This file is indexed.

/usr/share/guile/site/text/parse-lalr.scm is in guile-library 0.2.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
;; (text parse-lalr) -- yacc's parser generator, in Guile
;; Copyright (C) 1984,1989,1990  Free Software Foundation, Inc.
;; Copyright (C) 1996-2002  Dominique Boucher

;; This program is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;;
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program.  If not, see <http://www.gnu.org/licenses/>.


;; ---------------------------------------------------------------------- ;;
#!
;;; Commentary:
This file contains yet another LALR(1) parser generator written in     
Scheme. In contrast to other such parser generators, this one          
implements a more efficient algorithm for computing the lookahead sets.
The algorithm is the same as used in Bison (GNU yacc) and is described 
in the following paper:                                                

"Efficient Computation of LALR(1) Look-Ahead Set", F. DeRemer and   
T. Pennello, TOPLAS, vol. 4, no. 4, october 1982.                      

As a consequence, it is not written in a fully functional style.       
In fact, much of the code is a direct translation from C to Scheme     
of the Bison sources.                                                  
                                                                       
@section Defining a parser                                    
                                                                       
The module @code{(text parse-lalr)} declares a macro called @code{lalr-parser}:
@lisp
   (lalr-parser tokens rules ...)                                      
@end lisp
                                                                       
This macro, when given appropriate arguments, generates an LALR(1)     
syntax analyzer.  The macro accepts at least two arguments. The first  
is a list of symbols which represent the terminal symbols of the       
grammar. The remaining arguments are the grammar production rules.
                                                                       
@section Running the parser
                                                                       
The parser generated by the @code{lalr-parser} macro is a function that 
takes two parameters. The first parameter is a lexical analyzer while  
the second is an error procedure.                                      
                                                                       
The lexical analyzer is zero-argument function (a thunk)               
invoked each time the parser needs to look-ahead in the token stream.  
A token is usually a pair whose @code{car} is the symbol corresponding to  
the token (the same symbol as used in the grammar definition). The     
@code{cdr} of the pair is the semantic value associated with the token. For
example, a string token would have the @code{car} set to @code{'string}
while the @code{cdr} is set to the string value @code{"hello"}.      
                                                                       
Once the end of file is encountered, the lexical analyzer must always  
return the symbol @code{'*eoi*} each time it is invoked.                 
                                                                       
The error procedure must be a function that accepts at least two        
parameters.                                                            

@section The grammar format                                 
                                                                       
The grammar is specified by first giving the list of terminals and the 
list of non-terminal definitions. Each non-terminal definition         
is a list where the first element is the non-terminal and the other    
elements are the right-hand sides (lists of grammar symbols). In       
addition to this, each rhs can be followed by a semantic action.       
                                                                       
For example, consider the following (yacc) grammar for a very simple   
expression language:                                                   
@example                                                              
  e : e '+' t                                                          
    | e '-' t                                                          
    | t                                                                
    ;                                                                  
  t : t '*' f                                                          
    : t '/' f                                                          
    | f                                                                
    ;                                                                  
  f : ID                                                               
    ;                                                                  
@end example                                                           
The same grammar, written for the scheme parser generator, would look  
like this (with semantic actions)                                      
@lisp                                                              
(define expr-parser                                                    
  (lalr-parser                                                         
   ; Terminal symbols                                                  
   (ID + - * /)                                                        
   ; Productions                                                       
   (e (e + t)    : (+ $1 $3)                                           
      (e - t)    : (- $1 $3)                                           
      (t)        : $1)                                                 
   (t (t * f)    : (* $1 $3)                                           
      (t / f)    : (/ $1 $3)                                           
      (f)        : $1)                                                 
   (f (ID)       : $1)))                                               
@end lisp                                                           
In semantic actions, the symbol @code{$n} refers to the synthesized        
attribute value of the nth symbol in the production. The value         
associated with the non-terminal on the left is the result of          
evaluating the semantic action (it defaults to @code{#f}).    
                                                                       
The above grammar implicitly handles operator precedences. It is also  
possible to explicitly assign precedences and associativity to         
terminal symbols and productions a la Yacc. Here is a modified    
(and augmented) version of the grammar:                                
@lisp                                                              
(define expr-parser                                                    
 (lalr-parser                                                          
  ; Terminal symbols                                                   
  (ID                                                                  
   (left: + -)                                                         
   (left: * /)                                                         
   (nonassoc: uminus))                                                 
  (e (e + e)              : (+ $1 $3)                                  
     (e - e)              : (- $1 $3)                                  
     (e * e)              : (* $1 $3)                                  
     (e / e)              : (/ $1 $3)                                  
     (- e (prec: uminus)) : (- $2)                                     
     (ID)                 : $1)))                                      
@end lisp                                                           
The @code{left:} directive is used to specify a set of left-associative    
operators of the same precedence level, the @code{right:} directive for    
right-associative operators, and @code{nonassoc:} for operators that       
are not associative. Note the use of the (apparently) useless          
terminal @code{uminus}. It is only defined in order to assign to the       
penultimate rule a precedence level higher than that of @code{*} and  
@code{/}. The @code{prec:} directive can only appear as the last element of a  
rule. Finally, note that precedence levels are incremented from        
left to right, i.e. the precedence level of @code{+} and @code{-} is less     
than the precedence level of @code{*} and @code{/} since the formers appear    
first in the list of terminal symbols (token definitions).             
                                                                       
@section A final note on conflict resolution
                                                                       
Conflicts in the grammar are handled in a conventional way.            
In the absence of precedence directives,                               
Shift/Reduce conflicts are resolved by shifting, and Reduce/Reduce     
conflicts are resolved by choosing the rule listed first in the        
grammar definition.                                                    
                                                                       
You can print the states of the generated parser by evaluating         
@code{(print-states)}. The format of the output is similar to the one      
produced by bison when given the -v command-line option.               
;;; Code:
!#

;;; ---------- SYSTEM DEPENDENT SECTION -----------------
;; put in a module by Richard Todd
(define-module (text parse-lalr)
     #:use-module (scheme documentation)
     #:export (lalr-parser
               print-states))

;; this code is by Thien-Thi Nguyen, found in a google search
(begin
  (defmacro def-macro (form . body)
    `(defmacro ,(car form) ,(cdr form) ,@body))
  (def-macro (BITS-PER-WORD) 28)
  (def-macro (lalr-error msg obj) `(throw 'lalr-error ,msg ,obj))
  (def-macro (logical-or x . y) `(logior ,x ,@y)))

;;; ---------- END OF SYSTEM DEPENDENT SECTION ------------

;; - Macros pour la gestion des vecteurs de bits

(def-macro (set-bit v b)
  `(let ((x (quotient ,b (BITS-PER-WORD)))
	 (y (expt 2 (remainder ,b (BITS-PER-WORD)))))
     (vector-set! ,v x (logical-or (vector-ref ,v x) y))))

(def-macro (bit-union v1 v2 n)
  `(do ((i 0 (+ i 1)))
       ((= i ,n))
     (vector-set! ,v1 i (logical-or (vector-ref ,v1 i) 
				    (vector-ref ,v2 i)))))

;; - Macro pour les structures de donnees

(def-macro (new-core)              `(make-vector 4 0))
(def-macro (set-core-number! c n)  `(vector-set! ,c 0 ,n))
(def-macro (set-core-acc-sym! c s) `(vector-set! ,c 1 ,s))
(def-macro (set-core-nitems! c n)  `(vector-set! ,c 2 ,n))
(def-macro (set-core-items! c i)   `(vector-set! ,c 3 ,i))
(def-macro (core-number c)         `(vector-ref ,c 0))
(def-macro (core-acc-sym c)        `(vector-ref ,c 1))
(def-macro (core-nitems c)         `(vector-ref ,c 2))
(def-macro (core-items c)          `(vector-ref ,c 3))

