This file is indexed.

/usr/include/deal.II/base/polynomial.h is in libdeal.ii-dev 6.3.1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
//---------------------------------------------------------------------------
//    $Id: polynomial.h 20494 2010-02-04 15:04:13Z kronbichler $
//    Version: $Name$
//
//    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2009 by the deal.II authors
//
//    This file is subject to QPL and may not be  distributed
//    without copyright and license information. Please refer
//    to the file deal.II/doc/license.html for the  text  and
//    further information on this license.
//
//---------------------------------------------------------------------------
#ifndef __deal2__polynomial_h
#define __deal2__polynomial_h



#include <base/config.h>
#include <base/exceptions.h>
#include <base/subscriptor.h>
#include <base/std_cxx1x/shared_ptr.h>

#include <vector>

DEAL_II_NAMESPACE_OPEN
template <int dim> class Point;

/**
 * @addtogroup Polynomials
 * @{
 */

/**
 * A namespace in which classes relating to the description of
 * 1d polynomial spaces are declared.
 */
namespace Polynomials
{

/**
 * Base class for all 1D polynomials. A polynomial is represented in
 * this class by its coefficients, which are set through the
 * constructor or by derived classes. Evaluation of a polynomial
 * happens through the Horner scheme which provides both numerical
 * stability and a minimal number of numerical operations.
 *
 * @author Ralf Hartmann, Guido Kanschat, 2000, 2006, 2009
 */
  template <typename number>
  class Polynomial : public Subscriptor
  {
    public:
                                       /**
                                        * Constructor. The
                                        * coefficients of the
                                        * polynomial are passed as
                                        * arguments, and denote the
                                        * polynomial $\sum_i a[i]
                                        * x^i$, i.e. the first element
                                        * of the array denotes the
                                        * constant term, the second
                                        * the linear one, and so
                                        * on. The degree of the
                                        * polynomial represented by
                                        * this object is thus the
                                        * number of elements in the
                                        * <tt>coefficient</tt> array
                                        * minus one.
                                        */
      Polynomial (const std::vector<number> &coefficients);

				       /**
					* Constructor creating a zero
					* polynomial of degree @p n.
					*/
      Polynomial (const unsigned int n);

				       /**
					* Default constructor creating
					* an illegal object.
					*/
      Polynomial ();

                                       /**
                                        * Return the value of this
                                        * polynomial at the given point.
                                        *
                                        * This function uses the Horner
                                        * scheme for numerical stability
                                        * of the evaluation.
                                        */
      number value (const number x) const;

                                       /**
                                        * Return the values and the
                                        * derivatives of the
                                        * Polynomial at point <tt>x</tt>.
                                        * <tt>values[i],
                                        * i=0,...,values.size()-1</tt>
                                        * includes the <tt>i</tt>th
                                        * derivative. The number of
                                        * derivatives to be computed is
                                        * thus determined by the size of
                                        * the array passed.
                                        *
                                        * This function uses the Horner
                                        * scheme for numerical stability
                                        * of the evaluation.
                                        */
      void value (const number         x,
                  std::vector<number> &values) const;

                                       /**
                                        * Degree of the polynomial. This
                                        * is the degree reflected by the
                                        * number of coefficients
                                        * provided by the
                                        * constructor. Leading non-zero
                                        * coefficients are not treated
                                        * separately.
                                        */
      unsigned int degree () const;

                                       /**
                                        * Scale the abscissa of the
                                        * polynomial.  Given the
                                        * polynomial <i>p(t)</i> and the
                                        * scaling <i>t = ax</i>, then the
                                        * result of this operation is
                                        * the polynomial <i>q</i>, such that
                                        * <i>q(x) = p(t)</i>.
                                        *
                                        * The operation is performed in
                                        * place.
                                        */
      void scale (const number factor);

                                       /**
                                        * Shift the abscissa oft the
                                        * polynomial.  Given the
                                        * polynomial <i>p(t)</i> and the
                                        * shift <i>t = x + a</i>, then the
                                        * result of this operation is
                                        * the polynomial <i>q</i>, such that
                                        * <i>q(x) = p(t)</i>.
                                        *
                                        * The template parameter allows
                                        * to compute the new
                                        * coefficients with higher
                                        * accuracy, since all
                                        * computations are performed
                                        * with type <tt>number2</tt>. This
                                        * may be necessary, since this
                                        * operation involves a big
                                        * number of additions. On a Sun
                                        * Sparc Ultra with Solaris 2.8,
                                        * the difference between
                                        * <tt>double</tt> and <tt>long double</tt>
                                        * was not significant, though.
                                        *
                                        * The operation is performed in
                                        * place, i.e. the coefficients
                                        * of the present object are
                                        * changed.
                                        */
      template <typename number2>
      void shift (const number2 offset);

