/usr/share/guile/site/text/parse-lalr.scm is in guile-library 0.2.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 | ;; (text parse-lalr) -- yacc's parser generator, in Guile
;; Copyright (C) 1984,1989,1990 Free Software Foundation, Inc.
;; Copyright (C) 1996-2002 Dominique Boucher
;; This program is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;;
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program. If not, see <http://www.gnu.org/licenses/>.
;; ---------------------------------------------------------------------- ;;
#!
;;; Commentary:
This file contains yet another LALR(1) parser generator written in
Scheme. In contrast to other such parser generators, this one
implements a more efficient algorithm for computing the lookahead sets.
The algorithm is the same as used in Bison (GNU yacc) and is described
in the following paper:
"Efficient Computation of LALR(1) Look-Ahead Set", F. DeRemer and
T. Pennello, TOPLAS, vol. 4, no. 4, october 1982.
As a consequence, it is not written in a fully functional style.
In fact, much of the code is a direct translation from C to Scheme
of the Bison sources.
@section Defining a parser
The module @code{(text parse-lalr)} declares a macro called @code{lalr-parser}:
@lisp
(lalr-parser tokens rules ...)
@end lisp
This macro, when given appropriate arguments, generates an LALR(1)
syntax analyzer. The macro accepts at least two arguments. The first
is a list of symbols which represent the terminal symbols of the
grammar. The remaining arguments are the grammar production rules.
@section Running the parser
The parser generated by the @code{lalr-parser} macro is a function that
takes two parameters. The first parameter is a lexical analyzer while
the second is an error procedure.
The lexical analyzer is zero-argument function (a thunk)
invoked each time the parser needs to look-ahead in the token stream.
A token is usually a pair whose @code{car} is the symbol corresponding to
the token (the same symbol as used in the grammar definition). The
@code{cdr} of the pair is the semantic value associated with the token. For
example, a string token would have the @code{car} set to @code{'string}
while the @code{cdr} is set to the string value @code{"hello"}.
Once the end of file is encountered, the lexical analyzer must always
return the symbol @code{'*eoi*} each time it is invoked.
The error procedure must be a function that accepts at least two
parameters.
@section The grammar format
The grammar is specified by first giving the list of terminals and the
list of non-terminal definitions. Each non-terminal definition
is a list where the first element is the non-terminal and the other
elements are the right-hand sides (lists of grammar symbols). In
addition to this, each rhs can be followed by a semantic action.
For example, consider the following (yacc) grammar for a very simple
expression language:
@example
e : e '+' t
| e '-' t
| t
;
t : t '*' f
: t '/' f
| f
;
f : ID
;
@end example
The same grammar, written for the scheme parser generator, would look
like this (with semantic actions)
@lisp
(define expr-parser
(lalr-parser
; Terminal symbols
(ID + - * /)
; Productions
(e (e + t) : (+ $1 $3)
(e - t) : (- $1 $3)
(t) : $1)
(t (t * f) : (* $1 $3)
(t / f) : (/ $1 $3)
(f) : $1)
(f (ID) : $1)))
@end lisp
In semantic actions, the symbol @code{$n} refers to the synthesized
attribute value of the nth symbol in the production. The value
associated with the non-terminal on the left is the result of
evaluating the semantic action (it defaults to @code{#f}).
The above grammar implicitly handles operator precedences. It is also
possible to explicitly assign precedences and associativity to
terminal symbols and productions a la Yacc. Here is a modified
(and augmented) version of the grammar:
@lisp
(define expr-parser
(lalr-parser
; Terminal symbols
(ID
(left: + -)
(left: * /)
(nonassoc: uminus))
(e (e + e) : (+ $1 $3)
(e - e) : (- $1 $3)
(e * e) : (* $1 $3)
(e / e) : (/ $1 $3)
(- e (prec: uminus)) : (- $2)
(ID) : $1)))
@end lisp
The @code{left:} directive is used to specify a set of left-associative
operators of the same precedence level, the @code{right:} directive for
right-associative operators, and @code{nonassoc:} for operators that
are not associative. Note the use of the (apparently) useless
terminal @code{uminus}. It is only defined in order to assign to the
penultimate rule a precedence level higher than that of @code{*} and
@code{/}. The @code{prec:} directive can only appear as the last element of a
rule. Finally, note that precedence levels are incremented from
left to right, i.e. the precedence level of @code{+} and @code{-} is less
than the precedence level of @code{*} and @code{/} since the formers appear
first in the list of terminal symbols (token definitions).
@section A final note on conflict resolution
Conflicts in the grammar are handled in a conventional way.
In the absence of precedence directives,
Shift/Reduce conflicts are resolved by shifting, and Reduce/Reduce
conflicts are resolved by choosing the rule listed first in the
grammar definition.
You can print the states of the generated parser by evaluating
@code{(print-states)}. The format of the output is similar to the one
produced by bison when given the -v command-line option.
