This file is indexed.

/usr/include/oct/oct_internal.h is in libapron-dev 0.9.10-5.2ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/*
 * oct_internal.h
 *
 * Private definitions, access to internal structures and algorithms.
 * Use with care.
 *
 * APRON Library / Octagonal Domain
 *
 * Copyright (C) Antoine Mine' 2006
 *
 */

/* This file is part of the APRON Library, released under LGPL license.  
   Please read the COPYING file packaged in the distribution.
*/

#ifndef __OCT_INTERNAL_H
#define __OCT_INTERNAL_H

#include "oct_fun.h"

#ifdef __cplusplus
extern "C" {
#endif

/* ********************************************************************** */
/* I. Manager */
/* ********************************************************************** */

/* manager-local data specific to octagons */
struct _oct_internal_t {

  /* current function */
  ap_funid_t funid;

  /* local parameters for current function */
  ap_funopt_t* funopt;

  /* growing temporary buffer */
  bound_t* tmp;
  void* tmp2;
  size_t tmp_size;

  /* raised when a conversion from/to a user type resulted in an 
     overapproximation 
  */
  bool conv;

  /* back-pointer */
  ap_manager_t* man;
};


/* called by each function to setup and get manager-local data */
static inline oct_internal_t* 
oct_init_from_manager(ap_manager_t* man, ap_funid_t id, size_t size)
{
  oct_internal_t* pr = (oct_internal_t*) man->internal;
  pr->funid = id;
  pr->funopt = man->option.funopt+id;
  man->result.flag_exact = man->result.flag_best = true;
  pr->conv = false;
  if (pr->tmp_size<size) {
    bound_clear_array(pr->tmp,pr->tmp_size);
    pr->tmp = (bound_t*)realloc(pr->tmp,sizeof(bound_t)*size);
    assert(pr->tmp);
    pr->tmp_size = size;
    bound_init_array(pr->tmp,pr->tmp_size);
    pr->tmp2 = realloc(pr->tmp2,sizeof(long)*size);
    assert(pr->tmp2);
  }
  return pr;
}



/* loss of precision can be due to one of the following
   1) the algorithm is incomplete or
      the algorithm is incomplete on Z and we have intdim > 0
      or the numerical type induces overapproximation (NUMINT or NUMFLOAT)
      => no solution at run-time, you need to recompile the library 
         with another NUM base type
   2) the user disabled closure (algorithm<0)
      => solution: raise algorithm
   3) approximation in the conversion from / to user type
      => use another user type
 */

#define flag_incomplete						\
  man->result.flag_exact = man->result.flag_best = false

#define flag_algo flag_incomplete

#define flag_conv flag_incomplete


  /* invalid argument exception */
#define arg_assert(cond,action)						\
  do { if (!(cond)) {							\
      char buf_[1024];							\
      snprintf(buf_,sizeof(buf_),					\
	       "assertion (%s) failed in %s at %s:%i",			\
	       #cond, __func__, __FILE__, __LINE__);		\
      ap_manager_raise_exception(pr->man,AP_EXC_INVALID_ARGUMENT,	\
				 pr->funid,buf_);			\
      action }								\
  } while(0)

  /* malloc with safe-guard */
#define checked_malloc(ptr,t,nb,action)					\
  do {									\
    (ptr) = (t*)malloc(sizeof(t)*(nb));					\
    if (!(ptr)) {							\
      char buf_[1024];							\
      snprintf(buf_,sizeof(buf_),					\
	       "cannot allocate %s[%lu] for %s in %s at %s:%i",		\
	       #t, (long unsigned)(nb), #ptr,				\
	       __func__, __FILE__, __LINE__);				\
      ap_manager_raise_exception(pr->man,AP_EXC_OUT_OF_SPACE,		\
				 pr->funid,buf_);			\
      action }								\
  } while(0)


/* ********************************************************************** */
/* II. Half-matrices */
/* ********************************************************************** */

/* ============================================================ */
/* II.1 Basic Management */
/* ============================================================ */

