted
           to signed decimal (d and i), unsigned octal (o), unsigned
           decimal (u), or unsigned hexadecimal (x and X) notation.
           The letters "abcdef" are used for x conversions; the
           letters "ABCDEF" are used for X conversions.  The
           precision, if any, gives the minimum number of digits that
           must appear; if the converted value requires fewer digits,
           it is padded on the left with zeros.
   - \c p  The <tt>void *</tt> argument is taken as an unsigned integer,
           and converted similarly as a <tt>%\#x</tt> command would do.
   - \c c  The \c int argument is converted to an \c "unsigned char", and the
           resulting character is written.
   - \c s  The \c "char *" argument is expected to be a pointer to an array
           of character type (pointer to a string).  Characters from
           the array are written up to (but not including) a
           terminating NUL character; if a precision is specified, no
           more than the number specified are written.  If a precision
           is given, no null character need be present; if the
           precision is not specified, or is greater than the size of
           the array, the array must contain a terminating NUL
           character.
   - \c %  A \c % is written.  No argument is converted.  The complete
           conversion specification is "%%".
   - \c eE The double argument is rounded and converted in the format
           \c "[-]d.ddde±dd" where there is one digit before the
           decimal-point character and the number of digits after it
           is equal to the precision; if the precision is missing, it
           is taken as 6; if the precision is zero, no decimal-point
           character appears.  An \e E conversion uses the letter \c 'E'
           (rather than \c 'e') to introduce the exponent.  The exponent
           always contains two digits; if the value is zero,
           the exponent is 00.
   - \c fF The double argument is rounded and converted to decimal notation
           in the format \c "[-]ddd.ddd", where the number of digits after the
           decimal-point character is equal to the precision specification.
           If the precision is missing, it is taken as 6; if the precision
           is explicitly zero, no decimal-point character appears.  If a
           decimal point appears, at least one digit appears before it.
   - \c gG The double argument is converted in style \c f or \c e (or
           \c F or \c E for \c G conversions).  The precision
           specifies the number of significant digits.  If the
           precision is missing, 6 digits are given; if the precision
           is zero, it is treated as 1.  Style \c e is used if the
           exponent from its conversion is less than -4 or greater
           than or equal to the precision.  Trailing zeros are removed
           from the fractional part of the result; a decimal point
           appears only if it is followed by at least one digit.
   - \c S  Similar to the \c s format, except the pointer is expected to
           point to a program-memory (ROM) string instead of a RAM string.

   In no case does a non-existent or small field width cause truncation of a
   numeric field; if the result of a conversion is wider than the field
   width, the field is expanded to contain the conversion result.

   Since the full implementation of all the mentioned features becomes
   fairly large, three different flavours of vfprintf() can be
   selected using linker options.  The default vfprintf() implements
   all the mentioned functionality except floating point conversions.
   A minimized version of vfprintf() is available that only implements
   the very basic integer and string conversion facilities, but only
   the \c # additional option can be specified using conversion
   flags (these flags are parsed correctly from the format
   specification, but then simply ignored).  This version can be
   requested using the following \ref gcc_minusW "compiler options":

   \code
   -Wl,-u,vfprintf -lprintf_min
   \endcode

   If the full functionality including the floating point conversions
   is required, the following options should be used:

   \code
   -Wl,-u,vfprintf -lprintf_flt -lm
   \endcode

   \par Limitations:
   - The specified width and precision can be at most 255.

   \par Notes:
   - For floating-point conversions, if you link default or minimized
     version of vfprintf(), the symbol \c ? will be output and double
     argument will be skiped. So you output below will not be crashed.
     For default version the width field and the "pad to left" ( symbol
     minus ) option will work in this case.
   - The \c hh length modifier is ignored (\c char argument is
     promouted to \c int). More exactly, this realization does not check
     the number of \c h symbols.
   - But the \c ll length modifier will to abort the output, as this
     realization does not operate \c long \c long arguments.
   - The variable width or precision field (an asterisk \c * symbol)
     is not realized and will to abort the output.

 */

extern int	vfprintf(FILE *__stream, const char *__fmt, va_list __ap);

/**
   Variant of \c vfprintf() that uses a \c fmt string that resides
   in program memory.
*/
extern int	vfprintf_P(FILE *__stream, const char *__fmt, va_list __ap);

/**
   The function \c fputc sends the character \c c (though given as type
   \c int) to \c stream.  It returns the character, or \c EOF in case
   an error occurred.
*/
extern int	fputc(int __c, FILE *__stream);

#if !defined(__DOXYGEN__)

/* putc() function implementation, required by standard */
extern int	putc(int __c, FILE *__stream);

/* putchar() function implementation, required by standard */
extern int	putchar(int __c);