;;; Code:
!#
;;; ---------- SYSTEM DEPENDENT SECTION -----------------
;; put in a module by Richard Todd
(define-module (text parse-lalr)
#:use-module (scheme documentation)
#:export (lalr-parser
print-states))
;; this code is by Thien-Thi Nguyen, found in a google search
(begin
(defmacro def-macro (form . body)
`(defmacro ,(car form) ,(cdr form) ,@body))
(def-macro (BITS-PER-WORD) 28)
(def-macro (lalr-error msg obj) `(throw 'lalr-error ,msg ,obj))
(def-macro (logical-or x . y) `(logior ,x ,@y)))
;;; ---------- END OF SYSTEM DEPENDENT SECTION ------------
;; - Macros pour la gestion des vecteurs de bits
(def-macro (set-bit v b)
`(let ((x (quotient ,b (BITS-PER-WORD)))
(y (expt 2 (remainder ,b (BITS-PER-WORD)))))
(vector-set! ,v x (logical-or (vector-ref ,v x) y))))
(def-macro (bit-union v1 v2 n)
`(do ((i 0 (+ i 1)))
((= i ,n))
(vector-set! ,v1 i (logical-or (vector-ref ,v1 i)
(vector-ref ,v2 i)))))
;; - Macro pour les structures de donnees
(def-macro (new-core) `(make-vector 4 0))
(def-macro (set-core-number! c n) `(vector-set! ,c 0 ,n))
(def-macro (set-core-acc-sym! c s) `(vector-set! ,c 1 ,s))
(def-macro (set-core-nitems! c n) `(vector-set! ,c 2 ,n))
(def-macro (set-core-items! c i) `(vector-set! ,c 3 ,i))
(def-macro (core-number c) `(vector-ref ,c 0))
(def-macro (core-acc-sym c) `(vector-ref ,c 1))
(def-macro (core-nitems c) `(vector-ref ,c 2))
(def-macro (core-items c) `(vector-ref ,c 3))
(def-macro (new-shift) `(make-vector 3 0))
(def-macro (set-shift-number! c x) `(vector-set! ,c 0 ,x))
(def-macro (set-shift-nshifts! c x) `(vector-set! ,c 1 ,x))
(def-macro (set-shift-shifts! c x) `(vector-set! ,c 2 ,x))
(def-macro (shift-number s) `(vector-ref ,s 0))
(def-macro (shift-nshifts s) `(vector-ref ,s 1))
(def-macro (shift-shifts s) `(vector-ref ,s 2))
(def-macro (new-red) `(make-vector 3 0))
(def-macro (set-red-number! c x) `(vector-set! ,c 0 ,x))
(def-macro (set-red-nreds! c x) `(vector-set! ,c 1 ,x))
(def-macro (set-red-rules! c x) `(vector-set! ,c 2 ,x))
(def-macro (red-number c) `(vector-ref ,c 0))
(def-macro (red-nreds c) `(vector-ref ,c 1))
(def-macro (red-rules c) `(vector-ref ,c 2))
(def-macro (new-set nelem)
`(make-vector ,nelem 0))
(def-macro (vector-map f v)
`(let ((vm-n (- (vector-length ,v) 1)))
(let loop ((vm-low 0) (vm-high vm-n))
(if (= vm-low vm-high)
(vector-set! ,v vm-low (,f (vector-ref ,v vm-low) vm-low))
(let ((vm-middle (quotient (+ vm-low vm-high) 2)))
(loop vm-low vm-middle)
(loop (+ vm-middle 1) vm-high))))))
;; - Constantes
(define STATE-TABLE-SIZE 1009)
;; - Tableaux
(define rrhs #f)
(define rlhs #f)
(define ritem #f)
(define nullable #f)
(define derives #f)
(define fderives #f)
(define firsts #f)
(define kernel-base #f)
(define kernel-end #f)
(define shift-symbol #f)
(define shift-set #f)
(define red-set #f)
(define state-table #f)
(define acces-symbol #f)
(define reduction-table #f)
(define shift-table #f)
(define consistent #f)
(define lookaheads #f)
(define LA #f)
(define LAruleno #f)
(define lookback #f)
(define goto-map #f)
(define from-state #f)
(define to-state #f)
(define includes #f)
(define F #f)
(define action-table #f)
;; - Variables
(define nitems #f)
(define nrules #f)
(define nvars #f)
(define nterms #f)
(define nsyms #f)
(define nstates #f)
(define first-state #f)
(define last-state #f)
(define final-state #f)
(define first-shift #f)
(define last-shift #f)
(define first-reduction #f)
(define last-reduction #f)
(define nshifts #f)
(define maxrhs #f)
(define ngotos #f)
(define token-set-size #f)
(define (gen-tables! tokens gram)
(initialize-all)
(rewrite-grammar
tokens
gram
(lambda (terms terms/prec vars gram gram/actions)
(set! the-terminals/prec (list->vector terms/prec))
(set! the-terminals (list->vector terms))
(set! the-nonterminals (list->vector vars))
(set! nterms (length terms))
(set! nvars (length vars))
(set! nsyms (+ nterms nvars))
(let ((no-of-rules (length gram/actions))
(no-of-items (let loop ((l gram/actions) (count 0))
(if (null? l)
count
(loop (cdr l) (+ count (length (caar l))))))))
(pack-grammar no-of-rules no-of-items gram)
(set-derives)
(set-nullable)
(generate-states)
(lalr)
(build-tables)
(compact-action-table terms)
gram/actions))))
(define (initialize-all)
(set! rrhs #f)
(set! rlhs #f)
(set! ritem #f)
(set! nullable #f)
(set! derives #f)
(set! fderives #f)
(set! firsts #f)
(set! kernel-base #f)
(set! kernel-end #f)
(set! shift-symbol #f)
(set! shift-set #f)
(set! red-set #f)
(set! state-table (make-vector STATE-TABLE-SIZE '()))
(set! acces-symbol #f)
(set! reduction-table #f)
(set! shift-table #f)
(set! consistent #f)
(set! lookaheads #f)
(set! LA #f)
(set! LAruleno #f)
(set! lookback #f)
(set! goto-map #f)
(set! from-state #f)
(set! to-state #f)
(set! includes #f)
(set! F #f)
(set! action-table #f)
(set! nstates #f)
(set! first-state #f)
(set! last-state #f)
(set! final-state #f)
(set! first-shift #f)
(set! last-shift #f)
(set! first-reduction #f)
(set! last-reduction #f)
(set! nshifts #f)
(set! maxrhs #f)
(set! ngotos #f)
(set! token-set-size #f)
(set! rule-precedences '()))
(define (pack-grammar no-of-rules no-of-items gram)
(set! nrules (+ no-of-rules 1))
(set! nitems no-of-items)
(set! rlhs (make-vector nrules #f))
(set! rrhs (make-vector nrules #f))
(set! ritem (make-vector (+ 1 nitems) #f))
(let loop ((p gram) (item-no 0) (rule-no 1))
(if (not (null? p))
(let ((nt (caar p)))
(let loop2 ((prods (cdar p)) (it-no2 item-no) (rl-no2 rule-no))
(if (null? prods)
(loop (cdr p) it-no2 rl-no2)
(begin
(vector-set! rlhs rl-no2 nt)
(vector-set! rrhs rl-no2 it-no2)
(let loop3 ((rhs (car prods)) (it-no3 it-no2))
(if (null? rhs)
(begin
(vector-set! ritem it-no3 (- rl-no2))
(loop2 (cdr prods) (+ it-no3 1) (+ rl-no2 1)))