/* see oct_hmat.c */

bound_t* hmat_alloc       (oct_internal_t* pr, size_t dim);
void     hmat_free        (oct_internal_t* pr, bound_t* m, size_t dim);
bound_t* hmat_alloc_zero  (oct_internal_t* pr, size_t dim);
bound_t* hmat_alloc_top   (oct_internal_t* pr, size_t dim);
bound_t* hmat_copy        (oct_internal_t* pr, bound_t* m, size_t dim);
void     hmat_fdump       (FILE* stream, oct_internal_t* pr,
			   bound_t* m, size_t dim);



//* ============================================================ */
/* II.2 Access */
/* ============================================================ */

static inline size_t matsize(size_t dim)
{
  return 2 * dim * (dim+1);
}

/* position of (i,j) element, assuming j/2 <= i/2 */
static inline size_t matpos(size_t i, size_t j)
{
  return j + ((i+1)*(i+1))/2;
}

/* position of (i,j) element, no assumption */
static inline size_t matpos2(size_t i, size_t j)
{
  if (j>i) return matpos(j^1,i^1);
  else return matpos(i,j);
}


/* ============================================================ */
/* II.3 Closure Algorithms */
/* ============================================================ */

/* see oct_closure.c */

bool hmat_s_step(bound_t* m, size_t dim);
bool hmat_close(bound_t* m, size_t dim);
bool hmat_close_incremental(bound_t* m, size_t dim, size_t v);
bool hmat_check_closed(bound_t* m, size_t dim);


/* ============================================================ */
/* II.4  Constraints and generators */
/* ============================================================ */

/* see oct_transfer.c */
  
bool hmat_add_lincons(oct_internal_t* pr, bound_t* b, size_t dim,
		      ap_lincons0_array_t* ar, bool* exact,
		      bool* respect_closure);

void hmat_add_generators(oct_internal_t* pr, bound_t* b, size_t dim,
			 ap_generator0_array_t* ar);


/* ============================================================ */
/* II.5 Resze */
/* ============================================================ */

/* see oct_reize.c */

void hmat_addrem_dimensions(bound_t* dst, bound_t* src,
			    ap_dim_t* pos, size_t nb_pos,
			    size_t mult, size_t dim, bool add);

void hmat_permute(bound_t* dst, bound_t* src,
		  size_t dst_dim, size_t src_dim,
		  ap_dim_t* permutation);

/* ********************************************************************** */
/* III. Numbers */
/* ********************************************************************** */

/* To perform soundly, we suppose that all conversions beteween num and
   base types (double, int, mpz, mpq, etc.) always over-approximate the
   result (as long as the fits function returns true).
 */

static inline void bound_bmin(bound_t dst, bound_t arg)
{ bound_min(dst,dst,arg); }

static inline void bound_badd(bound_t dst, bound_t arg)
{ bound_add(dst,dst,arg); }


/* ============================================================ */
/* III.1 Properties on num_t */
/* ============================================================ */

/*
  num_incomplete  does the type make algorithms incomplete
  num_safe        is the type safe in case of overflow
*/


#if defined(NUM_LONGINT) || defined(NUM_LONGLONGINT)
/* overflows produce unsound results, type not closed by / 2 */
#define num_incomplete     1    
#define num_safe           0

#elif defined ( NUM_MPZ )
/* no overflow, type not closed by / 2 */
#define num_incomplete     1
#define num_safe           1

#elif defined(NUM_LONGRAT) || defined(NUM_LONGLONGRAT)
/* complete algorithms, but overflows produce unsound results */
#define num_incomplete     0
#define num_safe           0

#elif defined(NUM_MPQ)
/* the "perfect" type */
#define num_incomplete     0
#define num_safe           1

#elif defined(NUM_DOUBLE) || defined(NUM_LONGDOUBLE) || defined(NUM_MPFR)
/* overflow are ok (stick to +oo), type not closed by + and / 2 */
#define num_incomplete     1
#define num_safe           1