(def-macro (new-shift)              `(make-vector 3 0))
(def-macro (set-shift-number! c x)  `(vector-set! ,c 0 ,x))
(def-macro (set-shift-nshifts! c x) `(vector-set! ,c 1 ,x))
(def-macro (set-shift-shifts! c x)  `(vector-set! ,c 2 ,x))
(def-macro (shift-number s)         `(vector-ref ,s 0))
(def-macro (shift-nshifts s)        `(vector-ref ,s 1))
(def-macro (shift-shifts s)         `(vector-ref ,s 2))

(def-macro (new-red)                `(make-vector 3 0))
(def-macro (set-red-number! c x)    `(vector-set! ,c 0 ,x))
(def-macro (set-red-nreds! c x)     `(vector-set! ,c 1 ,x))
(def-macro (set-red-rules! c x)     `(vector-set! ,c 2 ,x))
(def-macro (red-number c)           `(vector-ref ,c 0))
(def-macro (red-nreds c)            `(vector-ref ,c 1))
(def-macro (red-rules c)            `(vector-ref ,c 2))



(def-macro (new-set nelem)
  `(make-vector ,nelem 0))


(def-macro (vector-map f v)
  `(let ((vm-n (- (vector-length ,v) 1)))
    (let loop ((vm-low 0) (vm-high vm-n))
      (if (= vm-low vm-high)
	  (vector-set! ,v vm-low (,f (vector-ref ,v vm-low) vm-low))
	  (let ((vm-middle (quotient (+ vm-low vm-high) 2)))
	    (loop vm-low vm-middle)
	    (loop (+ vm-middle 1) vm-high))))))


;; - Constantes
(define STATE-TABLE-SIZE 1009)


;; - Tableaux 
(define rrhs         #f)
(define rlhs         #f)
(define ritem        #f)
(define nullable     #f)
(define derives      #f)
(define fderives     #f)
(define firsts       #f)
(define kernel-base  #f)
(define kernel-end   #f)
(define shift-symbol #f)
(define shift-set    #f)
(define red-set      #f)
(define state-table  #f)
(define acces-symbol #f)
(define reduction-table #f)
(define shift-table  #f)
(define consistent   #f)
(define lookaheads   #f)
(define LA           #f)
(define LAruleno     #f)
(define lookback     #f)
(define goto-map     #f)
(define from-state   #f)
(define to-state     #f)
(define includes     #f)
(define F            #f)
(define action-table #f)

;; - Variables
(define nitems          #f)
(define nrules          #f)
(define nvars           #f)
(define nterms          #f)
(define nsyms           #f)
(define nstates         #f)
(define first-state     #f)
(define last-state      #f)
(define final-state     #f)
(define first-shift     #f)
(define last-shift      #f)
(define first-reduction #f)
(define last-reduction  #f)
(define nshifts         #f)
(define maxrhs          #f)
(define ngotos          #f)
(define token-set-size  #f)

(define (gen-tables! tokens gram)
  (initialize-all)
  (rewrite-grammar 
   tokens
   gram
   (lambda (terms terms/prec vars gram gram/actions)
     (set! the-terminals/prec (list->vector terms/prec))
     (set! the-terminals (list->vector terms))
     (set! the-nonterminals (list->vector vars))
     (set! nterms (length terms))
     (set! nvars  (length vars))
     (set! nsyms  (+ nterms nvars))
     (let ((no-of-rules (length gram/actions))
	   (no-of-items (let loop ((l gram/actions) (count 0))
			  (if (null? l) 
			      count
			      (loop (cdr l) (+ count (length (caar l))))))))
       (pack-grammar no-of-rules no-of-items gram)
       (set-derives)
       (set-nullable)
       (generate-states)
       (lalr)
       (build-tables)
       (compact-action-table terms)
       gram/actions))))


(define (initialize-all)
  (set! rrhs         #f)
  (set! rlhs         #f)
  (set! ritem        #f)
  (set! nullable     #f)
  (set! derives      #f)
  (set! fderives     #f)
  (set! firsts       #f)
  (set! kernel-base  #f)
  (set! kernel-end   #f)
  (set! shift-symbol #f)
  (set! shift-set    #f)
  (set! red-set      #f)
  (set! state-table  (make-vector STATE-TABLE-SIZE '()))
  (set! acces-symbol #f)
  (set! reduction-table #f)
  (set! shift-table  #f)
  (set! consistent   #f)
  (set! lookaheads   #f)
  (set! LA           #f)
  (set! LAruleno     #f)
  (set! lookback     #f)
  (set! goto-map     #f)
  (set! from-state   #f)
  (set! to-state     #f)
  (set! includes     #f)
  (set! F            #f)
  (set! action-table #f)
  (set! nstates         #f)
  (set! first-state     #f)
  (set! last-state      #f)
  (set! final-state     #f)
  (set! first-shift     #f)
  (set! last-shift      #f)
  (set! first-reduction #f)
  (set! last-reduction  #f)
  (set! nshifts         #f)
  (set! maxrhs          #f)
  (set! ngotos          #f)
  (set! token-set-size  #f)
  (set! rule-precedences '()))


(define (pack-grammar no-of-rules no-of-items gram)
  (set! nrules (+  no-of-rules 1))
  (set! nitems no-of-items)
  (set! rlhs (make-vector nrules #f))
  (set! rrhs (make-vector nrules #f))
  (set! ritem (make-vector (+ 1 nitems) #f))

  (let loop ((p gram) (item-no 0) (rule-no 1))
	(if (not (null? p))
	(let ((nt (caar p)))
	  (let loop2 ((prods (cdar p)) (it-no2 item-no) (rl-no2 rule-no))
		(if (null? prods)
		(loop (cdr p) it-no2 rl-no2)
		(begin
		  (vector-set! rlhs rl-no2 nt)
		  (vector-set! rrhs rl-no2 it-no2)
		  (let loop3 ((rhs (car prods)) (it-no3 it-no2))
			(if (null? rhs)
			(begin
			  (vector-set! ritem it-no3 (- rl-no2))
			  (loop2 (cdr prods) (+ it-no3 1) (+ rl-no2 1)))
			(begin
			  (vector-set! ritem it-no3 (car rhs))
			  (loop3 (cdr rhs) (+ it-no3 1))))))))))))


;; Fonction set-derives
;; --------------------
(define (set-derives)
  (define delts (make-vector (+ nrules 1) 0))
  (define dset  (make-vector nvars -1))

  (let loop ((i 1) (j 0))		; i = 0
    (if (< i nrules)
	(let ((lhs (vector-ref rlhs i)))
	  (if (>= lhs 0)
	      (begin
		(vector-set! delts j (cons i (vector-ref dset lhs)))
		(vector-set! dset lhs j)
		(loop (+ i 1) (+ j 1)))
	      (loop (+ i 1) j)))))
  
  (set! derives (make-vector nvars 0))
  
  (let loop ((i 0))
    (if (< i nvars)
	(let ((q (let loop2 ((j (vector-ref dset i)) (s '()))
		   (if (< j 0)
		       s
		       (let ((x (vector-ref delts j)))
			 (loop2 (cdr x) (cons (car x) s)))))))
	  (vector-set! derives i q)
	  (loop (+ i 1))))))