(begin
(vector-set! ritem it-no3 (car rhs))
(loop3 (cdr rhs) (+ it-no3 1))))))))))))
;; Fonction set-derives
;; --------------------
(define (set-derives)
(define delts (make-vector (+ nrules 1) 0))
(define dset (make-vector nvars -1))
(let loop ((i 1) (j 0)) ; i = 0
(if (< i nrules)
(let ((lhs (vector-ref rlhs i)))
(if (>= lhs 0)
(begin
(vector-set! delts j (cons i (vector-ref dset lhs)))
(vector-set! dset lhs j)
(loop (+ i 1) (+ j 1)))
(loop (+ i 1) j)))))
(set! derives (make-vector nvars 0))
(let loop ((i 0))
(if (< i nvars)
(let ((q (let loop2 ((j (vector-ref dset i)) (s '()))
(if (< j 0)
s
(let ((x (vector-ref delts j)))
(loop2 (cdr x) (cons (car x) s)))))))
(vector-set! derives i q)
(loop (+ i 1))))))
(define (set-nullable)
(set! nullable (make-vector nvars #f))
(let ((squeue (make-vector nvars #f))
(rcount (make-vector (+ nrules 1) 0))
(rsets (make-vector nvars #f))
(relts (make-vector (+ nitems nvars 1) #f)))
(let loop ((r 0) (s2 0) (p 0))
(let ((*r (vector-ref ritem r)))
(if *r
(if (< *r 0)
(let ((symbol (vector-ref rlhs (- *r))))
(if (and (>= symbol 0)
(not (vector-ref nullable symbol)))
(begin
(vector-set! nullable symbol #t)
(vector-set! squeue s2 symbol)
(loop (+ r 1) (+ s2 1) p))))
(let loop2 ((r1 r) (any-tokens #f))
(let* ((symbol (vector-ref ritem r1)))
(if (> symbol 0)
(loop2 (+ r1 1) (or any-tokens (>= symbol nvars)))
(if (not any-tokens)
(let ((ruleno (- symbol)))
(let loop3 ((r2 r) (p2 p))
(let ((symbol (vector-ref ritem r2)))
(if (> symbol 0)
(begin
(vector-set! rcount ruleno
(+ (vector-ref rcount ruleno) 1))
(vector-set! relts p2
(cons (vector-ref rsets symbol)
ruleno))
(vector-set! rsets symbol p2)
(loop3 (+ r2 1) (+ p2 1)))
(loop (+ r2 1) s2 p2)))))
(loop (+ r1 1) s2 p))))))
(let loop ((s1 0) (s3 s2))
(if (< s1 s3)
(let loop2 ((p (vector-ref rsets (vector-ref squeue s1))) (s4 s3))
(if p
(let* ((x (vector-ref relts p))
(ruleno (cdr x))
(y (- (vector-ref rcount ruleno) 1)))
(vector-set! rcount ruleno y)
(if (= y 0)
(let ((symbol (vector-ref rlhs ruleno)))
(if (and (>= symbol 0)
(not (vector-ref nullable symbol)))
(begin
(vector-set! nullable symbol #t)
(vector-set! squeue s4 symbol)
(loop2 (car x) (+ s4 1)))
(loop2 (car x) s4)))
(loop2 (car x) s4))))
(loop (+ s1 1) s4)))))))))
; Fonction set-firsts qui calcule un tableau de taille
; nvars et qui donne, pour chaque non-terminal X, une liste des
; non-terminaux pouvant apparaitre au debut d'une derivation a
; partir de X.
(define (set-firsts)
(set! firsts (make-vector nvars '()))
;; -- initialization
(let loop ((i 0))
(if (< i nvars)
(let loop2 ((sp (vector-ref derives i)))
(if (null? sp)
(loop (+ i 1))
(let ((sym (vector-ref ritem (vector-ref rrhs (car sp)))))
(if (< -1 sym nvars)
(vector-set! firsts i (sinsert sym (vector-ref firsts i))))
(loop2 (cdr sp)))))))
;; -- reflexive and transitive closure
(let loop ((continue #t))
(if continue
(let loop2 ((i 0) (cont #f))
(if (>= i nvars)
(loop cont)
(let* ((x (vector-ref firsts i))
(y (let loop3 ((l x) (z x))
(if (null? l)
z
(loop3 (cdr l)
(sunion (vector-ref firsts (car l)) z))))))
(if (equal? x y)
(loop2 (+ i 1) cont)
(begin
(vector-set! firsts i y)
(loop2 (+ i 1) #t))))))))
(let loop ((i 0))
(if (< i nvars)
(begin
(vector-set! firsts i (sinsert i (vector-ref firsts i)))
(loop (+ i 1))))))
; Fonction set-fderives qui calcule un tableau de taille
; nvars et qui donne, pour chaque non-terminal, une liste des regles pouvant
; etre derivees a partir de ce non-terminal. (se sert de firsts)
(define (set-fderives)
(set! fderives (make-vector nvars #f))
(set-firsts)
(let loop ((i 0))
(if (< i nvars)
(let ((x (let loop2 ((l (vector-ref firsts i)) (fd '()))
(if (null? l)
fd
(loop2 (cdr l)
(sunion (vector-ref derives (car l)) fd))))))
(vector-set! fderives i x)
(loop (+ i 1))))))
; Fonction calculant la fermeture d'un ensemble d'items LR0
; ou core est une liste d'items
(define (closure core)
;; Initialization
(define ruleset (make-vector nrules #f))
(let loop ((csp core))
(if (not (null? csp))
(let ((sym (vector-ref ritem (car csp))))
(if (< -1 sym nvars)
(let loop2 ((dsp (vector-ref fderives sym)))
(if (not (null? dsp))
(begin
(vector-set! ruleset (car dsp) #t)
(loop2 (cdr dsp))))))
(loop (cdr csp)))))
(let loop ((ruleno 1) (csp core) (itemsetv '())) ; ruleno = 0
(if (< ruleno nrules)
(if (vector-ref ruleset ruleno)
(let ((itemno (vector-ref rrhs ruleno)))
(let loop2 ((c csp) (itemsetv2 itemsetv))
(if (and (pair? c)
(< (car c) itemno))
(loop2 (cdr c) (cons (car c) itemsetv2))
(loop (+ ruleno 1) c (cons itemno itemsetv2)))))
(loop (+ ruleno 1) csp itemsetv))
(let loop2 ((c csp) (itemsetv2 itemsetv))
(if (pair? c)
(loop2 (cdr c) (cons (car c) itemsetv2))
(reverse itemsetv2))))))
(define (allocate-item-sets)
(set! kernel-base (make-vector nsyms 0))
(set! kernel-end (make-vector nsyms #f)))
(define (allocate-storage)
(allocate-item-sets)
(set! red-set (make-vector (+ nrules 1) 0)))
;; --
(define (initialize-states)
(let ((p (new-core)))
(set-core-number! p 0)
(set-core-acc-sym! p #f)
(set-core-nitems! p 1)
(set-core-items! p '(0))
(set! first-state (list p))
(set! last-state first-state)
(set! nstates 1)))
(define (generate-states)
(allocate-storage)
(set-fderives)
(initialize-states)
(let loop ((this-state first-state))
(if (pair? this-state)
(let* ((x (car this-state))
(is (closure (core-items x))))
(save-reductions x is)
(new-itemsets is)
(append-states)
(if (> nshifts 0)
(save-shifts x))
(loop (cdr this-state))))))
;; Fonction calculant les symboles sur lesquels il faut "shifter"
;; et regroupe les items en fonction de ces symboles
(define (new-itemsets itemset)
;; - Initialization
(set! shift-symbol '())
(let loop ((i 0))
(if (< i nsyms)
(begin