/* duh */
#else
#error "No numerical type defined"
#endif


/* ============================================================ */
/* III.2 Conversions from user types */
/* ============================================================ */

/* sound conversion from a scalar to a bound_t
   optional negation and multiplication by 2
   if negation, lower approximation, otherwise, upper approximation 
   pr->conv is set if the conversion is not exact
 */
static inline void bound_of_scalar(oct_internal_t* pr,
				   bound_t r, ap_scalar_t* t,
				   bool neg, bool mul2)
{
  if (neg) ap_scalar_neg(t,t);
  if (!bound_set_ap_scalar(r,t)) pr->conv = true;
  if (mul2) {
    bound_mul_2(r,r);
    pr->conv = true;
  }
  if (neg) ap_scalar_neg(t,t);
}


/* both bounds of an interval, the lower bound is negated 
   pr->conv is set if the conversion is not exact
   returns true if the interval is empty
*/
static inline bool bounds_of_interval(oct_internal_t* pr,
				      bound_t minf, bound_t sup,
				      ap_interval_t* i,
				      bool mul2)
{
  bound_of_scalar(pr,minf,i->inf,true,mul2);
  bound_of_scalar(pr,sup,i->sup,false,mul2);
  return ap_scalar_cmp(i->inf,i->sup)>0;
}

/* as above, for a coeff_t */
static inline bool bounds_of_coeff(oct_internal_t* pr,
				   bound_t minf, bound_t sup,
				   ap_coeff_t c,
				   bool mul2)
{
  switch (c.discr) {
  case AP_COEFF_SCALAR:
    bound_of_scalar(pr,minf,c.val.scalar,true,mul2);
    bound_of_scalar(pr,sup,c.val.scalar,false,mul2);
    return false;
  case AP_COEFF_INTERVAL:
    bound_of_scalar(pr,minf,c.val.interval->inf,true,mul2);
    bound_of_scalar(pr,sup,c.val.interval->sup,false,mul2);
    return ap_scalar_cmp(c.val.interval->inf,c.val.interval->sup)>0;
  default: arg_assert(0,return false;);
  }
}

static void bounds_of_generator(oct_internal_t* pr, bound_t* dst, 
				ap_linexpr0_t* e, size_t dim)
{
  size_t i;
  switch (e->discr) {
  case AP_LINEXPR_DENSE:
    arg_assert(e->size<=dim,return;);
    for (i=0;i<e->size;i++) {
      bounds_of_coeff(pr,dst[2*i],dst[2*i+1],e->p.coeff[i],false);
    }
    for (;i<dim;i++) {
      bound_set_int(dst[2*i],0);
      bound_set_int(dst[2*i+1],0);
    }
    break;
  case AP_LINEXPR_SPARSE:
    for (i=0;i<dim;i++) {
      bound_set_int(dst[2*i],0);
      bound_set_int(dst[2*i+1],0);
    }
    for (i=0;i<e->size;i++) {
      size_t d = e->p.linterm[i].dim;
      arg_assert(d<dim,return;);
      bounds_of_coeff(pr,dst[2*d],dst[2*d+1],e->p.linterm[i].coeff,false);
    }
    break;
  default: arg_assert(0,return;);
  }
}

/* ============================================================ */
/* III.3 Conversions to user types */
/* ============================================================ */

/* upper bound => scalar, with optional division by 2
   pr->conv is set if the conversion is not exact
*/
static inline void scalar_of_upper_bound(oct_internal_t* pr,
					 ap_scalar_t* r,
					 bound_t b,
					 bool div2)
{
  ap_scalar_reinit(r,NUM_AP_SCALAR);
  if (bound_infty(b)) ap_scalar_set_infty(r,1);
  else {
    switch (NUM_AP_SCALAR) {
    case AP_SCALAR_DOUBLE:
      if (!double_set_num(&r->val.dbl,bound_numref(b)) || div2) pr->conv = 1;
      if (div2) r->val.dbl /= 2;
      break;
    case AP_SCALAR_MPQ:
      if (!mpq_set_num(r->val.mpq,bound_numref(b)) || div2) pr->conv = 1;
      if (div2) mpq_div_2exp(r->val.mpq,r->val.mpq,1);
      break;
    case AP_SCALAR_MPFR:
      if (!mpfr_set_num(r->val.mpfr,bound_numref(b)) || div2) pr->conv = 1;
      if (div2) mpfr_div_2ui(r->val.mpfr,r->val.mpfr,1,GMP_RNDU);
      break;
    default:
      abort();
    }
  }
}