(define (set-nullable)
  (set! nullable (make-vector nvars #f))
  (let ((squeue (make-vector nvars #f))
	(rcount (make-vector (+ nrules 1) 0))
	(rsets  (make-vector nvars #f))
	(relts  (make-vector (+ nitems nvars 1) #f)))
    (let loop ((r 0) (s2 0) (p 0))
      (let ((*r (vector-ref ritem r)))
	(if *r
	    (if (< *r 0)
		(let ((symbol (vector-ref rlhs (- *r))))
		  (if (and (>= symbol 0)
			   (not (vector-ref nullable symbol)))
		      (begin
			(vector-set! nullable symbol #t)
			(vector-set! squeue s2 symbol)
			(loop (+ r 1) (+ s2 1) p))))
		(let loop2 ((r1 r) (any-tokens #f))
		  (let* ((symbol (vector-ref ritem r1)))
		    (if (> symbol 0)
			(loop2 (+ r1 1) (or any-tokens (>= symbol nvars)))
			(if (not any-tokens)
			    (let ((ruleno (- symbol)))
			      (let loop3 ((r2 r) (p2 p))
				(let ((symbol (vector-ref ritem r2)))
				  (if (> symbol 0)
				      (begin
					(vector-set! rcount ruleno
						     (+ (vector-ref rcount ruleno) 1))
					(vector-set! relts p2
						     (cons (vector-ref rsets symbol)
							   ruleno))
					(vector-set! rsets symbol p2)
					(loop3 (+ r2 1) (+ p2 1)))
				      (loop (+ r2 1) s2 p2)))))
			    (loop (+ r1 1) s2 p))))))
	    (let loop ((s1 0) (s3 s2))
	      (if (< s1 s3)
		  (let loop2 ((p (vector-ref rsets (vector-ref squeue s1))) (s4 s3))
		    (if p 
			(let* ((x (vector-ref relts p))
			       (ruleno (cdr x))
			       (y (- (vector-ref rcount ruleno) 1)))
			  (vector-set! rcount ruleno y)
			  (if (= y 0)
			      (let ((symbol (vector-ref rlhs ruleno)))
				(if (and (>= symbol 0)
					 (not (vector-ref nullable symbol)))
				    (begin
				      (vector-set! nullable symbol #t)
				      (vector-set! squeue s4 symbol)
				      (loop2 (car x) (+ s4 1)))
				    (loop2 (car x) s4)))
			      (loop2 (car x) s4))))
		    (loop (+ s1 1) s4)))))))))
		  


; Fonction set-firsts qui calcule un tableau de taille
; nvars et qui donne, pour chaque non-terminal X, une liste des
; non-terminaux pouvant apparaitre au debut d'une derivation a
; partir de X.

(define (set-firsts)
  (set! firsts (make-vector nvars '()))
  
  ;; -- initialization
  (let loop ((i 0))
    (if (< i nvars)
	(let loop2 ((sp (vector-ref derives i)))
	  (if (null? sp)
	      (loop (+ i 1))
	      (let ((sym (vector-ref ritem (vector-ref rrhs (car sp)))))
		(if (< -1 sym nvars)
		    (vector-set! firsts i (sinsert sym (vector-ref firsts i))))
		(loop2 (cdr sp)))))))

  ;; -- reflexive and transitive closure
  (let loop ((continue #t))
    (if continue
	(let loop2 ((i 0) (cont #f))
	  (if (>= i nvars)
	      (loop cont)
	      (let* ((x (vector-ref firsts i))
		     (y (let loop3 ((l x) (z x))
			  (if (null? l)
			      z
			      (loop3 (cdr l)
				     (sunion (vector-ref firsts (car l)) z))))))
		(if (equal? x y)
		    (loop2 (+ i 1) cont)
		    (begin
		      (vector-set! firsts i y)
		      (loop2 (+ i 1) #t))))))))
  
  (let loop ((i 0))
    (if (< i nvars)
	(begin
	  (vector-set! firsts i (sinsert i (vector-ref firsts i)))
	  (loop (+ i 1))))))




; Fonction set-fderives qui calcule un tableau de taille
; nvars et qui donne, pour chaque non-terminal, une liste des regles pouvant
; etre derivees a partir de ce non-terminal. (se sert de firsts)

(define (set-fderives)
  (set! fderives (make-vector nvars #f))

  (set-firsts)

  (let loop ((i 0))
    (if (< i nvars)
	(let ((x (let loop2 ((l (vector-ref firsts i)) (fd '()))
		   (if (null? l) 
		       fd
		       (loop2 (cdr l) 
			      (sunion (vector-ref derives (car l)) fd))))))
	  (vector-set! fderives i x)
	  (loop (+ i 1))))))


; Fonction calculant la fermeture d'un ensemble d'items LR0
; ou core est une liste d'items

(define (closure core)
  ;; Initialization
  (define ruleset (make-vector nrules #f))

  (let loop ((csp core))
    (if (not (null? csp))
	(let ((sym (vector-ref ritem (car csp))))
	  (if (< -1 sym nvars)
	      (let loop2 ((dsp (vector-ref fderives sym)))
		(if (not (null? dsp))
		    (begin
		      (vector-set! ruleset (car dsp) #t)
		      (loop2 (cdr dsp))))))
	  (loop (cdr csp)))))

  (let loop ((ruleno 1) (csp core) (itemsetv '())) ; ruleno = 0
    (if (< ruleno nrules)
	(if (vector-ref ruleset ruleno)
	    (let ((itemno (vector-ref rrhs ruleno)))
	      (let loop2 ((c csp) (itemsetv2 itemsetv))
		(if (and (pair? c)
			 (< (car c) itemno))
		    (loop2 (cdr c) (cons (car c) itemsetv2))
		    (loop (+ ruleno 1) c (cons itemno itemsetv2)))))
	    (loop (+ ruleno 1) csp itemsetv))
	(let loop2 ((c csp) (itemsetv2 itemsetv))
	  (if (pair? c)
	      (loop2 (cdr c) (cons (car c) itemsetv2))
	      (reverse itemsetv2))))))



(define (allocate-item-sets)
  (set! kernel-base (make-vector nsyms 0))
  (set! kernel-end  (make-vector nsyms #f)))


(define (allocate-storage)
  (allocate-item-sets)
  (set! red-set (make-vector (+ nrules 1) 0)))

;; --


(define (initialize-states)
  (let ((p (new-core)))
    (set-core-number! p 0)
    (set-core-acc-sym! p #f)
    (set-core-nitems! p 1)
    (set-core-items! p '(0))

    (set! first-state (list p))
    (set! last-state first-state)
    (set! nstates 1)))



(define (generate-states)
  (allocate-storage)
  (set-fderives)
  (initialize-states)
  (let loop ((this-state first-state))
    (if (pair? this-state)
	(let* ((x (car this-state))
	       (is (closure (core-items x))))
	  (save-reductions x is)
	  (new-itemsets is)
	  (append-states)
	  (if (> nshifts 0)
	      (save-shifts x))
	  (loop (cdr this-state))))))


;; Fonction calculant les symboles sur lesquels il faut "shifter" 
;; et regroupe les items en fonction de ces symboles

(define (new-itemsets itemset)
  ;; - Initialization
  (set! shift-symbol '())
  (let loop ((i 0))
    (if (< i nsyms)
	(begin
	  (vector-set! kernel-end i '())
	  (loop (+ i 1)))))

