This file is indexed.

/usr/include/deal.II/base/polynomial_space.h is in libdeal.ii-dev 6.3.1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
//---------------------------------------------------------------------------
//    $Id: polynomial_space.h 20161 2009-11-24 22:54:51Z kanschat $
//    Version: $Name$
//
//    Copyright (C) 2002, 2003, 2004, 2005, 2006, 2009 by the deal.II authors
//
//    This file is subject to QPL and may not be  distributed
//    without copyright and license information. Please refer
//    to the file deal.II/doc/license.html for the  text  and
//    further information on this license.
//
//---------------------------------------------------------------------------
#ifndef __deal2__polynomial_space_h
#define __deal2__polynomial_space_h


#include <base/config.h>
#include <base/exceptions.h>
#include <base/tensor.h>
#include <base/point.h>
#include <base/polynomial.h>
#include <base/smartpointer.h>

#include <vector>

DEAL_II_NAMESPACE_OPEN

/**
 * Representation of the space of polynomials of degree at most n in
 * higher dimensions.
 *
 * Given a vector of <i>n</i> one-dimensional polynomials
 * <i>P<sub>0</sub></i> to <i>P<sub>n</sub></i>, where
 * <i>P<sub>i</sub></i> has degree <i>i</i>, this class generates all
 * dim-dimensional polynomials of the form <i>
 * P<sub>ijk</sub>(x,y,z) =
 * P<sub>i</sub>(x)P<sub>j</sub>(y)P<sub>k</sub>(z)</i>, where the sum
 * of <i>i</i>, <i>j</i> and <i>k</i> is less than or equal <i>n</i>.
 *
 * The output_indices() function prints the ordering of the
 * polynomials, i.e. for each dim-dimensional polynomial in the
 * polynomial space it gives the indices i,j,k of the one-dimensional
 * polynomials in x,y and z direction. The ordering of the
 * dim-dimensional polynomials can be changed by using the
 * set_numbering() function.
 *
 * The standard ordering of polynomials is that indices for the first
 * space dimension vasry fastest and the last space dimension is
 * slowest. In particular, if we take for simplicity the vector of
 * monomials <i>x<sup>0</sup>, x<sup>1</sup>, x<sup>2</sup>,...,
 * x<sup>n</sup></i>, we get
 *
 * <dl>
 * <dt> 1D <dd> <i> x<sup>0</sup>, x<sup>1</sup>,...,x<sup>n</sup></i>
 * <dt> 2D: <dd> <i> x<sup>0</sup>y<sup>0</sup>,
 *    x<sup>1</sup>y<sup>0</sup>,...,
 *    x<sup>n</sup>y<sup>0</sup>,<br>
 *    x<sup>0</sup>y<sup>1</sup>,
 *    x<sup>1</sup>y<sup>1</sup>,...,
 *    x<sup>n-1</sup>y<sup>1</sup>,<br>
 *    x<sup>0</sup>y<sup>2</sup>,...
 *    x<sup>n-2</sup>y<sup>2</sup>,<br>...<br>
 *    x<sup>0</sup>y<sup>n-1</sup>,
 *    x<sup>1</sup>y<sup>n-1</sup>,<br>
 *    x<sup>0</sup>y<sup>n</sup>
 *    </i>
 * <dt> 3D: <dd> <i> x<sup>0</sup>y<sup>0</sup>z<sup>0</sup>,...,
 *    x<sup>n</sup>y<sup>0</sup>z<sup>0</sup>,<br>
 *    x<sup>0</sup>y<sup>1</sup>z<sup>0</sup>,...,
 *    x<sup>n-1</sup>y<sup>1</sup>z<sup>0</sup>,<br>...<br>
 *    x<sup>0</sup>y<sup>n</sup>z<sup>0</sup>,<br>
 *    x<sup>0</sup>y<sup>0</sup>z<sup>1</sup>,...
 *    x<sup>n-1</sup>y<sup>0</sup>z<sup>1</sup>,<br>...<br>
 *    x<sup>0</sup>y<sup>n-1</sup>z<sup>1</sup>,<br>
 *    x<sup>0</sup>y<sup>0</sup>z<sup>2</sup>,...
 *    x<sup>n-2</sup>y<sup>0</sup>z<sup>2</sup>,<br>...<br>
 *    x<sup>0</sup>y<sup>0</sup>z<sup>n</sup>
 *    </i>
 * </dl>
 *
 * @ingroup Polynomials
 * @author Guido Kanschat, Wolfgang Bangerth, Ralf Hartmann 2002, 2003, 2004, 2005
 */
template <int dim>
class PolynomialSpace
{
  public:
				     /**
				      * Access to the dimension of
				      * this object, for checking and
				      * automatic setting of dimension
				      * in other classes.
				      */
    static const unsigned int dimension = dim;
    
				     /**
				      * Constructor. <tt>pols</tt> is a
				      * vector of pointers to
				      * one-dimensional polynomials
				      * and will be copied into a
				      * private member variable. The static
				      * type of the template argument
				      * <tt>pols</tt> needs to be
				      * convertible to
				      * Polynomials::Polynomial@<double@>,
				      * i.e. should usually be a
				      * derived class of
				      * Polynomials::Polynomial@<double@>.
				      */
    template <class Pol>
    PolynomialSpace (const std::vector<Pol> &pols);

				     /**
				      * Prints the list of the indices
				      * to <tt>out</tt>.
				      */
    template <class STREAM>
    void output_indices(STREAM &out) const;

				     /**
				      * Sets the ordering of the
				      * polynomials. Requires
				      * <tt>renumber.size()==n()</tt>.
				      * Stores a copy of
				      * <tt>renumber</tt>.
				      */
    void set_numbering(const std::vector<unsigned int> &renumber);
    