				       /**
					* Compute the derivative of a
					* polynomial.
					*/
      Polynomial<number> derivative () const;

				       /**
					* Compute the primitive of a
					* polynomial. the coefficient
					* of the zero order term of
					* the polynomial is zero.
					*/
      Polynomial<number> primitive () const;

				       /**
					* Multiply with a scalar.
					*/
      Polynomial<number>& operator *= (const double s);

				       /**
					* Multiply with another polynomial.
					*/
      Polynomial<number>& operator *= (const Polynomial<number>& p);

				       /**
					* Add a second polynomial.
					*/
      Polynomial<number>& operator += (const Polynomial<number>& p);

				       /**
					* Subtract a second polynomial.
					*/
      Polynomial<number>& operator -= (const Polynomial<number>& p);

                                       /**
                                        * Print coefficients.
                                        */
      void print(std::ostream& out) const;

    protected:

                                       /**
                                        * This function performs the
                                        * actual scaling.
                                        */
      static void scale (std::vector<number> &coefficients,
                         const number         factor);

                                       /**
                                        * This function performs the
                                        * actual shift
                                        */
      template <typename number2>
      static void shift (std::vector<number> &coefficients,
                         const number2        shift);

                                       /**
                                        * Multiply polynomial by a factor.
                                        */
      static void multiply (std::vector<number>& coefficients,
                            const number factor);

                                       /**
                                        * Coefficients of the polynomial
                                        * $\sum_i a_i x^i$. This vector
                                        * is filled by the constructor
                                        * of this class and may be
                                        * passed down by derived
                                        * classes.
                                        *
                                        * This vector cannot be constant
                                        * since we want to allow copying
                                        * of polynomials.
                                        */
      std::vector<number> coefficients;
  };


/**
 * Class generates Polynomial objects representing a monomial of
 * degree n, that is, the function $x^n$.
 *
 * @author Guido Kanschat, 2004
 */
  template <typename number>
  class Monomial :
       public Polynomial<number>
  {
    public:
				       /**
					* Constructor, taking the
					* degree of the monomial and
					* an optional coefficient as
					* arguments.
					*/
      Monomial(const unsigned int n,
	       const double coefficient = 1.);

                                       /**
                                        * Return a vector of Monomial
                                        * objects of degree zero
                                        * through <tt>degree</tt>, which
                                        * then spans the full space of
                                        * polynomials up to the given
                                        * degree. This function may be
                                        * used to initialize the
                                        * TensorProductPolynomials
                                        * and PolynomialSpace
                                        * classes.
                                        */
      static
      std::vector<Polynomial<number> >
      generate_complete_basis (const unsigned int degree);

    private:
				       /**
					* Needed by constructor.
					*/
      static std::vector<number> make_vector(unsigned int n,
					     const double coefficient);
  };


/**
 * Lagrange polynomials with equidistant interpolation points in
 * [0,1]. The polynomial of degree <tt>n</tt> has got <tt>n+1</tt> interpolation
 * points. The interpolation points are sorted in ascending
 * order. This order gives an index to each interpolation point.  A
 * Lagrangian polynomial equals to 1 at its `support point', and 0 at
 * all other interpolation points. For example, if the degree is 3,
 * and the support point is 1, then the polynomial represented by this
 * object is cubic and its value is 1 at the point <tt>x=1/3</tt>, and zero
 * at the point <tt>x=0</tt>, <tt>x=2/3</tt>, and <tt>x=1</tt>. All the polynomials
 * have polynomial degree equal to <tt>degree</tt>, but together they span
 * the entire space of polynomials of degree less than or equal
 * <tt>degree</tt>.
 *
 * The Lagrange polynomials are implemented up to degree 10.
 *
 * @author Ralf Hartmann, 2000
 */
  class LagrangeEquidistant: public Polynomial<double>
  {
    public:
                                       /**
                                        * Constructor. Takes the degree
                                        * <tt>n</tt> of the Lagrangian
                                        * polynom and the index
                                        * <tt>support_point</tt> of the
                                        * support point. Fills the
                                        * <tt>coefficients</tt> of the base
                                        * class Polynomial.
                                        */
      LagrangeEquidistant (const unsigned int n,
                           const unsigned int support_point);