  (let loop ((isp itemset))
    (if (pair? isp)
	(let* ((i (car isp))
	       (sym (vector-ref ritem i)))
	  (if (>= sym 0)
	      (begin
		(set! shift-symbol (sinsert sym shift-symbol))
		(let ((x (vector-ref kernel-end sym)))
		  (if (null? x)
		      (begin
			(vector-set! kernel-base sym (cons (+ i 1) x))
			(vector-set! kernel-end sym (vector-ref kernel-base sym)))
		      (begin
			(set-cdr! x (list (+ i 1)))
			(vector-set! kernel-end sym (cdr x)))))))
	  (loop (cdr isp)))))

  (set! nshifts (length shift-symbol)))



(define (get-state sym)
  (let* ((isp  (vector-ref kernel-base sym))
	 (n    (length isp))
	 (key  (let loop ((isp1 isp) (k 0))
		 (if (null? isp1)
		     (modulo k STATE-TABLE-SIZE)
		     (loop (cdr isp1) (+ k (car isp1))))))
	 (sp   (vector-ref state-table key)))
    (if (null? sp)
	(let ((x (new-state sym)))
	  (vector-set! state-table key (list x))
	  (core-number x))
	(let loop ((sp1 sp))
	  (if (and (= n (core-nitems (car sp1)))
		   (let loop2 ((i1 isp) (t (core-items (car sp1)))) 
		     (if (and (pair? i1) 
			      (= (car i1)
				 (car t)))
			 (loop2 (cdr i1) (cdr t))
			 (null? i1))))
	      (core-number (car sp1))
	      (if (null? (cdr sp1))
		  (let ((x (new-state sym)))
		    (set-cdr! sp1 (list x))
		    (core-number x))
		  (loop (cdr sp1))))))))


(define (new-state sym)
  (let* ((isp  (vector-ref kernel-base sym))
	 (n    (length isp))
	 (p    (new-core)))
    (set-core-number! p nstates)
    (set-core-acc-sym! p sym)
    (if (= sym nvars) (set! final-state nstates))
    (set-core-nitems! p n)
    (set-core-items! p isp)
    (set-cdr! last-state (list p))
    (set! last-state (cdr last-state))
    (set! nstates (+ nstates 1))
    p))


;; --

(define (append-states)
  (set! shift-set
	(let loop ((l (reverse shift-symbol)))
	  (if (null? l)
	      '()
	      (cons (get-state (car l)) (loop (cdr l)))))))

;; --

(define (save-shifts core)
  (let ((p (new-shift)))
	(set-shift-number! p (core-number core))
	(set-shift-nshifts! p nshifts)
	(set-shift-shifts! p shift-set)
	(if last-shift
	(begin
	  (set-cdr! last-shift (list p))
	  (set! last-shift (cdr last-shift)))
	(begin
	  (set! first-shift (list p))
	  (set! last-shift first-shift)))))

(define (save-reductions core itemset)
  (let ((rs (let loop ((l itemset))
	      (if (null? l)
		  '()
		  (let ((item (vector-ref ritem (car l))))
		    (if (< item 0)
			(cons (- item) (loop (cdr l)))
			(loop (cdr l))))))))
    (if (pair? rs)
	(let ((p (new-red)))
	  (set-red-number! p (core-number core))
	  (set-red-nreds!  p (length rs))
	  (set-red-rules!  p rs)
	  (if last-reduction
	      (begin
		(set-cdr! last-reduction (list p))
		(set! last-reduction (cdr last-reduction)))
	      (begin
		(set! first-reduction (list p))
		(set! last-reduction first-reduction)))))))


;; --

(define (lalr)
  (set! token-set-size (+ 1 (quotient nterms (BITS-PER-WORD))))
  (set-accessing-symbol)
  (set-shift-table)
  (set-reduction-table)
  (set-max-rhs)
  (initialize-LA)
  (set-goto-map)
  (initialize-F)
  (build-relations)
  (digraph includes)
  (compute-lookaheads))

(define (set-accessing-symbol)
  (set! acces-symbol (make-vector nstates #f))
  (let loop ((l first-state))
    (if (pair? l)
	(let ((x (car l)))
	  (vector-set! acces-symbol (core-number x) (core-acc-sym x))
	  (loop (cdr l))))))

(define (set-shift-table)
  (set! shift-table (make-vector nstates #f))
  (let loop ((l first-shift))
    (if (pair? l)
	(let ((x (car l)))
	  (vector-set! shift-table (shift-number x) x)
	  (loop (cdr l))))))

(define (set-reduction-table)
  (set! reduction-table (make-vector nstates #f))
  (let loop ((l first-reduction))
    (if (pair? l)
	(let ((x (car l)))
	  (vector-set! reduction-table (red-number x) x)
	  (loop (cdr l))))))

(define (set-max-rhs)
  (let loop ((p 0) (curmax 0) (length 0))
    (let ((x (vector-ref ritem p)))
      (if x
	  (if (>= x 0)
	      (loop (+ p 1) curmax (+ length 1))
	      (loop (+ p 1) (max curmax length) 0))
	  (set! maxrhs curmax)))))

(define (initialize-LA)
  (define (last l)
    (if (null? (cdr l))
	(car l)
	(last (cdr l))))

  (set! consistent (make-vector nstates #f))
  (set! lookaheads (make-vector (+ nstates 1) #f))

  (let loop ((count 0) (i 0))
    (if (< i nstates)
	(begin
	  (vector-set! lookaheads i count)
	  (let ((rp (vector-ref reduction-table i))
		(sp (vector-ref shift-table i)))
	    (if (and rp
		     (or (> (red-nreds rp) 1)
			 (and sp
			      (not
			       (< (vector-ref acces-symbol
					      (last (shift-shifts sp)))
				  nvars)))))
		(loop (+ count (red-nreds rp)) (+ i 1))
		(begin
		  (vector-set! consistent i #t)
		  (loop count (+ i 1))))))

	(begin
	  (vector-set! lookaheads nstates count)
	  (let ((c (max count 1)))
	    (set! LA (make-vector c #f))
	    (do ((j 0 (+ j 1))) ((= j c)) (vector-set! LA j (new-set token-set-size)))
	    (set! LAruleno (make-vector c -1))
	    (set! lookback (make-vector c #f)))
	  (let loop ((i 0) (np 0))
	    (if (< i nstates)
		(if (vector-ref consistent i)
		    (loop (+ i 1) np)
		    (let ((rp (vector-ref reduction-table i)))
		      (if rp
			  (let loop2 ((j (red-rules rp)) (np2 np))
			    (if (null? j)
				(loop (+ i 1) np2)
				(begin
				  (vector-set! LAruleno np2 (car j))
				  (loop2 (cdr j) (+ np2 1)))))
			  (loop (+ i 1) np))))))))))


(define (set-goto-map)
  (set! goto-map (make-vector (+ nvars 1) 0))
  (let ((temp-map (make-vector (+ nvars 1) 0)))
    (let loop ((ng 0) (sp first-shift))
      (if (pair? sp)
	  (let loop2 ((i (reverse (shift-shifts (car sp)))) (ng2 ng))
	    (if (pair? i)
		(let ((symbol (vector-ref acces-symbol (car i))))
		  (if (< symbol nvars)
		      (begin
			(vector-set! goto-map symbol 
				     (+ 1 (vector-ref goto-map symbol)))
			(loop2 (cdr i) (+ ng2 1)))
		      (loop2 (cdr i) ng2)))
		(loop ng2 (cdr sp))))

	  (let loop ((k 0) (i 0))
	    (if (< i nvars)
		(begin
		  (vector-set! temp-map i k)
		  (loop (+ k (vector-ref goto-map i)) (+ i 1)))

		(begin
		  (do ((i 0 (+ i 1)))
		      ((>= i nvars))
		    (vector-set! goto-map i (vector-ref temp-map i)))

