This file is indexed.

/usr/share/gap/small/small.gd is in gap-small-groups 4r4p10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#############################################################################
##
#W  small.gd                 GAP group library             Hans Ulrich Besche
##                                               Bettina Eick, Eamonn O'Brien
##
Revision.small_gd :=
    "@(#)$Id: small.gd,v 4.27.2.1 2005/05/03 14:21:26 gap Exp $";

#############################################################################
##
## tell GAP about the component
##
DeclareComponent("small","2.1");

InfoIdgroup := NewInfoClass( "InfoIdgroup" );

UnbindGlobal( "SMALL_AVAILABLE" );

#############################################################################
##
#F  SMALL_AVAILABLE( <order> )
##
##  returns fail if the library of groups of <order> is not installed. 
##  Otherwise a record with some information about the construction of the 
##  groups of <order> is returned.
DeclareGlobalFunction( "SMALL_AVAILABLE" );

UnbindGlobal( "SmallGroup" );

#############################################################################
##
#F  SmallGroup( <order>, <i> )
#F  SmallGroup( [<order>, <i>] )
##
## returns the <i>-th group of order <order> in the catalogue. If the group
## is solvable, it will be given as a PcGroup; otherwise it will be given as
## a permutation group. If the groups of order <order> are not installed,
## the function reports an error and enters a break loop.

DeclareGlobalFunction( "SmallGroup" );

#############################################################################
##
#F  SelectSmallGroups( <argl>, <all>, <id> )
##
##  universal function for 'AllGroups', 'OneGroup' and 'IdsOfAllGroups'.
##
DeclareGlobalFunction( "SelectSmallGroups" );

UnbindGlobal( "AllGroups" );

#############################################################################
##
#F  AllSmallGroups( <arg> )
##
## returns all groups with certain properties as specified by <arg>.
## If <arg> is a number $n$, then this function returns all groups of order
## $n$. However, the function can also take several arguments which then
## must be organized in pairs `function' and `value'. In this case the first
## function must be `Size' and the first value an order or a range of orders.
## If value is a list then it is considered a list of possible function
## values to include. 
## The function returns those groups of the specified orders having those
## properties specified by the remaining functions and their values.
## 
##  Precomputed information is stored for the properties `IsAbelian', 
##  `IsNilpotentGroup', `IsSupersolvableGroup', `IsSolvableGroup', 
##  `RankPGroup', `PClassPGroup', `LGLength', `FrattinifactorSize' and 
##  `FrattinifactorId' for the groups of order at most $2000$ which have 
##  more than three prime factors, except those of order $512$, $768$, 
##  $1024$, $1152$, $1536$, $1920$ and those of order $p^n \cdot q > 1000$ 
##  with $n > 2$. 
##
AllSmallGroups := function( arg )
    return SelectSmallGroups( arg, true, false );
end;
DeclareSynonym( "AllGroups", AllSmallGroups );

UnbindGlobal( "OneGroup" );

#############################################################################
##
#F  OneSmallGroup( <arg> )
##
## returns one group with certain properties as specified by <arg>.
## The permitted arguments are those supported by `AllSmallGroups'.
##
OneSmallGroup := function( arg )
    return SelectSmallGroups( arg, false, false );
end;
DeclareSynonym( "OneGroup", OneSmallGroup );

UnbindGlobal( "IdsOfAllGroups" );

#############################################################################
##
#F  IdsOfAllSmallGroups( <arg> )
##
## similar to `AllSmallGroups' but returns ids instead of groups. This may
## prevent workspace overflows, if a large number of groups are expected in 
## the output.

IdsOfAllGroups := function( arg )
    return SelectSmallGroups( arg, true, true );
end;

DeclareSynonym( "IdsOfAllSmallGroups", IdsOfAllGroups );

UnbindGlobal( "NumberSmallGroups" );

#############################################################################
##
#F  NumberSmallGroups( <order> )
##
##  returns the number of groups of order <order>.
DeclareGlobalFunction( "NumberSmallGroups" );
DeclareSynonym( "NrSmallGroups",NumberSmallGroups );

#############################################################################
##
#F  UnloadSmallGroupsData( )
##
## GAP loads all necessary data from the library automatically, but it does 
## not delete the data from the workspace again. Usually, this will be not 
## necessary, since the data is stored in a compressed format. However, if 
## a large number of groups from the library have been loaded, then the user 
## might wish to remove the data from the workspace and this can be done by 
## the above function call.
DeclareGlobalFunction( "UnloadSmallGroupsData" );

UnbindGlobal( "ID_AVAILABLE" );
#############################################################################
##
#F  ID_AVAILABLE( <order> )
##
##  returns false, if the identification routines for of groups of <order> is
##  not installed. Otherwise a record with some information about the 
##  identification of groups of <order> is returned.
DeclareGlobalFunction( "ID_AVAILABLE" );

UnbindGlobal( "IdGroup" );

#############################################################################
##
#A  IdSmallGroup( <G> )
#A  IdGroup( <G> )
##
## returns the library number of <G>; that is, the function returns a pair
## `[<order>, <i>]' where <G> is isomorphic to `SmallGroup( <order>, <i> )'.

DeclareAttribute( "IdGroup", IsGroup );
DeclareSynonym( "IdSmallGroup",IdGroup );

UnbindGlobal( "IdStandardPresented512Group" );

#############################################################################
##
#F  IdStandardPresented512Group( <G> )
#F  IdStandardPresented512Group( <pcgs> )
##
##  returns the catalogue number of a group <G> of order 512 if `Pcgs(<G>)' 
##  or `pcgs' is a pcgs corresponding to a power-commutator presentation 
##  which forms an ANUPQ-standard presentation of <G>. If the input is not
##  corresponding to a standard presentation, then a warning is printed 
##  and `fail' is returned.
##
DeclareGlobalFunction( "IdStandardPresented512Group" );

#############################################################################
##
#F  SmallGroupsInformation( <order> )
##
##  prints information on the groups of the specified order.
DeclareGlobalFunction( "SmallGroupsInformation" );

UnbindGlobal( "Gap3CatalogueIdGroup" );

#############################################################################
##  
#A  IdGap3SolvableGroup( <G> )
#A  Gap3CatalogueIdGroup( <G> )
##  
##  returns the catalogue number of <G> in the GAP 3 catalogue of solvable
##  groups; that is, the function returns a pair `[<order>, <i>]' meaning that
##  <G> is isomorphic to the group `SolvableGroup( <order>, <i> )' in GAP 3.
DeclareAttribute( "Gap3CatalogueIdGroup", IsGroup );
DeclareSynonym( "IdGap3SolvableGroup", Gap3CatalogueIdGroup );

#############################################################################
##  
#F  Gap3CatalogueGroup( <order>, <i> )
##  
##  returns  the  <i>-th  group  of  order  <order>  in the GAP 3 catalogue of
##  solvable  groups.  This  group  is  isomorphic  to  the group returned by
##  `SolvableGroup( <order>, <i> )' in GAP 3.
DeclareGlobalFunction( "Gap3CatalogueGroup" );

#############################################################################
##  
#A  FrattinifactorSize( <G> )
##  
DeclareAttribute( "FrattinifactorSize", IsGroup );

#############################################################################
##  
#A  FrattinifactorId( <G> )
##  
DeclareAttribute( "FrattinifactorId", IsGroup );