                                       /**
                                        * Return a vector of polynomial
                                        * objects of degree <tt>degree</tt>,
                                        * which then spans the full
                                        * space of polynomials up to the
                                        * given degree. The polynomials
                                        * are generated by calling the
                                        * constructor of this class with
                                        * the same degree but support
                                        * point running from zero to
                                        * <tt>degree</tt>. This function may
                                        * be used to initialize the
                                        * TensorProductPolynomials
                                        * and PolynomialSpace
                                        * classes.
                                        */
      static
      std::vector<Polynomial<double> >
      generate_complete_basis (const unsigned int degree);

    private:

                                       /**
                                        * Computes the <tt>coefficients</tt>
                                        * of the base class
                                        * Polynomial. This function
                                        * is <tt>static</tt> to allow to be
                                        * called in the
                                        * constructor.
                                        */
      static
      void
      compute_coefficients (const unsigned int n,
                            const unsigned int support_point,
			    std::vector<double>& a);
  };

/**
 * Lagrange polynomials for an arbistrary set of interpolation points.
 *
 * @author Guido Kanschat, 2005
 */
  class Lagrange
  {
    public:
				       /**
					* Given a set of points, this
					* function returns all
					* Lagrange polynomials for
					* interpolation of these
					* points. The number of
					* polynomials is equal to the
					* number of points and the
					* maximum degree is one less.
					*/
      static
      std::vector<Polynomial<double> >
      generate_complete_basis (const std::vector<Point<1> >& points);
  };



/**
 * Legendre polynomials of arbitrary degree on <tt>[0,1]</tt>.
 *
 * Constructing a Legendre polynomial of degree <tt>p</tt>, the coefficients
 * will be computed by the three-term recursion formula.  The
 * coefficients are stored in a static data vector to be available
 * when needed next time. Since the recursion is performed for the
 * interval $[-1,1]$, the polynomials are shifted to $[0,1]$ by the
 * <tt>scale</tt> and <tt>shift</tt> functions of <tt>Polynomial</tt>, afterwards.
 *
 * @author Guido Kanschat, 2000
 */
  class Legendre : public Polynomial<double>
  {
    public:
                                       /**
                                        * Constructor for polynomial of
                                        * degree <tt>p</tt>.
                                        */
      Legendre (const unsigned int p);

                                       /**
                                        * Return a vector of Legendre
                                        * polynomial objects of degrees
                                        * zero through <tt>degree</tt>, which
                                        * then spans the full space of
                                        * polynomials up to the given
                                        * degree. This function may be
                                        * used to initialize the
                                        * TensorProductPolynomials
                                        * and PolynomialSpace
                                        * classes.
                                        */
      static
      std::vector<Polynomial<double> >
      generate_complete_basis (const unsigned int degree);

    private:
                                       /**
                                        * Coefficients for the interval $[0,1]$.
                                        */
      static std::vector<std_cxx1x::shared_ptr<const std::vector<double> > > shifted_coefficients;

                                       /**
                                        * Vector with already computed
                                        * coefficients. For each degree of the
                                        * polynomial, we keep one pointer to
                                        * the list of coefficients; we do so
                                        * rather than keeping a vector of
                                        * vectors in order to simplify
                                        * programming multithread-safe. In
                                        * order to avoid memory leak, we use a
                                        * shared_ptr in order to correctly
                                        * free the memory of the vectors when
                                        * the global destructor is called.
                                        */
      static std::vector<std_cxx1x::shared_ptr<const std::vector<double> > > recursive_coefficients;

                                       /**
                                        * Compute coefficients recursively.
                                        */
      static void compute_coefficients (const unsigned int p);

                                       /**
                                        * Get coefficients for
                                        * constructor.  This way, it can
                                        * use the non-standard
                                        * constructor of
                                        * Polynomial.
                                        */
      static const std::vector<double> &
      get_coefficients (const unsigned int k);
  };