		  (set! ngotos ng)
		  (vector-set! goto-map nvars ngotos)
		  (vector-set! temp-map nvars ngotos)
		  (set! from-state (make-vector ngotos #f))
		  (set! to-state (make-vector ngotos #f))
		  
		  (do ((sp first-shift (cdr sp)))
		      ((null? sp))
		    (let* ((x (car sp))
			   (state1 (shift-number x)))
		      (do ((i (shift-shifts x) (cdr i)))
			  ((null? i))
			(let* ((state2 (car i))
			       (symbol (vector-ref acces-symbol state2)))
			  (if (< symbol nvars)
			      (let ((k (vector-ref temp-map symbol)))
				(vector-set! temp-map symbol (+ k 1))
				(vector-set! from-state k state1)
				(vector-set! to-state k state2))))))))))))))


(define (map-goto state symbol)
  (let loop ((low (vector-ref goto-map symbol))
	     (high (- (vector-ref goto-map (+ symbol 1)) 1)))
    (if (> low high)
	(begin
	  (display (list "Error in map-goto" state symbol) (current-error-port))
          (newline (current-error-port))
	  0)
	(let* ((middle (quotient (+ low high) 2))
	       (s (vector-ref from-state middle)))
	  (cond
	   ((= s state)
	    middle)
	   ((< s state)
	    (loop (+ middle 1) high))
	   (else
	    (loop low (- middle 1))))))))


(define (initialize-F)
  (set! F (make-vector ngotos #f))
  (do ((i 0 (+ i 1))) ((= i ngotos)) (vector-set! F i (new-set token-set-size)))

  (let ((reads (make-vector ngotos #f)))

    (let loop ((i 0) (rowp 0))
      (if (< i ngotos)
	  (let* ((rowf (vector-ref F rowp))
		 (stateno (vector-ref to-state i))
		 (sp (vector-ref shift-table stateno)))
	    (if sp
		(let loop2 ((j (shift-shifts sp)) (edges '()))
		  (if (pair? j)
		      (let ((symbol (vector-ref acces-symbol (car j))))
			(if (< symbol nvars)
			    (if (vector-ref nullable symbol)
				(loop2 (cdr j) (cons (map-goto stateno symbol) 
						     edges))
				(loop2 (cdr j) edges))
			    (begin
			      (set-bit rowf (- symbol nvars))
			      (loop2 (cdr j) edges))))
		      (if (pair? edges)
			  (vector-set! reads i (reverse edges))))))
	      (loop (+ i 1) (+ rowp 1)))))
    (digraph reads)))

(define (add-lookback-edge stateno ruleno gotono)
  (let ((k (vector-ref lookaheads (+ stateno 1))))
    (let loop ((found #f) (i (vector-ref lookaheads stateno)))
      (if (and (not found) (< i k))
	  (if (= (vector-ref LAruleno i) ruleno)
	      (loop #t i)
	      (loop found (+ i 1)))

	  (if (not found)
	      (begin (display "Error in add-lookback-edge : " (current-error-port))
		     (display (list stateno ruleno gotono) (current-error-port))
                     (newline (current-error-port)))
	      (vector-set! lookback i
			   (cons gotono (vector-ref lookback i))))))))


(define (transpose r-arg n)
  (let ((new-end (make-vector n #f))
	(new-R  (make-vector n #f)))
    (do ((i 0 (+ i 1))) 
	((= i n))
      (let ((x (list 'bidon)))
	(vector-set! new-R i x)
	(vector-set! new-end i x)))
    (do ((i 0 (+ i 1)))
	((= i n))
      (let ((sp (vector-ref r-arg i)))
	(if (pair? sp)
	    (let loop ((sp2 sp))
	      (if (pair? sp2)
		  (let* ((x (car sp2))
			 (y (vector-ref new-end x)))
		    (set-cdr! y (cons i (cdr y)))
		    (vector-set! new-end x (cdr y))
		    (loop (cdr sp2))))))))
    (do ((i 0 (+ i 1)))
	((= i n))
      (vector-set! new-R i (cdr (vector-ref new-R i))))
    
    new-R))



(define (build-relations)

  (define (get-state stateno symbol)
    (let loop ((j (shift-shifts (vector-ref shift-table stateno)))
	       (stno stateno))
      (if (null? j)
	  stno
	  (let ((st2 (car j)))
	    (if (= (vector-ref acces-symbol st2) symbol)
		st2
		(loop (cdr j) st2))))))

  (set! includes (make-vector ngotos #f))
  (do ((i 0 (+ i 1)))
      ((= i ngotos))
    (let ((state1 (vector-ref from-state i))
	  (symbol1 (vector-ref acces-symbol (vector-ref to-state i))))
      (let loop ((rulep (vector-ref derives symbol1))
		 (edges '()))
	(if (pair? rulep)
	    (let ((*rulep (car rulep)))
	      (let loop2 ((rp (vector-ref rrhs *rulep))
			  (stateno state1)
			  (states (list state1)))
		(let ((*rp (vector-ref ritem rp)))
		  (if (> *rp 0)
		      (let ((st (get-state stateno *rp)))
			(loop2 (+ rp 1) st (cons st states)))
		      (begin

			(if (not (vector-ref consistent stateno))
			    (add-lookback-edge stateno *rulep i))
			
			(let loop2 ((done #f) 
				    (stp (cdr states))
				    (rp2 (- rp 1))
				    (edgp edges))
			  (if (not done)
			      (let ((*rp (vector-ref ritem rp2)))
				(if (< -1 *rp nvars)
				  (loop2 (not (vector-ref nullable *rp))
					 (cdr stp)
					 (- rp2 1)
					 (cons (map-goto (car stp) *rp) edgp))
				  (loop2 #t stp rp2 edgp)))

			      (loop (cdr rulep) edgp))))))))
	    (vector-set! includes i edges)))))
  (set! includes (transpose includes ngotos)))
			


(define (compute-lookaheads)
  (let ((n (vector-ref lookaheads nstates)))
    (let loop ((i 0))
      (if (< i n)
	  (let loop2 ((sp (vector-ref lookback i)))
	    (if (pair? sp)
		(let ((LA-i (vector-ref LA i))
		      (F-j  (vector-ref F (car sp))))
		  (bit-union LA-i F-j token-set-size)
		  (loop2 (cdr sp)))
		(loop (+ i 1))))))))



(define (digraph relation)
  (define infinity (+ ngotos 2))
  (define INDEX (make-vector (+ ngotos 1) 0))
  (define VERTICES (make-vector (+ ngotos 1) 0))
  (define top 0)
  (define R relation)

  (define (traverse i)
    (set! top (+ 1 top))
    (vector-set! VERTICES top i)
    (let ((height top))
      (vector-set! INDEX i height)
      (let ((rp (vector-ref R i)))
	(if (pair? rp)
	    (let loop ((rp2 rp))
	      (if (pair? rp2)
		  (let ((j (car rp2)))
		    (if (= 0 (vector-ref INDEX j))
			(traverse j))
		    (if (> (vector-ref INDEX i) 
			   (vector-ref INDEX j))
			(vector-set! INDEX i (vector-ref INDEX j)))
		    (let ((F-i (vector-ref F i))
			  (F-j (vector-ref F j)))
		      (bit-union F-i F-j token-set-size))
		    (loop (cdr rp2))))))
	(if (= (vector-ref INDEX i) height)
	    (let loop ()
	      (let ((j (vector-ref VERTICES top)))
		(set! top (- top 1))
		(vector-set! INDEX j infinity)
		(if (not (= i j))
		    (begin
		      (bit-union (vector-ref F i) 
				 (vector-ref F j)
				 token-set-size)
		      (loop)))))))))