(vector-set! kernel-end i '())
(loop (+ i 1)))))
(let loop ((isp itemset))
(if (pair? isp)
(let* ((i (car isp))
(sym (vector-ref ritem i)))
(if (>= sym 0)
(begin
(set! shift-symbol (sinsert sym shift-symbol))
(let ((x (vector-ref kernel-end sym)))
(if (null? x)
(begin
(vector-set! kernel-base sym (cons (+ i 1) x))
(vector-set! kernel-end sym (vector-ref kernel-base sym)))
(begin
(set-cdr! x (list (+ i 1)))
(vector-set! kernel-end sym (cdr x)))))))
(loop (cdr isp)))))
(set! nshifts (length shift-symbol)))
(define (get-state sym)
(let* ((isp (vector-ref kernel-base sym))
(n (length isp))
(key (let loop ((isp1 isp) (k 0))
(if (null? isp1)
(modulo k STATE-TABLE-SIZE)
(loop (cdr isp1) (+ k (car isp1))))))
(sp (vector-ref state-table key)))
(if (null? sp)
(let ((x (new-state sym)))
(vector-set! state-table key (list x))
(core-number x))
(let loop ((sp1 sp))
(if (and (= n (core-nitems (car sp1)))
(let loop2 ((i1 isp) (t (core-items (car sp1))))
(if (and (pair? i1)
(= (car i1)
(car t)))
(loop2 (cdr i1) (cdr t))
(null? i1))))
(core-number (car sp1))
(if (null? (cdr sp1))
(let ((x (new-state sym)))
(set-cdr! sp1 (list x))
(core-number x))
(loop (cdr sp1))))))))
(define (new-state sym)
(let* ((isp (vector-ref kernel-base sym))
(n (length isp))
(p (new-core)))
(set-core-number! p nstates)
(set-core-acc-sym! p sym)
(if (= sym nvars) (set! final-state nstates))
(set-core-nitems! p n)
(set-core-items! p isp)
(set-cdr! last-state (list p))
(set! last-state (cdr last-state))
(set! nstates (+ nstates 1))
p))
;; --
(define (append-states)
(set! shift-set
(let loop ((l (reverse shift-symbol)))
(if (null? l)
'()
(cons (get-state (car l)) (loop (cdr l)))))))
;; --
(define (save-shifts core)
(let ((p (new-shift)))
(set-shift-number! p (core-number core))
(set-shift-nshifts! p nshifts)
(set-shift-shifts! p shift-set)
(if last-shift
(begin
(set-cdr! last-shift (list p))
(set! last-shift (cdr last-shift)))
(begin
(set! first-shift (list p))
(set! last-shift first-shift)))))
(define (save-reductions core itemset)
(let ((rs (let loop ((l itemset))
(if (null? l)
'()
(let ((item (vector-ref ritem (car l))))
(if (< item 0)
(cons (- item) (loop (cdr l)))
(loop (cdr l))))))))
(if (pair? rs)
(let ((p (new-red)))
(set-red-number! p (core-number core))
(set-red-nreds! p (length rs))
(set-red-rules! p rs)
(if last-reduction
(begin
(set-cdr! last-reduction (list p))
(set! last-reduction (cdr last-reduction)))
(begin
(set! first-reduction (list p))
(set! last-reduction first-reduction)))))))
;; --
(define (lalr)
(set! token-set-size (+ 1 (quotient nterms (BITS-PER-WORD))))
(set-accessing-symbol)
(set-shift-table)
(set-reduction-table)
(set-max-rhs)
(initialize-LA)
(set-goto-map)
(initialize-F)
(build-relations)
(digraph includes)
(compute-lookaheads))
(define (set-accessing-symbol)
(set! acces-symbol (make-vector nstates #f))
(let loop ((l first-state))
(if (pair? l)
(let ((x (car l)))
(vector-set! acces-symbol (core-number x) (core-acc-sym x))
(loop (cdr l))))))
(define (set-shift-table)
(set! shift-table (make-vector nstates #f))
(let loop ((l first-shift))
(if (pair? l)
(let ((x (car l)))
(vector-set! shift-table (shift-number x) x)
(loop (cdr l))))))
(define (set-reduction-table)
(set! reduction-table (make-vector nstates #f))
(let loop ((l first-reduction))
(if (pair? l)
(let ((x (car l)))
(vector-set! reduction-table (red-number x) x)
(loop (cdr l))))))
(define (set-max-rhs)
(let loop ((p 0) (curmax 0) (length 0))
(let ((x (vector-ref ritem p)))
(if x
(if (>= x 0)
(loop (+ p 1) curmax (+ length 1))
(loop (+ p 1) (max curmax length) 0))
(set! maxrhs curmax)))))
(define (initialize-LA)
(define (last l)
(if (null? (cdr l))
(car l)
(last (cdr l))))
(set! consistent (make-vector nstates #f))
(set! lookaheads (make-vector (+ nstates 1) #f))
(let loop ((count 0) (i 0))
(if (< i nstates)
(begin
(vector-set! lookaheads i count)
(let ((rp (vector-ref reduction-table i))
(sp (vector-ref shift-table i)))
(if (and rp
(or (> (red-nreds rp) 1)
(and sp
(not
(< (vector-ref acces-symbol
(last (shift-shifts sp)))
nvars)))))
(loop (+ count (red-nreds rp)) (+ i 1))
(begin
(vector-set! consistent i #t)
(loop count (+ i 1))))))
(begin
(vector-set! lookaheads nstates count)
(let ((c (max count 1)))
(set! LA (make-vector c #f))
(do ((j 0 (+ j 1))) ((= j c)) (vector-set! LA j (new-set token-set-size)))
(set! LAruleno (make-vector c -1))
(set! lookback (make-vector c #f)))
(let loop ((i 0) (np 0))
(if (< i nstates)
(if (vector-ref consistent i)
(loop (+ i 1) np)
(let ((rp (vector-ref reduction-table i)))
(if rp
(let loop2 ((j (red-rules rp)) (np2 np))
(if (null? j)
(loop (+ i 1) np2)
(begin
(vector-set! LAruleno np2 (car j))
(loop2 (cdr j) (+ np2 1)))))
(loop (+ i 1) np))))))))))
(define (set-goto-map)
(set! goto-map (make-vector (+ nvars 1) 0))
(let ((temp-map (make-vector (+ nvars 1) 0)))
(let loop ((ng 0) (sp first-shift))
(if (pair? sp)
(let loop2 ((i (reverse (shift-shifts (car sp)))) (ng2 ng))
(if (pair? i)
(let ((symbol (vector-ref acces-symbol (car i))))
(if (< symbol nvars)
(begin
(vector-set! goto-map symbol
(+ 1 (vector-ref goto-map symbol)))
(loop2 (cdr i) (+ ng2 1)))
(loop2 (cdr i) ng2)))
(loop ng2 (cdr sp))))
(let loop ((k 0) (i 0))
(if (< i nvars)
(begin
(vector-set! temp-map i k)
(loop (+ k (vector-ref goto-map i)) (+ i 1)))
(begin
(do ((i 0 (+ i 1)))
((>= i nvars))
(vector-set! goto-map i (vector-ref temp-map i)))
(set! ngotos ng)
(vector-set! goto-map nvars ngotos)
(vector-set! temp-map nvars ngotos)
(set! from-state (make-vector ngotos #f))
(set! to-state (make-vector ngotos #f))
(do ((sp first-shift (cdr sp)))
((null? sp))
(let* ((x (car sp))
(state1 (shift-number x)))
(do ((i (shift-shifts x) (cdr i)))
((null? i))