/**
 * Hierarchical polynomials of arbitrary degree on <tt>[0,1]</tt>.
 *
 * When Constructing a Hierarchical polynomial of degree <tt>p</tt>,
 * the coefficients will be computed by a recursion formula.  The
 * coefficients are stored in a static data vector to be available
 * when needed next time.
 *
 * These hierarchical polynomials are based on those of Demkowicz, Oden,
 * Rachowicz, and Hardy (CMAME 77 (1989) 79-112, Sec. 4). The first two
 * polynomials are the standard linear shape functions given by
 * $\phi_{0}(x) = 1 - x$ and $\phi_{1}(x) = x$. For $l \geq 2$
 * we use the definitions $\phi_{l}(x) = (2x-1)^l - 1, l = 2,4,6,...$
 * and $\phi_{l}(x) = (2x-1)^l - (2x-1), l = 3,5,7,...$. These satisfy the
 * recursion relations $\phi_{l}(x) = (2x-1)\phi_{l-1}, l=3,5,7,...$ and
 * $\phi_{l}(x) = (2x-1)\phi_{l-1} + \phi_{2}, l=4,6,8,...$.
 *
 * The degrees of freedom are the values at the vertices and the
 * derivatives at the midpoint. Currently, we do not scale the
 * polynomials in any way, although better conditioning of the
 * element stiffness matrix could possibly be achieved with scaling.
 *
 * Calling the constructor with a given index <tt>p</tt> will generate the
 * following: if <tt>p==0</tt>, then the resulting polynomial is the linear
 * function associated with the left vertex, if <tt>p==1</tt> the one
 * associated with the right vertex. For higher values of <tt>p</tt>, you
 * get the polynomial of degree <tt>p</tt> that is orthogonal to all
 * previous ones. Note that for <tt>p==0</tt> you therefore do <b>not</b>
 * get a polynomial of degree zero, but one of degree one. This is to
 * allow generating a complete basis for polynomial spaces, by just
 * iterating over the indices given to the constructor.
 *
 * On the other hand, the function generate_complete_basis() creates
 * a complete basis of given degree. In order to be consistent with
 * the concept of a polynomial degree, if the given argument is zero,
 * it does <b>not</b> return the linear polynomial described above, but
 * rather a constant polynomial.
 *
 * @author Brian Carnes, 2002
 */
  class Hierarchical : public Polynomial<double>
  {
    public:
                                     /**
				      * Constructor for polynomial of
				      * degree <tt>p</tt>. There is an
				      * exception for <tt>p==0</tt>, see
				      * the general documentation.
				      */
      Hierarchical (const unsigned int p);

				     /**
				      * Return a vector of
				      * Hierarchical polynomial
				      * objects of degrees zero through
				      * <tt>degree</tt>, which then spans
				      * the full space of polynomials
				      * up to the given degree. Note
				      * that there is an exception if
				      * the given <tt>degree</tt> equals
				      * zero, see the general
				      * documentation of this class.
				      *
				      * This function may be
				      * used to initialize the
				      * TensorProductPolynomials,
				      * AnisotropicPolynomials,
				      * and PolynomialSpace
				      * classes.
				      */
      static
      std::vector<Polynomial<double> >
      generate_complete_basis (const unsigned int degree);

    private:
				     /**
				      * Compute coefficients recursively.
				      */
      static void compute_coefficients (const unsigned int p);

				     /**
				      * Get coefficients for
				      * constructor.  This way, it can
				      * use the non-standard
				      * constructor of
				      * Polynomial.
				      */
     static const std::vector<double> &
     get_coefficients (const unsigned int p);

     static std::vector<const std::vector<double> *> recursive_coefficients;
   };
}

/** @} */

/* -------------------------- inline functions --------------------- */

namespace Polynomials
{
  template <typename number>
  inline
  Polynomial<number>::Polynomial ()
  {}

  template <typename number>
  inline
  unsigned int
  Polynomial<number>::degree () const
  {
    Assert (coefficients.size()>0, ExcEmptyObject());
    return coefficients.size() - 1;
  }



  template <typename number>
  inline
  number
  Polynomial<number>::value (const number x) const
  {
    Assert (coefficients.size() > 0, ExcEmptyObject());
    const unsigned int m=coefficients.size();

                                     // Horner scheme
    number value = coefficients.back();
    for (int k=m-2; k>=0; --k)
      value = value*x + coefficients[k];

    return value;
  }
}
DEAL_II_NAMESPACE_CLOSE

#endif