  (let loop ((i 0))
    (if (< i ngotos)
	(begin
	  (if (and (= 0 (vector-ref INDEX i))
		   (pair? (vector-ref R i)))
	      (traverse i))
	  (loop (+ i 1))))))


;; ---------------------------------------------------------------------- ;;
;; operator precedence management                                         ;;
;; ---------------------------------------------------------------------- ;;

; a vector of precedence descriptors where each element
; is of the form (terminal type precedence)
(define the-terminals/prec #f)		; terminal symbols with precedence 
; the precedence is an integer >= 0
(define (get-symbol-precedence sym)
  (caddr (vector-ref the-terminals/prec sym)))
; the operator type is either 'none, 'left, 'right, or 'nonassoc
(define (get-symbol-assoc sym)
  (cadr (vector-ref the-terminals/prec sym)))

(define rule-precedences '())
(define (add-rule-precedence! rule sym)
  (set! rule-precedences
	(cons (cons rule sym) rule-precedences)))

(define (get-rule-precedence ruleno)
  (cond
   ((assq ruleno rule-precedences) 
    => (lambda (p) 
	 (get-symbol-precedence (cdr p))))
   (else
    ;; process the rule symbols from left to right
    (let loop ((i    (vector-ref rrhs ruleno))
	       (prec 0))
      (let ((item (vector-ref ritem i)))
	;; end of rule
	(if (< item 0)
	    prec
	    (let ((i1 (+ i 1)))
	      (if (>= item nvars)
		  ;; it's a terminal symbol
		  (loop i1 (get-symbol-precedence (- item nvars)))
		  (loop i1 prec)))))))))

;; ---------------------------------------------------------------------- ;;
;; Build the various tables                                               ;;
;; ---------------------------------------------------------------------- ;;
(define (build-tables)
  
  (define (resolve-conflict sym rule)
    (let ((sym-prec   (get-symbol-precedence sym))
	  (sym-assoc  (get-symbol-assoc sym))
	  (rule-prec  (get-rule-precedence rule)))
      (cond
       ((> sym-prec rule-prec)     'shift)
       ((< sym-prec rule-prec)     'reduce)
       ((eq? sym-assoc 'left)      'reduce)
       ((eq? sym-assoc 'right)     'shift)
       (else                       'shift))))
	
  ;; --- Add an action to the action table ------------------------------ ;;
  (define (add-action St Sym Act)
    (let* ((x (vector-ref action-table St))
	   (y (assv Sym x)))
      (if y
	  (if (not (= Act (cdr y)))
	      ;; -- there is a conflict 
	      (begin
		(if (and (<= (cdr y) 0)
			 (<= Act 0))
		    ;; --- reduce/reduce conflict ----------------------- ;;
		    (begin
		      (display "%% Reduce/Reduce conflict " (current-error-port))
		      (display "(reduce "  (current-error-port))
                      (display (- Act) (current-error-port))
		      (display ", reduce " (current-error-port))
                      (display (- (cdr y)) (current-error-port))
		      (display ") on " (current-error-port))
                      (print-symbol (+ Sym nvars) (current-error-port))
		      (display " in state "  (current-error-port))
                      (display St (current-error-port))
		      (newline (current-error-port))
		      (set-cdr! y (max (cdr y) Act)))
		    ;; --- shift/reduce conflict ------------------------ ;;
		    ;; can we resolve the conflict using precedences?
		    (case (resolve-conflict Sym (- (cdr y)))
		      ;; -- shift
		      ((shift)
		       (set-cdr! y Act))
		      ;; -- reduce
		      ((reduce)
		       #f)		; well, nothing to do...
		      ;; -- signal a conflict!
		      (else
		       (display "%% Shift/Reduce conflict " (current-error-port))
		       (display "(shift " (current-error-port))
                       (display Act (current-error-port))
		       (display ", reduce " (current-error-port))
                       (display (- (cdr y)) (current-error-port))
		       (display ") on " (current-error-port))
                       (print-symbol (+ Sym nvars) (current-error-port))
		       (display " in state " (current-error-port))
                       (display St (current-error-port))
		       (newline (current-error-port))
		       (set-cdr! y Act))))))
	  
	  (vector-set! action-table St (cons (cons Sym Act) x)))))
	
  (set! action-table (make-vector nstates '()))

  (do ((i 0 (+ i 1)))  ; i = state
      ((= i nstates))
    (let ((red (vector-ref reduction-table i)))
      (if (and red (>= (red-nreds red) 1))
	  (if (and (= (red-nreds red) 1) (vector-ref consistent i))
	      (add-action i 'default (- (car (red-rules red))))
	      (let ((k (vector-ref lookaheads (+ i 1))))
		(let loop ((j (vector-ref lookaheads i)))
		  (if (< j k)
		      (let ((rule (- (vector-ref LAruleno j)))
			    (lav  (vector-ref LA j)))
			(let loop2 ((token 0) (x (vector-ref lav 0)) (y 1) (z 0))
			  (if (< token nterms)
			      (begin
				(let ((in-la-set? (modulo x 2)))
				  (if (= in-la-set? 1)
				      (add-action i token rule)))
				(if (= y (BITS-PER-WORD))
				    (loop2 (+ token 1) 
					   (vector-ref lav (+ z 1))
					   1
					   (+ z 1))
				    (loop2 (+ token 1) (quotient x 2) (+ y 1) z)))))
			(loop (+ j 1)))))))))

    (let ((shiftp (vector-ref shift-table i)))
      (if shiftp
	  (let loop ((k (shift-shifts shiftp)))
	    (if (pair? k)
		(let* ((state (car k))
		       (symbol (vector-ref acces-symbol state)))
		  (if (>= symbol nvars)
		      (add-action i (- symbol nvars) state))
		  (loop (cdr k))))))))

  (add-action final-state 0 'accept))

(define (compact-action-table terms)
  (define (most-common-action acts)
    (let ((accums '()))
      (let loop ((l acts))
	(if (pair? l)
	    (let* ((x (cdar l))
		   (y (assv x accums)))
	      (if (and (number? x) (< x 0))
		  (if y
		      (set-cdr! y (+ 1 (cdr y)))
		      (set! accums (cons `(,x . 1) accums))))
	      (loop (cdr l)))))

      (let loop ((l accums) (max 0) (sym #f))
	(if (null? l)
	    sym
	    (let ((x (car l)))
	      (if (> (cdr x) max)
		  (loop (cdr l) (cdr x) (car x))
		  (loop (cdr l) max sym)))))))
  
  (define (translate-terms acts)
    (map (lambda (act) 
	   (cons (list-ref terms (car act))
		 (cdr act)))
	 acts))

  (do ((i 0 (+ i 1)))
      ((= i nstates))
    (let ((acts (vector-ref action-table i)))
      (if (vector? (vector-ref reduction-table i))
	  (let ((act (most-common-action acts)))
	    (vector-set! action-table i
			 (cons `(*default* . ,(if act act 'error))
			       (translate-terms
				(lalr-filter (lambda (x) 
					  (not (eq? (cdr x) act)))
					acts)))))
	  (vector-set! action-table i 
		       (cons `(*default* . *error*) 
			     (translate-terms acts)))))))



;; --

(define (rewrite-grammar tokens grammar k) 

  (define eoi '*eoi*)
  
  (define (check-terminal term terms)
    (cond 
     ((not (valid-terminal? term))
      (lalr-error "invalid terminal: " term))
     ((member term terms)
      (lalr-error "duplicate definition of terminal: " term))))
  