/* opposite of lower bound => scalar, with optional division by 2
   pr->conv is set if the conversion is not exact  
*/
static inline void scalar_of_lower_bound(oct_internal_t* pr,
					 ap_scalar_t* r,
					 bound_t b,
					 bool div2)
{
  ap_scalar_reinit(r,NUM_AP_SCALAR);
  if (bound_infty(b)) ap_scalar_set_infty(r,-1);
  else {
    switch (NUM_AP_SCALAR) {
    case AP_SCALAR_DOUBLE:
      if (!double_set_num(&r->val.dbl,bound_numref(b)) || div2) pr->conv = 1;
      if (div2) r->val.dbl /= 2;
      r->val.dbl = -r->val.dbl;
      break;
    case AP_SCALAR_MPQ:
      if (!mpq_set_num(r->val.mpq,bound_numref(b)) || div2)  pr->conv = 1;
      if (div2) mpq_div_2exp(r->val.mpq,r->val.mpq,1);
      mpq_neg(r->val.mpq,r->val.mpq);
      break;
    case AP_SCALAR_MPFR:
      if (!mpfr_set_num(r->val.mpfr,bound_numref(b)) || div2) pr->conv = 1;
      if (div2) mpfr_div_2ui(r->val.mpfr,r->val.mpfr,1,GMP_RNDU);
      mpfr_neg(r->val.mpfr,r->val.mpfr,GMP_RNDD);
      break;
    default:
      abort();
    }
  }
}


/* makes an interval from [-minf,sup], with sound approximations
   pr->conv is set if the conversion is not exact
   note: may output an empty interval
*/
static inline void interval_of_bounds(oct_internal_t* pr,
				      ap_interval_t* i,
				      bound_t minf, bound_t sup,
				      bool div2)
{
  scalar_of_upper_bound(pr,i->sup, sup,div2);
  scalar_of_lower_bound(pr,i->inf,minf,div2);
}


/* ============================================================ */
/* III.4 Bound manipulations */
/* ============================================================ */

/* [-r_inf,r_sup] = [-a_inf,a_sup] * [-b_inf,b_sup]
   where 0 * oo = oo * 0 = 0
 */
static inline void bounds_mul(bound_t r_inf, bound_t r_sup,
			      bound_t a_inf, bound_t a_sup,
			      bound_t b_inf, bound_t b_sup,
			      bound_t tmp[8])
{
  bound_mul(tmp[0],a_sup,b_sup);
  bound_neg(tmp[4],a_sup); bound_mul(tmp[4],tmp[4],b_sup);

  bound_mul(tmp[1],a_inf,b_inf);
  bound_neg(tmp[5],a_inf);  bound_mul(tmp[5],tmp[5],b_inf);

  bound_mul(tmp[6],a_sup,b_inf);
  bound_neg(tmp[2],a_sup);  bound_mul(tmp[2],tmp[2],b_inf);

  bound_mul(tmp[7],a_inf,b_sup);
  bound_neg(tmp[3],a_inf);  bound_mul(tmp[3],tmp[3],b_sup);

  bound_max(r_sup,tmp[0],tmp[1]);
  bound_max(r_sup,r_sup,tmp[2]);
  bound_max(r_sup,r_sup,tmp[3]);

  bound_max(r_inf,tmp[4],tmp[5]);
  bound_max(r_inf,r_inf,tmp[6]);
  bound_max(r_inf,r_inf,tmp[7]);
}