#endif /* not __DOXYGEN__ */

/**
   The macro \c putc used to be a "fast" macro implementation with a
   functionality identical to fputc().  For space constraints, in
   \c avr-libc, it is just an alias for \c fputc.
*/
#define putc(__c, __stream) fputc(__c, __stream)

/**
   The macro \c putchar sends character \c c to \c stdout.
*/
#define putchar(__c) fputc(__c, stdout)

/**
   The function \c printf performs formatted output to stream
   \c stdout.  See \c vfprintf() for details.
*/
extern int	printf(const char *__fmt, ...);

/**
   Variant of \c printf() that uses a \c fmt string that resides
   in program memory.
*/
extern int	printf_P(const char *__fmt, ...);

/**
   The function \c vprintf performs formatted output to stream
   \c stdout, taking a variable argument list as in vfprintf().

   See vfprintf() for details.
*/
extern int	vprintf(const char *__fmt, va_list __ap);

/**
   Variant of \c printf() that sends the formatted characters
   to string \c s.
*/
extern int	sprintf(char *__s, const char *__fmt, ...);

/**
   Variant of \c sprintf() that uses a \c fmt string that resides
   in program memory.
*/
extern int	sprintf_P(char *__s, const char *__fmt, ...);

/**
   Like \c sprintf(), but instead of assuming \c s to be of infinite
   size, no more than \c n characters (including the trailing NUL
   character) will be converted to \c s.

   Returns the number of characters that would have been written to
   \c s if there were enough space.
*/
extern int	snprintf(char *__s, size_t __n, const char *__fmt, ...);

/**
   Variant of \c snprintf() that uses a \c fmt string that resides
   in program memory.
*/
extern int	snprintf_P(char *__s, size_t __n, const char *__fmt, ...);

/**
   Like \c sprintf() but takes a variable argument list for the
   arguments.
*/
extern int	vsprintf(char *__s, const char *__fmt, va_list ap);

/**
   Variant of \c vsprintf() that uses a \c fmt string that resides
   in program memory.
*/
extern int	vsprintf_P(char *__s, const char *__fmt, va_list ap);

/**
   Like \c vsprintf(), but instead of assuming \c s to be of infinite
   size, no more than \c n characters (including the trailing NUL
   character) will be converted to \c s.

   Returns the number of characters that would have been written to
   \c s if there were enough space.
*/
extern int	vsnprintf(char *__s, size_t __n, const char *__fmt, va_list ap);

/**
   Variant of \c vsnprintf() that uses a \c fmt string that resides
   in program memory.
*/
extern int	vsnprintf_P(char *__s, size_t __n, const char *__fmt, va_list ap);
/**
   The function \c fprintf performs formatted output to \c stream.
   See \c vfprintf() for details.
*/
extern int	fprintf(FILE *__stream, const char *__fmt, ...);

/**
   Variant of \c fprintf() that uses a \c fmt string that resides
   in program memory.
*/
extern int	fprintf_P(FILE *__stream, const char *__fmt, ...);

/**
   Write the string pointed to by \c str to stream \c stream.

   Returns 0 on success and EOF on error.
*/
extern int	fputs(const char *__str, FILE *__stream);

/**
   Variant of fputs() where \c str resides in program memory.
*/
extern int	fputs_P(const char *__str, FILE *__stream);

/**
   Write the string pointed to by \c str, and a trailing newline
   character, to \c stdout.
*/
extern int	puts(const char *__str);

/**
   Variant of puts() where \c str resides in program memory.
*/
extern int	puts_P(const char *__str);

/**
   Write \c nmemb objects, \c size bytes each, to \c stream.
   The first byte of the first object is referenced by \c ptr.

   Returns the number of objects successfully written, i. e.
   \c nmemb unless an output error occured.
 */
extern size_t	fwrite(const void *__ptr, size_t __size, size_t __nmemb,
		       FILE *__stream);

/**
   The function \c fgetc reads a character from \c stream.  It returns
   the character, or \c EOF in case end-of-file was encountered or an
   error occurred.  The routines feof() or ferror() must be used to
   distinguish between both situations.
*/
extern int	fgetc(FILE *__stream);

#if !defined(__DOXYGEN__)

/* getc() function implementation, required by standard */
extern int	getc(FILE *__stream);

/* getchar() function implementation, required by standard */
extern int	getchar(void);

#endif /* not __DOXYGEN__ */

/**
   The macro \c getc used to be a "fast" macro implementation with a
   functionality identical to fgetc().  For space constraints, in
   \c avr-libc, it is just an alias for \c fgetc.
*/
#define getc(__stream) fgetc(__stream)

/**
   The macro \c getchar reads a character from \c stdin.  Return
   values and error handling is identical to fgetc().
*/
#define getchar() fgetc(stdin)

/**
   The ungetc() function pushes the character \c c (converted to an
   unsigned char) back onto the input stream pointed to by \c stream.
   The pushed-back character will be returned by a subsequent read on
   the stream.