  (define (prec->type prec)
    (cdr (assq prec '((left:     . left) 
		      (right:    . right)
		      (nonassoc: . nonassoc)))))

  (cond
   ;; --- a few error conditions ---------------------------------------- ;;
   ((not (list? tokens))
    (lalr-error "Invalid token list: " tokens))
   ((not (pair? grammar))
    (lalr-error "Grammar definition must have a non-empty list of productions" '()))
   
   (else
    ;; --- check the terminals ---------------------------------------- ;;
    (let loop1 ((lst            tokens)
		(rev-terms      '())
		(rev-terms/prec '())
		(prec-level     0))
      (if (pair? lst)
	  (let ((term (car lst)))
	    (cond
	     ((pair? term)
	      (if (and (memq (car term) '(left: right: nonassoc:))
		       (not (null? (cdr term))))
		  (let ((prec    (+ prec-level 1))
			(optype  (prec->type (car term))))
		    (let loop-toks ((l             (cdr term))
				    (rev-terms      rev-terms)
				    (rev-terms/prec rev-terms/prec))
		      (if (null? l)
			  (loop1 (cdr lst) rev-terms rev-terms/prec prec)
			  (let ((term (car l)))
			    (check-terminal term rev-terms)
			    (loop-toks 
			     (cdr l)
			     (cons term rev-terms)
			     (cons (list term optype prec) rev-terms/prec))))))
		  
		  (lalr-error "invalid operator precedence specification: " term)))
	      
	     (else
	      (check-terminal term rev-terms)
	      (loop1 (cdr lst) 
		     (cons term rev-terms)
		     (cons (list term 'none 0) rev-terms/prec)
		     prec-level))))
	  
	  ;; --- check the grammar rules ------------------------------ ;;
	  (let loop2 ((lst grammar) (rev-nonterm-defs '()))
	    (if (pair? lst)
		(let ((def (car lst)))
		  (if (not (pair? def))
		      (lalr-error "Nonterminal definition must be a non-empty list" '())
		      (let ((nonterm (car def)))
			(cond ((not (valid-nonterminal? nonterm))
			       (lalr-error "Invalid nonterminal:" nonterm))
			      ((or (member nonterm rev-terms)
				   (assoc nonterm rev-nonterm-defs))
			       (lalr-error "Nonterminal previously defined:" nonterm))
			      (else
			       (loop2 (cdr lst)
				      (cons def rev-nonterm-defs)))))))
		(let* ((terms        (cons eoi (reverse rev-terms)))
		       (terms/prec   (cons '(eoi none 0) (reverse rev-terms/prec)))
		       (nonterm-defs (reverse rev-nonterm-defs))
		       (nonterms     (cons '*start* (map car nonterm-defs))))
		  (if (= (length nonterms) 1)
		      (lalr-error "Grammar must contain at least one nonterminal" '())
		      (let loop-defs ((defs      (cons `(*start* (,(cadr nonterms) ,eoi) : $1)
						       nonterm-defs))
				      (ruleno    0)
				      (comp-defs '()))
			(if (pair? defs)
			    (let* ((nonterm-def  (car defs))
				   (compiled-def (rewrite-nonterm-def 
						  nonterm-def 
						  ruleno
						  terms nonterms)))
			      (loop-defs (cdr defs)
					 (+ ruleno (length compiled-def))
					 (cons compiled-def comp-defs)))

			    (let ((compiled-nonterm-defs (reverse comp-defs)))
			      (k terms
				 terms/prec
				 nonterms
				 (map (lambda (x) (cons (caaar x) (map cdar x)))
				      compiled-nonterm-defs)
				 (apply append compiled-nonterm-defs))))))))))))))


(define (rewrite-nonterm-def nonterm-def ruleno terms nonterms)

  (define No-NT (length nonterms))

  (define (encode x) 
    (let ((PosInNT (pos-in-list x nonterms)))
      (if PosInNT
	  PosInNT
	  (let ((PosInT (pos-in-list x terms)))
	    (if PosInT
		(+ No-NT PosInT)
		(lalr-error "undefined symbol : " x))))))
  
  (define (process-prec-directive rhs ruleno)
    (let loop ((l rhs))
      (if (null? l) 
	  '()
	  (let ((first (car l))
		(rest  (cdr l)))
	    (cond
	     ((or (member first terms) (member first nonterms))
	      (cons first (loop rest)))
	     ((and (pair? first)
		   (eq? (car first) 'prec:))
		   (pair? (cdr first))
	      (if (and (pair? (cdr first))
		       (member (cadr first) terms))
		  (if (null? (cddr first))
		      (begin
			(add-rule-precedence! ruleno (pos-in-list (cadr first) terms))
			(loop rest))
		      (lalr-error "prec: directive should be at end of rule: " rhs))
		  (lalr-error "Invalid prec: directive: " first)))
	     (else
	      (lalr-error "Invalid terminal or nonterminal: " first)))))))
	

  (if (not (pair? (cdr nonterm-def)))
      (lalr-error "At least one production needed for nonterminal" (car nonterm-def))
      (let ((name (symbol->string (car nonterm-def))))
	(let loop1 ((lst (cdr nonterm-def))
		    (i 1)
		    (rev-productions-and-actions '()))
	  (if (not (pair? lst))
	      (reverse rev-productions-and-actions)
	      (let* ((rhs  (process-prec-directive (car lst) (+ ruleno i -1)))
		     (rest (cdr lst))
		     (prod (map encode (cons (car nonterm-def) rhs))))
		(for-each (lambda (x)
			    (if (not (or (member x terms) (member x nonterms)))
				(lalr-error "Invalid terminal or nonterminal" x)))
			  rhs)
		(if (and (pair? rest)
			 (eq? (car rest) ':)
			 (pair? (cdr rest)))
		    (loop1 (cddr rest)
			   (+ i 1)
			   (cons (cons prod (cadr rest)) 
				 rev-productions-and-actions))
		    (let* ((rhs-length (length rhs))
			   (action
			    (cons 'vector
				 (cons (list 'quote (string->symbol
						     (string-append
						      name
						      "-"
						      (number->string i))))
				       (let loop-j ((j 1))
					 (if (> j rhs-length)
					     '()
					     (cons (string->symbol
						    (string-append
						     "$"
						     (number->string j)))
						   (loop-j (+ j 1)))))))))
		      (loop1 rest
			     (+ i 1)
			     (cons (cons prod action) 
				   rev-productions-and-actions))))))))))

(define (valid-nonterminal? x)
  (symbol? x))

(define (valid-terminal? x)
  (symbol? x))              ; DB 

;; ---------------------------------------------------------------------- ;;
;; Miscellaneous                                                          ;;
;; ---------------------------------------------------------------------- ;;
(define (pos-in-list x lst)
  (let loop ((lst lst) (i 0))
    (cond ((not (pair? lst))    #f)
	  ((equal? (car lst) x) i)
	  (else                 (loop (cdr lst) (+ i 1))))))

(define (sunion lst1 lst2)		; union of sorted lists
  (let loop ((L1 lst1)
	     (L2 lst2))
    (cond ((null? L1)    L2)
	  ((null? L2)    L1)
	  (else 
	   (let ((x (car L1)) (y (car L2)))
	     (cond
	      ((> x y)
	       (cons y (loop L1 (cdr L2))))
	      ((< x y)
	       (cons x (loop (cdr L1) L2)))
	      (else
	       (loop (cdr L1) L2))
	      ))))))

(define (sinsert elem lst)
  (let loop ((l1 lst))
    (if (null? l1) 
	(cons elem l1)
	(let ((x (car l1)))
	  (cond ((< elem x)
		 (cons elem l1))
		((> elem x)
		 (cons x (loop (cdr l1))))
		(else 
		 l1))))))

