/usr/share/hol88-2.02.19940316/contrib/CSP/star.ml is in hol88-contrib-source 2.02.19940316-14.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | % Extends The Basic Theory For TRACES In CSP %
% %
% FILE : star.ml %
% DESCRIPTION : Defines the * operator for finite traces and infinite %
% alphabets. %
% %
% READS FILES : restrict.th, rules_and_tacs.ml %
% WRITES FILES : star.th %
% %
% AUTHOR : Albert John Camilleri %
% AFFILIATION : Hewlett-Packard Laboratories, Bristol %
% DATE : 89.02.07 %
% REVISED : 91.10.01 %
new_theory `star`;;
new_parent `restrict`;;
let trace = ":(*)list";;
loadf `rules_and_tacs`;;
load_definition `restrict` `RESTRICT`;;
load_theorem `restrict` `REST_CONS_THM`;;
load_definition `sets` `SUBSET_DEF`;;
load_theorem `sets` `EXTENSION`;;
load_theorem `list_lib1` `NOT_LENGTH_EQ`;;
let STAR =
new_definition
(`STAR`, "STAR (A:(*)set) = {s | RESTRICT s A = s}");;
let NIL_IN_STAR =
prove_thm
(`NIL_IN_STAR`,
"! A:(*)set. [] IN (STAR A)",
REWRITE_TAC [STAR] THEN
SET_SPEC_TAC THEN
REWRITE_TAC [RESTRICT]);;
let SINGLE_STAR =
prove_thm
(`SINGLE_STAR`,
"! x (A:(*)set). [x] IN (STAR A) = x IN A",
REWRITE_TAC [STAR] THEN
SET_SPEC_TAC THEN
REWRITE_TAC [RESTRICT] THEN
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPEC "(x:*) IN A" EXCLUDED_MIDDLE) THEN
ASM_REWRITE_TAC[NOT_NIL_CONS]);;
let CONS_STAR =
prove_thm
(`CONS_STAR`,
"! a t (A:(*)set).
(CONS a t) IN (STAR A) = (a IN A) /\ (t IN (STAR A))",
REWRITE_TAC [STAR] THEN
SET_SPEC_TAC THEN
REWRITE_TAC [RESTRICT] THEN
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPEC "(a:*) IN A" EXCLUDED_MIDDLE) THEN
ASM_REWRITE_TAC [CONS_11; REST_CONS_THM]);;
let APPEND_STAR =
prove_thm
(`APPEND_STAR`,
"! s t (A:(*)set).
(APPEND s t) IN (STAR A) = (s IN (STAR A) /\ t IN (STAR A))",
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC [APPEND; NIL_IN_STAR; CONS_STAR; CONJ_ASSOC]);;
let STAR_INDUCT =
prove_thm
(`STAR_INDUCT`,
"!A:(*)set.
STAR A = {t | (t = []) \/ ((HD t) IN A /\ (TL t) IN (STAR A))}",
GEN_TAC THEN
REWRITE_TAC [EXTENSION] THEN
SET_SPEC_TAC THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC [NIL_IN_STAR; CONS_STAR; NOT_CONS_NIL; HD; TL]);;
let SUBSET_STAR =
prove_thm
(`SUBSET_STAR`,
"! A B: (*)set. (A SUBSET B) ==> ((STAR A) SUBSET (STAR B))",
REWRITE_TAC [SUBSET_DEF] THEN
REPEAT GEN_TAC THEN
DISCH_TAC THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC [NIL_IN_STAR; CONS_STAR] THEN
REPEAT STRIP_TAC THEN
RES_TAC);;
close_theory();;
|