   Currently, only a single character can be pushed back onto the
   stream.
   
   The ungetc() function returns the character pushed back after the
   conversion, or \c EOF if the operation fails.  If the value of the
   argument \c c character equals \c EOF, the operation will fail and
   the stream will remain unchanged.
*/
extern int	ungetc(int __c, FILE *__stream);

/**
   Read at most <tt>size - 1</tt> bytes from \c stream, until a
   newline character was encountered, and store the characters in the
   buffer pointed to by \c str.  Unless an error was encountered while
   reading, the string will then be terminated with a \c NUL
   character.

   If an error was encountered, the function returns NULL and sets the
   error flag of \c stream, which can be tested using ferror().
   Otherwise, a pointer to the string will be returned.  */
extern char	*fgets(char *__str, int __size, FILE *__stream);

/**
   Similar to fgets() except that it will operate on stream \c stdin,
   and the trailing newline (if any) will not be stored in the string.
   It is the caller's responsibility to provide enough storage to hold
   the characters read.  */
extern char	*gets(char *__str);

/**
   Read \c nmemb objects, \c size bytes each, from \c stream,
   to the buffer pointed to by \c ptr.

   Returns the number of objects successfully read, i. e.
   \c nmemb unless an input error occured or end-of-file was
   encountered.  feof() and ferror() must be used to distinguish
   between these two conditions.
 */
extern size_t	fread(void *__ptr, size_t __size, size_t __nmemb,
		      FILE *__stream);

/**
   Clear the error and end-of-file flags of \c stream.
 */
extern void	clearerr(FILE *__stream);

#if !defined(__DOXYGEN__)
/* fast inlined version of clearerr() */
#define clearerror(s) do { (s)->flags &= ~(__SERR | __SEOF); } while(0)
#endif /* !defined(__DOXYGEN__) */

/**
   Test the end-of-file flag of \c stream.  This flag can only be cleared
   by a call to clearerr().
 */
extern int	feof(FILE *__stream);

#if !defined(__DOXYGEN__)
/* fast inlined version of feof() */
#define feof(s) ((s)->flags & __SEOF)
#endif /* !defined(__DOXYGEN__) */

/**
   Test the error flag of \c stream.  This flag can only be cleared
   by a call to clearerr().
 */
extern int	ferror(FILE *__stream);

#if !defined(__DOXYGEN__)
/* fast inlined version of ferror() */
#define ferror(s) ((s)->flags & __SERR)
#endif /* !defined(__DOXYGEN__) */

extern int	vfscanf(FILE *__stream, const char *__fmt, va_list __ap);

/**
   Variant of vfscanf() using a \c fmt string in program memory.
 */
extern int	vfscanf_P(FILE *__stream, const char *__fmt, va_list __ap);

/**
   The function \c fscanf performs formatted input, reading the
   input data from \c stream.

   See vfscanf() for details.
 */
extern int	fscanf(FILE *__stream, const char *__fmt, ...);

/**
   Variant of fscanf() using a \c fmt string in program memory.
 */
extern int	fscanf_P(FILE *__stream, const char *__fmt, ...);

/**
   The function \c scanf performs formatted input from stream \c stdin.

   See vfscanf() for details.
 */
extern int	scanf(const char *__fmt, ...);

/**
   Variant of scanf() where \c fmt resides in program memory.
 */
extern int	scanf_P(const char *__fmt, ...);

/**
   The function \c vscanf performs formatted input from stream
   \c stdin, taking a variable argument list as in vfscanf().

   See vfscanf() for details.
*/
extern int	vscanf(const char *__fmt, va_list __ap);

/**
   The function \c sscanf performs formatted input, reading the
   input data from the buffer pointed to by \c buf.

   See vfscanf() for details.
 */
extern int	sscanf(const char *__buf, const char *__fmt, ...);

/**
   Variant of sscanf() using a \c fmt string in program memory.
 */
extern int	sscanf_P(const char *__buf, const char *__fmt, ...);

#if defined(__DOXYGEN__)
/**
   Flush \c stream.

   This is a null operation provided for source-code compatibility
   only, as the standard IO implementation currently does not perform
   any buffering.
 */
extern int	fflush(FILE *stream);
#else
static __inline__ int fflush(FILE *stream __attribute__((unused)))
{
	return 0;
}
#endif

#ifdef __cplusplus
}
#endif

/*@}*/

/*
 * The following constants are currently not used by avr-libc's
 * stdio subsystem.  They are defined here since the gcc build
 * environment expects them to be here.
 */
#define SEEK_SET 0
#define SEEK_CUR 1
#define SEEK_END 2

#endif /* __ASSEMBLER */

#endif /* _STDLIB_H_ */