(define (lalr-filter p lst)
  (let loop ((l lst))
    (if (null? l)
	'()
	(let ((x (car l)) (y (cdr l)))
	(if (p x)
	    (cons x (loop y))
	    (loop y))))))

;; ---------------------------------------------------------------------- ;;
;; Debugging tools ...                                                    ;;
;; ---------------------------------------------------------------------- ;;
(define the-terminals #f)		; names of terminal symbols
(define the-nonterminals #f)		; non-terminals

(define (print-item item-no)
  (let loop ((i item-no))
    (let ((v (vector-ref ritem i)))
      (if (>= v 0)
	  (loop (+ i 1))
	  (let* ((rlno    (- v))
		 (nt      (vector-ref rlhs rlno)))
	    (display (vector-ref the-nonterminals nt)) (display " --> ")
	    (let loop ((i (vector-ref rrhs rlno)))
	      (let ((v (vector-ref ritem i)))
		(if (= i item-no)
		    (display ". "))
		(if (>= v 0)
		    (begin
		      (print-symbol v)
		      (display " ")
		      (loop (+ i 1)))
		    (begin 
		      (display "   (rule ")
		      (display (- v))
		      (display ")")
		      (newline))))))))))
  
(define (print-symbol n . port)
  (display (if (>= n nvars)
	       (vector-ref the-terminals (- n nvars))
	       (vector-ref the-nonterminals n))
           (if (null? port)
               (current-output-port)
               (car port))))
  
(define (print-states)
"Print the states of a generated parser."
  (define (print-action act)
    (cond
     ((eq? act '*error*)
      (display " : Error"))
     ((eq? act 'accept)
      (display " : Accept input"))
     ((< act 0)
      (display " : reduce using rule ")
      (display (- act)))
     (else
      (display " : shift and goto state ")
      (display act)))
    (newline)
    #t)
  
  (define (print-actions acts)
    (let loop ((l acts))
      (if (null? l)
	  #t
	  (let ((sym (caar l))
		(act (cdar l)))
	    (display "   ")
	    (cond
	     ((eq? sym 'default)
	      (display "default action"))
	     (else
	      (if (number? sym)
		  (print-symbol (+ sym nvars))
		  (display sym))))
	    (print-action act)
	    (loop (cdr l))))))
  
  (if (not action-table)
      (begin
	(display "No generated parser available!")
	(newline)
	#f)
      (begin
	(display "State table") (newline)
	(display "-----------") (newline) (newline)
  
	(let loop ((l first-state))
	  (if (null? l)
	      #t
	      (let* ((core  (car l))
		     (i     (core-number core))
		     (items (core-items core))
		     (actions (vector-ref action-table i)))
		(display "state ") (display i) (newline)
		(newline)
		(for-each (lambda (x) (display "   ") (print-item x))
			  items)
		(newline)
		(print-actions actions)
		(newline)
		(loop (cdr l))))))))


	  
;; ---------------------------------------------------------------------- ;;

(define build-goto-table
  (lambda ()
    `(vector
      ,@(map
	 (lambda (shifts)
	   (list 'quote
		 (if shifts
		     (let loop ((l (shift-shifts shifts)))
		       (if (null? l)
			   '()
			   (let* ((state  (car l))
				  (symbol (vector-ref acces-symbol state)))
			     (if (< symbol nvars)
				 (cons `(,symbol . ,state)
				       (loop (cdr l)))
				 (loop (cdr l))))))
		     '())))
	 (vector->list shift-table)))))


(define build-reduction-table
  (lambda (gram/actions)
    `(vector
      '()
      ,@(map
	 (lambda (p)
	   (let ((act (cdr p)))
	     `(lambda (___stack ___sp ___goto-table ___k)
		,(let* ((nt (caar p)) (rhs (cdar p)) (n (length rhs)))
		   `(let* (,@(if act
				 (let loop ((i 1) (l rhs))
				   (if (pair? l)
				       (let ((rest (cdr l)))
					 (cons 
					  `(,(string->symbol
					      (string-append
					       "$"
					       (number->string 
						(+ (- n i) 1))))
					    (vector-ref ___stack (- ___sp ,(- (* i 2) 1))))
					  (loop (+ i 1) rest)))
				       '()))
				 '()))
		      ,(if (= nt 0)
			   '$1
			   `(___push ___stack (- ___sp ,(* 2 n)) 
				  ,nt ___goto-table ,(cdr p) ___k)))))))

	 gram/actions))))
	 

;; @section (api "API")                                                   

(define-macro-with-docs (lalr-parser tokens . rules)
"The grammar declaration special form.  @var{tokens} is the list of token
symbols, and @var{rules} are the grammar rules.  See the module documentation
for more details."
  (let* ((gram/actions (gen-tables! tokens rules))
	 (code
	  `(letrec ((___max-stack-size 500)

		    (___atable         ',action-table)
		    (___gtable         ,(build-goto-table))
		    (___grow-stack     (lambda (stack)
					 ;; make a new stack twice as big as the original
					 (let ((new-stack (make-vector (* 2 (vector-length stack)) #f)))
					   ;; then copy the elements...
					   (let loop ((i (- (vector-length stack) 1)))
					     (if (< i 0)
						 new-stack
						 (begin
						   (vector-set! new-stack i (vector-ref stack i))
						   (loop (- i 1))))))))
	      
		    (___push           (lambda (stack sp new-cat goto-table lval k)
					 (let* ((state     (vector-ref stack sp))
						(new-state (cdr (assq new-cat (vector-ref goto-table state))))
						(new-sp    (+ sp 2))
						(stack     (if (< new-sp (vector-length stack))
							       stack
							       (___grow-stack stack))))
					   (vector-set! stack new-sp new-state)
					   (vector-set! stack (- new-sp 1) lval)
					   (k stack new-sp))))

		    (___action         (lambda (x l)
					 (let ((y (assq x l)))
					   (if y (cdr y) (cdar l)))))
	      
		    (___rtable         ,(build-reduction-table gram/actions)))

	     (lambda (lexerp errorp)

	       (let ((stack (make-vector ___max-stack-size 0)))
		 (let loop ((stack stack) (sp 0) (input (lexerp)))
		   (let* ((state (vector-ref stack sp))
			  (i     (if (pair? input) (car input) input))
			  (attr  (if (pair? input) (cdr input) #f))
			  (act   (___action i (vector-ref ___atable state))))

		     (if (not (symbol? i))
			 (errorp "PARSE ERROR: invalid token: " input))
		 
		     (cond
		  
		      ;; Input succesfully parsed
		      ((eq? act 'accept)
		       (vector-ref stack 1))
		  
		      ;; Syntax error in input
		      ((eq? act '*error*)
		       (if (eq? i '*eoi*)
			   (errorp "PARSE ERROR : unexpected end of input ")
			   (errorp "PARSE ERROR : unexpected token : " input)))
		  
		      ;; Shift current token on top of the stack
		      ((>= act 0)
		       (let ((stack (if (< (+ sp 2) (vector-length stack))
					stack
					(___grow-stack stack))))
			 (vector-set! stack (+ sp 1) attr)
			 (vector-set! stack (+ sp 2) act)
			 (loop stack (+ sp 2) (lexerp))))

		      ;; Reduce by rule (- act)
		      (else 
		       ((vector-ref ___rtable (- act))
			stack sp ___gtable
			(lambda (stack sp)
			  (loop stack sp input))))))))))))
    code))

;; arch-tag: 4FE771DE-F56D-11D8-8B77-000A95B4C7DC