/* ============================================================ */
/* III.5 Conversion to constraints */
/* ============================================================ */

/* constraint at line i, column j, with upper bound m */
static inline ap_lincons0_t lincons_of_bound(oct_internal_t* pr,
					     size_t i, size_t j, 
					     bound_t m)
{
  ap_linexpr0_t* e;
  if (i==j) {
    /* zeroary constraint */
    e = ap_linexpr0_alloc(AP_LINEXPR_SPARSE, 0);
    scalar_of_upper_bound(pr,e->cst.val.scalar,m,true);
  }
  else if (i==(j^1)) {
    /* unary constraint */
    e = ap_linexpr0_alloc(AP_LINEXPR_SPARSE, 1);
    e->p.linterm[0].dim = i/2;
    ap_scalar_set_int(e->p.linterm[0].coeff.val.scalar,(i&1) ? -1 : 1);
    scalar_of_upper_bound(pr,e->cst.val.scalar,m,true);
  }
  else {
    /* binary constraint */
    e = ap_linexpr0_alloc(AP_LINEXPR_SPARSE, 2);
    e->p.linterm[0].dim = j/2;
    e->p.linterm[1].dim = i/2;
    ap_scalar_set_int(e->p.linterm[0].coeff.val.scalar,(j&1) ?  1 : -1);
    ap_scalar_set_int(e->p.linterm[1].coeff.val.scalar,(i&1) ? -1 :  1);
    scalar_of_upper_bound(pr,e->cst.val.scalar,m,false);
  }
  return ap_lincons0_make(AP_CONS_SUPEQ,e,NULL);
}


/* ============================================================ */
/* III.5 Expression classification */
/* ============================================================ */

/* see oct_transfer.c */

typedef struct {
  enum { 
    EMPTY,    /* empty domain */
    ZERO,     /* 0 */
    UNARY,    /* unary unit expression */
    BINARY,   /* binary unit expression */
    OTHER,
  } type;

  /* index and coefficient for unary / binary unit expressions */
  size_t i,j;
  int coef_i,coef_j; /* -1 or 1 */

} uexpr;

/* convert expression to bounds, look for unit unary or binary form */
uexpr oct_uexpr_of_linexpr(oct_internal_t* pr, bound_t* dst,
			   ap_linexpr0_t* e, size_t dim);


/* ********************************************************************** */
/* IV. Octagons */
/* ********************************************************************** */


/* ============================================================ */
/* IV.1 Internal Representation */
/* ============================================================ */

struct _oct_t {
  bound_t* m;      /* contraint half-matrix (or NULL) */
  bound_t* closed; /* closed version of m (or NULL for not available) */
  size_t dim;      /* total number of variables */
  size_t intdim;   /* the first intdim variables are integer ones */
};

/* several cases are possible
   m==NULL closed==NULL -- definitively empty octagon
   m!=NULL closed==NULL -- empty or non-empty octagon, closure not available
   m==NULL closed!=NULL \_ definitively non-empty octagon, closure available  
   m!=NULL closed!=NULL /
*/


/* ============================================================ */
/* IV.2 Management */
/* ============================================================ */

oct_t* oct_alloc_internal (oct_internal_t* pr, size_t dim, size_t intdim);
void   oct_free_internal  (oct_internal_t* pr, oct_t* o);
oct_t* oct_copy_internal  (oct_internal_t* pr, oct_t* o);
void   oct_cache_closure  (oct_internal_t* pr, oct_t* a);
void   oct_close          (oct_internal_t* pr, oct_t* a);
oct_t* oct_set_mat        (oct_internal_t* pr, oct_t* a, bound_t* m, 
			   bound_t* closed, bool destructive);
oct_t* oct_alloc_top      (oct_internal_t* pr, size_t dim, size_t intdim);


#ifdef __cplusplus
}
#endif

#endif /* __OCT_INTERNAL_H */