				     /**
				      * Computes the value and the
				      * first and second derivatives
				      * of each polynomial at
				      * <tt>unit_point</tt>.
				      *
				      * The size of the vectors must
				      * either be equal 0 or equal
				      * n(). In the first case,
				      * the function will not compute
				      * these values, i.e. you
				      * indicate what you want to have
				      * computed by resizing those
				      * vectors which you want filled.
				      *
				      * If you need values or
				      * derivatives of all polynomials
				      * then use this function, rather
				      * than using any of the
				      * compute_value(),
				      * compute_grad() or
				      * compute_grad_grad()
				      * functions, see below, in a
				      * loop over all polynomials.
				      */
    void compute (const Point<dim>            &unit_point,
		  std::vector<double>         &values,
		  std::vector<Tensor<1,dim> > &grads,
		  std::vector<Tensor<2,dim> > &grad_grads) const;
    
				     /**
				      * Computes the value of the
				      * <tt>i</tt>th polynomial at
				      * <tt>unit_point</tt>.
				      *
				      * Consider using compute() instead.
				      */
    double compute_value (const unsigned int i,
			  const Point<dim> &p) const;

				     /**
				      * Computes the gradient of the
				      * <tt>i</tt>th polynomial at
				      * <tt>unit_point</tt>.
				      *
				      * Consider using compute() instead.
				      */
    Tensor<1,dim> compute_grad (const unsigned int i,
				const Point<dim> &p) const;

				     /**
				      * Computes the second derivative
				      * (grad_grad) of the <tt>i</tt>th
				      * polynomial at
				      * <tt>unit_point</tt>.
				      *
				      * Consider using compute() instead.
				      */
    Tensor<2,dim> compute_grad_grad (const unsigned int i,
                                     const Point<dim> &p) const;

				     /**
				      * Return the number of
				      * polynomials spanning the space
				      * represented by this
				      * class. Here, if <tt>N</tt> is the
				      * number of one-dimensional
				      * polynomials given, then the
				      * result of this function is
				      * <i>N</i> in 1d, <i>N(N+1)/2</i> in
				      * 2d, and <i>N(N+1)(N+2)/6</i> in
				      * 3d.
				      */
    unsigned int n () const;

				     /**
				      * Degree of the space. This is
				      * by definition the number of
				      * polynomials given to the
				      * constructor, NOT the maximal
				      * degree of a polynomial in this
				      * vector. The latter value is
				      * never checked and therefore
				      * left to the application.
				      */
    unsigned int degree () const;  
    
				     /**
				      * Static function used in the
				      * constructor to compute the
				      * number of polynomials.
				      */
    static unsigned int compute_n_pols (const unsigned int n);

  protected:
    
				     /**
				      * Compute numbers in x, y and z
				      * direction. Given an index
				      * <tt>n</tt> in the d-dimensional
				      * polynomial space, compute the
				      * indices i,j,k such that
				      * <i>p<sub>n</sub>(x,y,z) =
				      * p<sub>i</sub>(x)p<sub>j</sub>(y)p<sub>k</sub>(z)</i>.
				      */
    void compute_index (const unsigned int n,
                        unsigned int      (&index)[dim]) const;

  private:
				     /**
				      * Copy of the vector <tt>pols</tt> of
				      * polynomials given to the
				      * constructor.
				      */
    const std::vector<Polynomials::Polynomial<double> > polynomials;

				     /**
				      * Store the precomputed value
				      * which the <tt>n()</tt> function
				      * returns.
				      */
    const unsigned int n_pols;

				     /**
				      * Index map for reordering the
				      * polynomials.
				      */
    std::vector<unsigned int> index_map;

				     /**
				      * Index map for reordering the
				      * polynomials.
				      */
    std::vector<unsigned int> index_map_inverse;
};


/* -------------- declaration of explicit specializations --- */

template <>
void PolynomialSpace<1>::compute_index(const unsigned int n,
                                       unsigned int      (&index)[1]) const;
template <>
void PolynomialSpace<2>::compute_index(const unsigned int n,
                                       unsigned int      (&index)[2]) const;
template <>
void PolynomialSpace<3>::compute_index(const unsigned int n,
                                       unsigned int      (&index)[3]) const;



/* -------------- inline and template functions ------------- */

template <int dim>
template <class Pol>
PolynomialSpace<dim>::PolynomialSpace (const std::vector<Pol> &pols)
		:
		polynomials (pols.begin(), pols.end()),
		n_pols (compute_n_pols(polynomials.size())),
		index_map(n_pols),
		index_map_inverse(n_pols)
{
				   // per default set this index map
				   // to identity. This map can be
				   // changed by the user through the
				   // set_numbering function
  for (unsigned int i=0; i<n_pols; ++i)
    {
      index_map[i]=i;
      index_map_inverse[i]=i;
    }
}


template<int dim>
inline
unsigned int
PolynomialSpace<dim>::n() const
{
  return n_pols;
}

  

template<int dim>
inline
unsigned int
PolynomialSpace<dim>::degree() const
{
  return polynomials.size();
}


template <int dim>
template <class STREAM>
void
PolynomialSpace<dim>::output_indices(STREAM &out) const
{
  unsigned int ix[dim];
  for (unsigned int i=0; i<n_pols; ++i)
    {
      compute_index(i,ix);
      out << i << "\t";
      for (unsigned int d=0; d<dim; ++d)
	out << ix[d] << " ";
      out << std::endl;
    }
}


DEAL_II_NAMESPACE_CLOSE

#endif