(let* ((state2 (car i))
(symbol (vector-ref acces-symbol state2)))
(if (< symbol nvars)
(let ((k (vector-ref temp-map symbol)))
(vector-set! temp-map symbol (+ k 1))
(vector-set! from-state k state1)
(vector-set! to-state k state2))))))))))))))
(define (map-goto state symbol)
(let loop ((low (vector-ref goto-map symbol))
(high (- (vector-ref goto-map (+ symbol 1)) 1)))
(if (> low high)
(begin
(display (list "Error in map-goto" state symbol) (current-error-port))
(newline (current-error-port))
0)
(let* ((middle (quotient (+ low high) 2))
(s (vector-ref from-state middle)))
(cond
((= s state)
middle)
((< s state)
(loop (+ middle 1) high))
(else
(loop low (- middle 1))))))))
(define (initialize-F)
(set! F (make-vector ngotos #f))
(do ((i 0 (+ i 1))) ((= i ngotos)) (vector-set! F i (new-set token-set-size)))
(let ((reads (make-vector ngotos #f)))
(let loop ((i 0) (rowp 0))
(if (< i ngotos)
(let* ((rowf (vector-ref F rowp))
(stateno (vector-ref to-state i))
(sp (vector-ref shift-table stateno)))
(if sp
(let loop2 ((j (shift-shifts sp)) (edges '()))
(if (pair? j)
(let ((symbol (vector-ref acces-symbol (car j))))
(if (< symbol nvars)
(if (vector-ref nullable symbol)
(loop2 (cdr j) (cons (map-goto stateno symbol)
edges))
(loop2 (cdr j) edges))
(begin
(set-bit rowf (- symbol nvars))
(loop2 (cdr j) edges))))
(if (pair? edges)
(vector-set! reads i (reverse edges))))))
(loop (+ i 1) (+ rowp 1)))))
(digraph reads)))
(define (add-lookback-edge stateno ruleno gotono)
(let ((k (vector-ref lookaheads (+ stateno 1))))
(let loop ((found #f) (i (vector-ref lookaheads stateno)))
(if (and (not found) (< i k))
(if (= (vector-ref LAruleno i) ruleno)
(loop #t i)
(loop found (+ i 1)))
(if (not found)
(begin (display "Error in add-lookback-edge : " (current-error-port))
(display (list stateno ruleno gotono) (current-error-port))
(newline (current-error-port)))
(vector-set! lookback i
(cons gotono (vector-ref lookback i))))))))
(define (transpose r-arg n)
(let ((new-end (make-vector n #f))
(new-R (make-vector n #f)))
(do ((i 0 (+ i 1)))
((= i n))
(let ((x (list 'bidon)))
(vector-set! new-R i x)
(vector-set! new-end i x)))
(do ((i 0 (+ i 1)))
((= i n))
(let ((sp (vector-ref r-arg i)))
(if (pair? sp)
(let loop ((sp2 sp))
(if (pair? sp2)
(let* ((x (car sp2))
(y (vector-ref new-end x)))
(set-cdr! y (cons i (cdr y)))
(vector-set! new-end x (cdr y))
(loop (cdr sp2))))))))
(do ((i 0 (+ i 1)))
((= i n))
(vector-set! new-R i (cdr (vector-ref new-R i))))
new-R))
(define (build-relations)
(define (get-state stateno symbol)
(let loop ((j (shift-shifts (vector-ref shift-table stateno)))
(stno stateno))
(if (null? j)
stno
(let ((st2 (car j)))
(if (= (vector-ref acces-symbol st2) symbol)
st2
(loop (cdr j) st2))))))
(set! includes (make-vector ngotos #f))
(do ((i 0 (+ i 1)))
((= i ngotos))
(let ((state1 (vector-ref from-state i))
(symbol1 (vector-ref acces-symbol (vector-ref to-state i))))
(let loop ((rulep (vector-ref derives symbol1))
(edges '()))
(if (pair? rulep)
(let ((*rulep (car rulep)))
(let loop2 ((rp (vector-ref rrhs *rulep))
(stateno state1)
(states (list state1)))
(let ((*rp (vector-ref ritem rp)))
(if (> *rp 0)
(let ((st (get-state stateno *rp)))
(loop2 (+ rp 1) st (cons st states)))
(begin
(if (not (vector-ref consistent stateno))
(add-lookback-edge stateno *rulep i))
(let loop2 ((done #f)
(stp (cdr states))
(rp2 (- rp 1))
(edgp edges))
(if (not done)
(let ((*rp (vector-ref ritem rp2)))
(if (< -1 *rp nvars)
(loop2 (not (vector-ref nullable *rp))
(cdr stp)
(- rp2 1)
(cons (map-goto (car stp) *rp) edgp))
(loop2 #t stp rp2 edgp)))
(loop (cdr rulep) edgp))))))))
(vector-set! includes i edges)))))
(set! includes (transpose includes ngotos)))
(define (compute-lookaheads)
(let ((n (vector-ref lookaheads nstates)))
(let loop ((i 0))
(if (< i n)
(let loop2 ((sp (vector-ref lookback i)))
(if (pair? sp)
(let ((LA-i (vector-ref LA i))
(F-j (vector-ref F (car sp))))
(bit-union LA-i F-j token-set-size)
(loop2 (cdr sp)))
(loop (+ i 1))))))))
(define (digraph relation)
(define infinity (+ ngotos 2))
(define INDEX (make-vector (+ ngotos 1) 0))
(define VERTICES (make-vector (+ ngotos 1) 0))
(define top 0)
(define R relation)
(define (traverse i)
(set! top (+ 1 top))
(vector-set! VERTICES top i)
(let ((height top))
(vector-set! INDEX i height)
(let ((rp (vector-ref R i)))
(if (pair? rp)
(let loop ((rp2 rp))
(if (pair? rp2)
(let ((j (car rp2)))
(if (= 0 (vector-ref INDEX j))
(traverse j))
(if (> (vector-ref INDEX i)
(vector-ref INDEX j))
(vector-set! INDEX i (vector-ref INDEX j)))
(let ((F-i (vector-ref F i))
(F-j (vector-ref F j)))
(bit-union F-i F-j token-set-size))
(loop (cdr rp2))))))
(if (= (vector-ref INDEX i) height)
(let loop ()
(let ((j (vector-ref VERTICES top)))
(set! top (- top 1))
(vector-set! INDEX j infinity)
(if (not (= i j))
(begin
(bit-union (vector-ref F i)
(vector-ref F j)
token-set-size)
(loop)))))))))
(let loop ((i 0))
(if (< i ngotos)
(begin
(if (and (= 0 (vector-ref INDEX i))
(pair? (vector-ref R i)))
(traverse i))
(loop (+ i 1))))))
;; ---------------------------------------------------------------------- ;;
;; operator precedence management ;;
;; ---------------------------------------------------------------------- ;;
; a vector of precedence descriptors where each element
; is of the form (terminal type precedence)
(define the-terminals/prec #f) ; terminal symbols with precedence
; the precedence is an integer >= 0
(define (get-symbol-precedence sym)
(caddr (vector-ref the-terminals/prec sym)))
; the operator type is either 'none, 'left, 'right, or 'nonassoc
(define (get-symbol-assoc sym)
(cadr (vector-ref the-terminals/prec sym)))
(define rule-precedences '())
(define (add-rule-precedence! rule sym)
