This file is indexed.

/usr/share/ElmerGUI/edf-extra/poissonboltzmann.xml is in elmer-common 6.1.0.svn.5396.dfsg-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE edf>
<edf version="1.0" >
   <PDE Name="PoissonBoltzmann" >
      <Name>Poisson-Boltzmann equation</Name>
      <Material>
        <Parameter Widget="Label" > <Name>Dimensional Properties </Name> </Parameter>
         <Parameter Widget="Edit" >
            <Name> Relative Permittivity </Name>
            <Type> String </Type>
            <Whatis> Give the relative permittivity compared to vacuum. </Whatis>
         </Parameter>    

         <Parameter Widget="Edit" >
            <Name> Reference Temperature </Name>
            <Type> String </Type>
            <Whatis> This keyword is used to give the temperature occuring in the Boltzmann factor. </Whatis>
         </Parameter>    
         <Parameter Widget="Edit" >
            <Name> Charge Number </Name>
            <Type> String </Type>
            <Whatis> For symmetric cases the charge number. For unsymmetric cases 
one should give separately Positive Charge Number
and Negative Charge Number.
</Whatis>
         </Parameter>    
         <Parameter Widget="Edit" >
            <Name> Ion Density </Name>
            <Type> String </Type>
            <Whatis> For symmetric cases the original density of ions. For unsymmetric cases one should give separately Positive Ion Density and Negative Ion Density.
	    </Whatis>
          </Parameter>    

         <Parameter Widget="Label" > <Name>Non-dimensional Properties </Name> </Parameter>
        <Parameter Widget="Edit" >
            <Name> Poisson Boltzmann Alpha </Name>
            <Type> String </Type>
            <Whatis> Parameter Alpha in the non-dimensionalized form of the PBE.</Whatis>
          </Parameter>   
        <Parameter Widget="Edit" >
            <Name> Poisson Boltzmann Beta </Name>
            <Type> String </Type>
            <Whatis> Parameter Beta in the non-dimensionalized form of the PBE.</Whatis>
          </Parameter>   

     </Material>   
      <BodyForce>
       <Parameter Widget="Label" > <Name> Properties </Name> </Parameter>
          <Parameter Widget="Edit" >
           <Name> Charge Density </Name>
            <Type> String </Type>
            <Whatis> Give the volume charge density. </Whatis>
         </Parameter>    
      </BodyForce>   
      <InitialCondition>   
        <Parameter Widget="Label" > <Name> Properties </Name> </Parameter>
          <Parameter Widget="Edit" >
            <Name> Potential </Name>
            <Type> String </Type>
            <Whatis> Give the initial condition for electric potential. </Whatis>
         </Parameter>    
      </InitialCondition>   

      <Solver>
         <Parameter Widget="Edit" >
           <Name> Procedure </Name>
           <DefaultValue> "PoissonBoltzmannSolve" "PoissonBoltzmannSolve" </DefaultValue>
         </Parameter>
        <Parameter Widget="Edit">
           <Name> Variable </Name>
           <DefaultValue> Potential</DefaultValue>
         </Parameter>

         <Parameter Widget="CheckBox" >
            <Name> Calculate Electric Field </Name>
            <Type> Logical </Type>
            <Whatis> Calculate the electric field from the electric potential. </Whatis>
         </Parameter>
        <Parameter Widget="CheckBox" >
            <Name> Calculate Electric Charge </Name>
            <Type> Logical </Type>
            <Whatis> Calculate the electric charge from the electric potential. </Whatis>
         </Parameter>
         <Parameter Widget="CheckBox" >
            <Name> Constant Weights </Name>
            <Type> Logical </Type>
            <Whatis> Use constant weights in computing nodal values of derived fields rather than weighing by element Jacobian. </Whatis>
         </Parameter> 

       </Solver>

      <BoundaryCondition>
         <Parameter Widget="Label" > <Name> Dirichlet conditions </Name> </Parameter>
         <Parameter  Widget="Edit">
           <Name> Potential </Name>
           <Whatis> Give potential value for this boundary. </Whatis>
         </Parameter>

         <Parameter  Widget="Edit">
           <Name> Potential Condition </Name>
           <Whatis> If the given value is less than zero, apply flux condition insted of the Dirichlet Condition. To be generally useful space and/or time varying values may be given. </Whatis>
         </Parameter>

         <Parameter Widget="Label" > <Name> Neumann conditions </Name> </Parameter>
        <Parameter  Widget="Edit">
           <Name> Surface Charge </Name>
           <Whatis>  Give electric flux equivalent to the surface charge density. </Whatis>
         </Parameter>
      </BoundaryCondition>
   </PDE>
</edf>