/usr/share/gap/small/small.gd is in gap-small-groups 4r4p10-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | #############################################################################
##
#W small.gd GAP group library Hans Ulrich Besche
## Bettina Eick, Eamonn O'Brien
##
Revision.small_gd :=
"@(#)$Id: small.gd,v 4.27.2.1 2005/05/03 14:21:26 gap Exp $";
#############################################################################
##
## tell GAP about the component
##
DeclareComponent("small","2.1");
InfoIdgroup := NewInfoClass( "InfoIdgroup" );
UnbindGlobal( "SMALL_AVAILABLE" );
#############################################################################
##
#F SMALL_AVAILABLE( <order> )
##
## returns fail if the library of groups of <order> is not installed.
## Otherwise a record with some information about the construction of the
## groups of <order> is returned.
DeclareGlobalFunction( "SMALL_AVAILABLE" );
UnbindGlobal( "SmallGroup" );
#############################################################################
##
#F SmallGroup( <order>, <i> )
#F SmallGroup( [<order>, <i>] )
##
## returns the <i>-th group of order <order> in the catalogue. If the group
## is solvable, it will be given as a PcGroup; otherwise it will be given as
## a permutation group. If the groups of order <order> are not installed,
## the function reports an error and enters a break loop.
DeclareGlobalFunction( "SmallGroup" );
#############################################################################
##
#F SelectSmallGroups( <argl>, <all>, <id> )
##
## universal function for 'AllGroups', 'OneGroup' and 'IdsOfAllGroups'.
##
DeclareGlobalFunction( "SelectSmallGroups" );
UnbindGlobal( "AllGroups" );
#############################################################################
##
#F AllSmallGroups( <arg> )
##
## returns all groups with certain properties as specified by <arg>.
## If <arg> is a number $n$, then this function returns all groups of order
## $n$. However, the function can also take several arguments which then
## must be organized in pairs `function' and `value'. In this case the first
## function must be `Size' and the first value an order or a range of orders.
## If value is a list then it is considered a list of possible function
## values to include.
## The function returns those groups of the specified orders having those
## properties specified by the remaining functions and their values.
##
## Precomputed information is stored for the properties `IsAbelian',
## `IsNilpotentGroup', `IsSupersolvableGroup', `IsSolvableGroup',
## `RankPGroup', `PClassPGroup', `LGLength', `FrattinifactorSize' and
## `FrattinifactorId' for the groups of order at most $2000$ which have
## more than three prime factors, except those of order $512$, $768$,
## $1024$, $1152$, $1536$, $1920$ and those of order $p^n \cdot q > 1000$
## with $n > 2$.
##
AllSmallGroups := function( arg )
return SelectSmallGroups( arg, true, false );
end;
DeclareSynonym( "AllGroups", AllSmallGroups );
UnbindGlobal( "OneGroup" );
#############################################################################
##
#F OneSmallGroup( <arg> )
##
## returns one group with certain properties as specified by <arg>.
## The permitted arguments are those supported by `AllSmallGroups'.
##
OneSmallGroup := function( arg )
return SelectSmallGroups( arg, false, false );
end;
DeclareSynonym( "OneGroup", OneSmallGroup );
UnbindGlobal( "IdsOfAllGroups" );
#############################################################################
##
#F IdsOfAllSmallGroups( <arg> )
##
## similar to `AllSmallGroups' but returns ids instead of groups. This may
## prevent workspace overflows, if a large number of groups are expected in
## the output.
IdsOfAllGroups := function( arg )
return SelectSmallGroups( arg, true, true );
end;
DeclareSynonym( "IdsOfAllSmallGroups", IdsOfAllGroups );
UnbindGlobal( "NumberSmallGroups" );
#############################################################################
##
#F NumberSmallGroups( <order> )
##
## returns the number of groups of order <order>.
DeclareGlobalFunction( "NumberSmallGroups" );
DeclareSynonym( "NrSmallGroups",NumberSmallGroups );
#############################################################################
##
#F UnloadSmallGroupsData( )
##
## GAP loads all necessary data from the library automatically, but it does
## not delete the data from the workspace again. Usually, this will be not
## necessary, since the data is stored in a compressed format. However, if
## a large number of groups from the library have been loaded, then the user
## might wish to remove the data from the workspace and this can be done by
## the above function call.
DeclareGlobalFunction( "UnloadSmallGroupsData" );
UnbindGlobal( "ID_AVAILABLE" );
#############################################################################
##
#F ID_AVAILABLE( <order> )
##
## returns false, if the identification routines for of groups of <order> is
## not installed. Otherwise a record with some information about the
## identification of groups of <order> is returned.
DeclareGlobalFunction( "ID_AVAILABLE" );
UnbindGlobal( "IdGroup" );
#############################################################################
##
#A IdSmallGroup( <G> )
#A IdGroup( <G> )
##
## returns the library number of <G>; that is, the function returns a pair
## `[<order>, <i>]' where <G> is isomorphic to `SmallGroup( <order>, <i> )'.
DeclareAttribute( "IdGroup", IsGroup );
DeclareSynonym( "IdSmallGroup",IdGroup );
UnbindGlobal( "IdStandardPresented512Group" );
#############################################################################
##
#F IdStandardPresented512Group( <G> )
#F IdStandardPresented512Group( <pcgs> )
##
## returns the catalogue number of a group <G> of order 512 if `Pcgs(<G>)'
## or `pcgs' is a pcgs corresponding to a power-commutator presentation
## which forms an ANUPQ-standard presentation of <G>. If the input is not
## corresponding to a standard presentation, then a warning is printed
## and `fail' is returned.
##
DeclareGlobalFunction( "IdStandardPresented512Group" );
#############################################################################
##
#F SmallGroupsInformation( <order> )
##
## prints information on the groups of the specified order.
DeclareGlobalFunction( "SmallGroupsInformation" );
UnbindGlobal( "Gap3CatalogueIdGroup" );
#############################################################################
##
#A IdGap3SolvableGroup( <G> )
#A Gap3CatalogueIdGroup( <G> )
##
## returns the catalogue number of <G> in the GAP 3 catalogue of solvable
## groups; that is, the function returns a pair `[<order>, <i>]' meaning that
## <G> is isomorphic to the group `SolvableGroup( <order>, <i> )' in GAP 3.
DeclareAttribute( "Gap3CatalogueIdGroup", IsGroup );
DeclareSynonym( "IdGap3SolvableGroup", Gap3CatalogueIdGroup );
#############################################################################
##
#F Gap3CatalogueGroup( <order>, <i> )
##
## returns the <i>-th group of order <order> in the GAP 3 catalogue of
## solvable groups. This group is isomorphic to the group returned by
## `SolvableGroup( <order>, <i> )' in GAP 3.
DeclareGlobalFunction( "Gap3CatalogueGroup" );
#############################################################################
##
#A FrattinifactorSize( <G> )
##
DeclareAttribute( "FrattinifactorSize", IsGroup );
#############################################################################
##
#A FrattinifactorId( <G> )
##
DeclareAttribute( "FrattinifactorId", IsGroup );
|