(set! rule-precedences
(cons (cons rule sym) rule-precedences)))
(define (get-rule-precedence ruleno)
(cond
((assq ruleno rule-precedences)
=> (lambda (p)
(get-symbol-precedence (cdr p))))
(else
;; process the rule symbols from left to right
(let loop ((i (vector-ref rrhs ruleno))
(prec 0))
(let ((item (vector-ref ritem i)))
;; end of rule
(if (< item 0)
prec
(let ((i1 (+ i 1)))
(if (>= item nvars)
;; it's a terminal symbol
(loop i1 (get-symbol-precedence (- item nvars)))
(loop i1 prec)))))))))
;; ---------------------------------------------------------------------- ;;
;; Build the various tables ;;
;; ---------------------------------------------------------------------- ;;
(define (build-tables)
(define (resolve-conflict sym rule)
(let ((sym-prec (get-symbol-precedence sym))
(sym-assoc (get-symbol-assoc sym))
(rule-prec (get-rule-precedence rule)))
(cond
((> sym-prec rule-prec) 'shift)
((< sym-prec rule-prec) 'reduce)
((eq? sym-assoc 'left) 'reduce)
((eq? sym-assoc 'right) 'shift)
(else 'shift))))
;; --- Add an action to the action table ------------------------------ ;;
(define (add-action St Sym Act)
(let* ((x (vector-ref action-table St))
(y (assv Sym x)))
(if y
(if (not (= Act (cdr y)))
;; -- there is a conflict
(begin
(if (and (<= (cdr y) 0)
(<= Act 0))
;; --- reduce/reduce conflict ----------------------- ;;
(begin
(display "%% Reduce/Reduce conflict " (current-error-port))
(display "(reduce " (current-error-port))
(display (- Act) (current-error-port))
(display ", reduce " (current-error-port))
(display (- (cdr y)) (current-error-port))
(display ") on " (current-error-port))
(print-symbol (+ Sym nvars) (current-error-port))
(display " in state " (current-error-port))
(display St (current-error-port))
(newline (current-error-port))
(set-cdr! y (max (cdr y) Act)))
;; --- shift/reduce conflict ------------------------ ;;
;; can we resolve the conflict using precedences?
(case (resolve-conflict Sym (- (cdr y)))
;; -- shift
((shift)
(set-cdr! y Act))
;; -- reduce
((reduce)
#f) ; well, nothing to do...
;; -- signal a conflict!
(else
(display "%% Shift/Reduce conflict " (current-error-port))
(display "(shift " (current-error-port))
(display Act (current-error-port))
(display ", reduce " (current-error-port))
(display (- (cdr y)) (current-error-port))
(display ") on " (current-error-port))
(print-symbol (+ Sym nvars) (current-error-port))
(display " in state " (current-error-port))
(display St (current-error-port))
(newline (current-error-port))
(set-cdr! y Act))))))
(vector-set! action-table St (cons (cons Sym Act) x)))))
(set! action-table (make-vector nstates '()))
(do ((i 0 (+ i 1))) ; i = state
((= i nstates))
(let ((red (vector-ref reduction-table i)))
(if (and red (>= (red-nreds red) 1))
(if (and (= (red-nreds red) 1) (vector-ref consistent i))
(add-action i 'default (- (car (red-rules red))))
(let ((k (vector-ref lookaheads (+ i 1))))
(let loop ((j (vector-ref lookaheads i)))
(if (< j k)
(let ((rule (- (vector-ref LAruleno j)))
(lav (vector-ref LA j)))
(let loop2 ((token 0) (x (vector-ref lav 0)) (y 1) (z 0))
(if (< token nterms)
(begin
(let ((in-la-set? (modulo x 2)))
(if (= in-la-set? 1)
(add-action i token rule)))
(if (= y (BITS-PER-WORD))
(loop2 (+ token 1)
(vector-ref lav (+ z 1))
1
(+ z 1))
(loop2 (+ token 1) (quotient x 2) (+ y 1) z)))))
(loop (+ j 1)))))))))
(let ((shiftp (vector-ref shift-table i)))
(if shiftp
(let loop ((k (shift-shifts shiftp)))
(if (pair? k)
(let* ((state (car k))
(symbol (vector-ref acces-symbol state)))
(if (>= symbol nvars)
(add-action i (- symbol nvars) state))
(loop (cdr k))))))))
(add-action final-state 0 'accept))
(define (compact-action-table terms)
(define (most-common-action acts)
(let ((accums '()))
(let loop ((l acts))
(if (pair? l)
(let* ((x (cdar l))
(y (assv x accums)))
(if (and (number? x) (< x 0))
(if y
(set-cdr! y (+ 1 (cdr y)))
(set! accums (cons `(,x . 1) accums))))
(loop (cdr l)))))
(let loop ((l accums) (max 0) (sym #f))
(if (null? l)
sym
(let ((x (car l)))
(if (> (cdr x) max)
(loop (cdr l) (cdr x) (car x))
(loop (cdr l) max sym)))))))
(define (translate-terms acts)
(map (lambda (act)
(cons (list-ref terms (car act))
(cdr act)))
acts))
(do ((i 0 (+ i 1)))
((= i nstates))
(let ((acts (vector-ref action-table i)))
(if (vector? (vector-ref reduction-table i))
(let ((act (most-common-action acts)))
(vector-set! action-table i
(cons `(*default* . ,(if act act 'error))
(translate-terms
(lalr-filter (lambda (x)
(not (eq? (cdr x) act)))
acts)))))
(vector-set! action-table i
(cons `(*default* . *error*)
(translate-terms acts)))))))
;; --
(define (rewrite-grammar tokens grammar k)
(define eoi '*eoi*)
(define (check-terminal term terms)
(cond
((not (valid-terminal? term))
(lalr-error "invalid terminal: " term))
((member term terms)
(lalr-error "duplicate definition of terminal: " term))))
(define (prec->type prec)
(cdr (assq prec '((left: . left)
(right: . right)
(nonassoc: . nonassoc)))))
(cond
;; --- a few error conditions ---------------------------------------- ;;
((not (list? tokens))
(lalr-error "Invalid token list: " tokens))
((not (pair? grammar))
(lalr-error "Grammar definition must have a non-empty list of productions" '()))
(else
;; --- check the terminals ---------------------------------------- ;;
(let loop1 ((lst tokens)
(rev-terms '())
(rev-terms/prec '())
(prec-level 0))
(if (pair? lst)
(let ((term (car lst)))
(cond
((pair? term)
(if (and (memq (car term) '(left: right: nonassoc:))
(not (null? (cdr term))))
(let ((prec (+ prec-level 1))
(optype (prec->type (car term))))
(let loop-toks ((l (cdr term))
(rev-terms rev-terms)
(rev-terms/prec rev-terms/prec))
(if (null? l)
(loop1 (cdr lst) rev-terms rev-terms/prec prec)
(let ((term (car l)))
(check-terminal term rev-terms)
(loop-toks
(cdr l)
(cons term rev-terms)
(cons (list term optype prec) rev-terms/prec))))))
(lalr-error "invalid operator precedence specification: " term)))
(else
(check-terminal term rev-terms)
(loop1 (cdr lst)
(cons term rev-terms)
(cons (list term 'none 0) rev-terms/prec)
prec-level))))
;; --- check the grammar rules ------------------------------ ;;
(let loop2 ((lst grammar) (rev-nonterm-defs '()))
(if (pair? lst)
(let ((def (car lst)))
(if (not (pair? def))
(lalr-error "Nonterminal definition must be a non-empty list" '())
(let ((nonterm (car def)))
(cond ((not (valid-nonterminal? nonterm))
(lalr-error "Invalid nonterminal:" nonterm))
((or (member nonterm rev-terms)
(assoc nonterm rev-nonterm-defs))
(lalr-error "Nonterminal previously defined:" nonterm))
(else
(loop2 (cdr lst)
(cons def rev-nonterm-defs)))))))
(let* ((terms (cons eoi (reverse rev-terms)))
(terms/prec (cons '(eoi none 0) (reverse rev-terms/prec)))
(nonterm-defs (reverse rev-nonterm-defs))
(nonterms (cons '*start* (map car nonterm-defs))))
(if (= (length nonterms) 1)
(lalr-error "Grammar must contain at least one nonterminal" '())
(let loop-defs ((defs (cons `(*start* (,(cadr nonterms) ,eoi) : $1)
nonterm-defs))
(ruleno 0)
(comp-defs '()))
(if (pair? defs)
(let* ((nonterm-def (car defs))
(compiled-def (rewrite-nonterm-def
nonterm-def
ruleno
terms nonterms)))
(loop-defs (cdr defs)
(+ ruleno (length compiled-def))
(cons compiled-def comp-defs)))
(let ((compiled-nonterm-defs (reverse comp-defs)))
(k terms
terms/prec
nonterms
(map (lambda (x) (cons (caaar x) (map cdar x)))
compiled-nonterm-defs)
(apply append compiled-nonterm-defs))))))))))))))
(define (rewrite-nonterm-def nonterm-def ruleno terms nonterms)
(define No-NT (length nonterms))
(define (encode x)
(let ((PosInNT (pos-in-list x nonterms)))
(if PosInNT
PosInNT
(let ((PosInT (pos-in-list x terms)))
(if PosInT
(+ No-NT PosInT)
(lalr-error "undefined symbol : " x))))))
(define (process-prec-directive rhs ruleno)
(let loop ((l rhs))
(if (null? l)
'()
(let ((first (car l))
(rest (cdr l)))
(cond
((or (member first terms) (member first nonterms))
(cons first (loop rest)))
((and (pair? first)
(eq? (car first) 'prec:))
(pair? (cdr first))
(if (and (pair? (cdr first))
(member (cadr first) terms))
(if (null? (cddr first))
(begin
(add-rule-precedence! ruleno (pos-in-list (cadr first) terms))
(loop rest))
(lalr-error "prec: directive should be at end of rule: " rhs))
(lalr-error "Invalid prec: directive: " first)))
(else
(lalr-error "Invalid terminal or nonterminal: " first)))))))
(if (not (pair? (cdr nonterm-def)))
(lalr-error "At least one production needed for nonterminal" (car nonterm-def))
(let ((name (symbol->string (car nonterm-def))))
(let loop1 ((lst (cdr nonterm-def))
(i 1)
(rev-productions-and-actions '()))
(if (not (pair? lst))
(reverse rev-productions-and-actions)
(let* ((rhs (process-prec-directive (car lst) (+ ruleno i -1)))
(rest (cdr lst))
(prod (map encode (cons (car nonterm-def) rhs))))
(for-each (lambda (x)
(if (not (or (member x terms) (member x nonterms)))
(lalr-error "Invalid terminal or nonterminal" x)))
rhs)
(if (and (pair? rest)
(eq? (car rest) ':)
(pair? (cdr rest)))
(loop1 (cddr rest)
(+ i 1)
(cons (cons prod (cadr rest))
rev-productions-and-actions))
(let* ((rhs-length (length rhs))
(action
(cons 'vector
(cons (list 'quote (string->symbol
(string-append
name
"-"
(number->string i))))
(let loop-j ((j 1))
(if (> j rhs-length)
'()
(cons (string->symbol
(string-append
"$"
(number->string j)))
(loop-j (+ j 1)))))))))
(loop1 rest
(+ i 1)
(cons (cons prod action)
rev-productions-and-actions))))))))))
(define (valid-nonterminal? x)
(symbol? x))
(define (valid-terminal? x)
(symbol? x)) ; DB
;; ---------------------------------------------------------------------- ;;
;; Miscellaneous ;;
;; ---------------------------------------------------------------------- ;;
(define (pos-in-list x lst)
(let loop ((lst lst) (i 0))
(cond ((not (pair? lst)) #f)
((equal? (car lst) x) i)
(else (loop (cdr lst) (+ i 1))))))
(define (sunion lst1 lst2) ; union of sorted lists
(let loop ((L1 lst1)
(L2 lst2))
(cond ((null? L1) L2)
((null? L2) L1)
(else
(let ((x (car L1)) (y (car L2)))
(cond
((> x y)
(cons y (loop L1 (cdr L2))))
((< x y)
(cons x (loop (cdr L1) L2)))
(else
(loop (cdr L1) L2))
))))))
(define (sinsert elem lst)
(let loop ((l1 lst))
(if (null? l1)
(cons elem l1)
(let ((x (car l1)))
(cond ((< elem x)
(cons elem l1))
((> elem x)
(cons x (loop (cdr l1))))
(else
l1))))))
(define (lalr-filter p lst)
(let loop ((l lst))
(if (null? l)
'()
(let ((x (car l)) (y (cdr l)))
(if (p x)
(cons x (loop y))
(loop y))))))
;; ---------------------------------------------------------------------- ;;
;; Debugging tools ... ;;
;; ---------------------------------------------------------------------- ;;
(define the-terminals #f) ; names of terminal symbols
(define the-nonterminals #f) ; non-terminals
(define (print-item item-no)
(let loop ((i item-no))
(let ((v (vector-ref ritem i)))
(if (>= v 0)
(loop (+ i 1))
(let* ((rlno (- v))
(nt (vector-ref rlhs rlno)))
(display (vector-ref the-nonterminals nt)) (display " --> ")
(let loop ((i (vector-ref rrhs rlno)))
(let ((v (vector-ref ritem i)))
(if (= i item-no)
(display ". "))
(if (>= v 0)
(begin
(print-symbol v)
(display " ")
(loop (+ i 1)))
(begin
(display " (rule ")
(display (- v))
(display ")")
(newline))))))))))
(define (print-symbol n . port)
(display (if (>= n nvars)
(vector-ref the-terminals (- n nvars))
(vector-ref the-nonterminals n))
(if (null? port)
(current-output-port)
(car port))))
(define (print-states)
"Print the states of a generated parser."
(define (print-action act)
(cond
((eq? act '*error*)
(display " : Error"))
((eq? act 'accept)
(display " : Accept input"))
((< act 0)
(display " : reduce using rule ")
(display (- act)))
(else
(display " : shift and goto state ")
(display act)))
(newline)
#t)
(define (print-actions acts)
(let loop ((l acts))
(if (null? l)
#t
(let ((sym (caar l))
(act (cdar l)))
(display " ")
(cond
((eq? sym 'default)
(display "default action"))
(else
(if (number? sym)
(print-symbol (+ sym nvars))
(display sym))))
(print-action act)
(loop (cdr l))))))
(if (not action-table)
(begin
(display "No generated parser available!")
(newline)
#f)
(begin
(display "State table") (newline)
(display "-----------") (newline) (newline)
(let loop ((l first-state))
(if (null? l)
#t
(let* ((core (car l))
(i (core-number core))
(items (core-items core))
(actions (vector-ref action-table i)))
(display "state ") (display i) (newline)
(newline)
(for-each (lambda (x) (display " ") (print-item x))
items)
(newline)
(print-actions actions)
(newline)
(loop (cdr l))))))))
;; ---------------------------------------------------------------------- ;;
(define build-goto-table
(lambda ()
`(vector
,@(map
(lambda (shifts)
(list 'quote
(if shifts
(let loop ((l (shift-shifts shifts)))
(if (null? l)
'()
(let* ((state (car l))
(symbol (vector-ref acces-symbol state)))
(if (< symbol nvars)
(cons `(,symbol . ,state)
(loop (cdr l)))
(loop (cdr l))))))
'())))
(vector->list shift-table)))))
(define build-reduction-table
(lambda (gram/actions)
`(vector
'()
,@(map
(lambda (p)
(let ((act (cdr p)))
`(lambda (___stack ___sp ___goto-table ___k)
,(let* ((nt (caar p)) (rhs (cdar p)) (n (length rhs)))
`(let* (,@(if act
(let loop ((i 1) (l rhs))
(if (pair? l)
(let ((rest (cdr l)))
(cons
`(,(string->symbol
(string-append
"$"
(number->string
(+ (- n i) 1))))
(vector-ref ___stack (- ___sp ,(- (* i 2) 1))))
(loop (+ i 1) rest)))
'()))
'()))
,(if (= nt 0)
'$1
`(___push ___stack (- ___sp ,(* 2 n))
,nt ___goto-table ,(cdr p) ___k)))))))
gram/actions))))
;; @section (api "API")
(define-macro-with-docs (lalr-parser tokens . rules)
"The grammar declaration special form. @var{tokens} is the list of token
symbols, and @var{rules} are the grammar rules. See the module documentation
for more details."
(let* ((gram/actions (gen-tables! tokens rules))
(code
`(letrec ((___max-stack-size 500)
(___atable ',action-table)
(___gtable ,(build-goto-table))
(___grow-stack (lambda (stack)
;; make a new stack twice as big as the original
(let ((new-stack (make-vector (* 2 (vector-length stack)) #f)))
;; then copy the elements...
(let loop ((i (- (vector-length stack) 1)))
(if (< i 0)
new-stack
(begin
(vector-set! new-stack i (vector-ref stack i))
(loop (- i 1))))))))
(___push (lambda (stack sp new-cat goto-table lval k)
(let* ((state (vector-ref stack sp))
(new-state (cdr (assq new-cat (vector-ref goto-table state))))
(new-sp (+ sp 2))
(stack (if (< new-sp (vector-length stack))
stack
(___grow-stack stack))))
(vector-set! stack new-sp new-state)
(vector-set! stack (- new-sp 1) lval)
(k stack new-sp))))
(___action (lambda (x l)
(let ((y (assq x l)))
(if y (cdr y) (cdar l)))))
(___rtable ,(build-reduction-table gram/actions)))
(lambda (lexerp errorp)
(let ((stack (make-vector ___max-stack-size 0)))
(let loop ((stack stack) (sp 0) (input (lexerp)))
(let* ((state (vector-ref stack sp))
(i (if (pair? input) (car input) input))
(attr (if (pair? input) (cdr input) #f))
(act (___action i (vector-ref ___atable state))))
(if (not (symbol? i))
(errorp "PARSE ERROR: invalid token: " input))
(cond
;; Input succesfully parsed
((eq? act 'accept)
(vector-ref stack 1))
;; Syntax error in input
((eq? act '*error*)
(if (eq? i '*eoi*)
(errorp "PARSE ERROR : unexpected end of input ")
(errorp "PARSE ERROR : unexpected token : " input)))
;; Shift current token on top of the stack
((>= act 0)
(let ((stack (if (< (+ sp 2) (vector-length stack))
stack
(___grow-stack stack))))
(vector-set! stack (+ sp 1) attr)
(vector-set! stack (+ sp 2) act)
(loop stack (+ sp 2) (lexerp))))
;; Reduce by rule (- act)
(else
((vector-ref ___rtable (- act))
stack sp ___gtable
(lambda (stack sp)
(loop stack sp input))))))))))))
code))
;; arch-tag: 4FE771DE-F56D-11D8-8B77-000A95B4C7DC
|