This file is indexed.

/usr/include/deal.II/fe/fe.h is in libdeal.ii-dev 6.3.1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
//---------------------------------------------------------------------------
//    $Id: fe.h 20602 2010-02-13 17:44:17Z bangerth $
//    Version: $Name$
//
//    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by the deal.II authors
//
//    This file is subject to QPL and may not be  distributed
//    without copyright and license information. Please refer
//    to the file deal.II/doc/license.html for the  text  and
//    further information on this license.
//
//---------------------------------------------------------------------------
#ifndef __deal2__fe_h
#define __deal2__fe_h

#include <base/config.h>
#include <base/geometry_info.h>
#include <fe/fe_base.h>


DEAL_II_NAMESPACE_OPEN

template <int dim, int spacedim> class FEValuesData;
template <int dim, int spacedim> class FEValuesBase;
template <int dim, int spacedim> class FEValues;
template <int dim, int spacedim>   class FEFaceValues;
template <int dim, int spacedim>   class FESubfaceValues;
template <int dim, int spacedim>   class FESystem;
template <class POLY, int dim, int spacedim> class FE_PolyTensor;
namespace hp
{
  template <int dim, int spacedim>   class FECollection;
}


/**
 * Base class for finite elements in arbitrary dimensions. This class
 * provides several fields which describe a specific finite element
 * and which are filled by derived classes. It more or less only
 * offers the fields and access functions which makes it possible to
 * copy finite elements without knowledge of the actual type (linear,
 * quadratic, etc). In particular, the functions to fill the data
 * fields of FEValues and its derived classes are declared.
 *
 * The interface of this class is very restrictive. The reason is that
 * finite element values should be accessed only by use of FEValues
 * objects. These, together with FiniteElement are responsible to
 * provide an optimized implementation.
 *
 * This class declares the shape functions and their derivatives on
 * the unit cell $[0,1]^d$. The means to transform them onto a given
 * cell in physical space is provided by the FEValues class with a
 * Mapping object.
 *
 * The different matrices are initialized with the correct size, such
 * that in the derived (concrete) finite element classes, their
 * entries only have to be filled in; no resizing is needed. If the
 * matrices are not defined by a concrete finite element, they should
 * be resized to zero. This way functions using them can find out,
 * that they are missing. On the other hand, it is possible to use
 * finite element classes without implementation of the full
 * functionality, if only part of it is needed. The functionality
 * under consideration here is hanging nodes constraints and grid
 * transfer, respectively.
 *
 * The <tt>spacedim</tt> parameter has to be used if one wants to
 * solve problems in the boundary element method formulation or in an
 * equivalent one, as it is explained in the Triangulation class. If
 * not specified, this parameter takes the default value <tt>=dim</tt>
 * so that this class can be used to solve problems in the finite
 * element method formulation.
 *
 * <h3>Components and blocks</h3>
 *
 * For vector valued elements shape functions may have nonzero entries
 * in one or several @ref GlossComponent "components" of the vector
 * valued function. If the element is @ref GlossPrimitive "primitive",
 * there is indeed a single component with a nonzero entry for each
 * shape function. This component can be determined by
 * system_to_component_index(), the number of components is
 * FiniteElementData::n_components().
 *
 * Furthermore, you may want to split your linear system into @ref
 * GlossBlock "blocks" for the use in BlockVector, BlockSparseMatrix,
 * BlockMatrixArray and so on. If you use non-primitive elements, you
 * cannot determine the block number by
 * system_to_component_index(). Instead, you can use
 * system_to_block_index(), which will automatically take care of the
 * additional components occupied by vector valued elements. The
 * number of generated blocks can be determined by
 * FiniteElementData::n_blocks().
 *
 * If you decide to operate by base element and multiplicity, the
 * function first_block_of_base() will be helpful.
 *
 * <h3>Support points</h3>
 *
 * Since a FiniteElement does not have information on the actual grid
 * cell, it can only provide @ref GlossSupport "support points" on the
 * unit cell. Support points on the actual grid cell must be computed
 * by mapping these points. The class used for this kind of operation
 * is FEValues. In most cases, code of the following type will serve
 * to provide the mapped support points.
 *
 * @code
 * Quadrature<dim> dummy_quadrature (fe.get_unit_support_points());
 * FEValues<dim>   fe_values (mapping, fe, dummy_quadrature,
 *                            update_quadrature_points);
 * fe_values.reinit (cell);
 * Point<dim>& mapped_point = fe_values.quadrature_point (i);
 * @endcode
 *
 * Alternatively, the points can be transformed one-by-one:
 * @code
 * const vector<Point<dim> >& unit_points =
 *    fe.get_unit_support_points();
 *
 * Point<dim> mapped_point =
 *    mapping.transform_unit_to_real_cell (cell, unit_points[i]);
 * @endcode
 * This is a shortcut, and as all shortcuts should be used cautiously.
 * If the mapping of all support points is needed, the first variant should
 * be preferred for efficiency.
 *
 * <h3>Notes on the implementation of derived classes</h3>
 *
 * The following sections list the information to be provided by
 * derived classes, depending on the dimension. They are
 * followed by a list of functions helping to generate these values.
 *
 * <h4>Finite elements in one dimension</h4>
 *
 * Finite elements in one dimension need only set the #restriction
 * and #prolongation matrices. The constructor of this class in one
 * dimension presets the #interface_constraints matrix to have
 * dimension zero. Changing this behaviour in derived classes is
 * generally not a reasonable idea and you risk getting into trouble.
 * 
 * <h4>Finite elements in two dimensions</h4>
 * 
 * In addition to the fields already present in 1D, a constraint
 * matrix is needed, if the finite element has node values located on
 * edges or vertices. These constraints are represented by an $m\times
 * n$-matrix #interface_constraints, where <i>m</i> is the number of
 * degrees of freedom on the refined side without the corner vertices
 * (those dofs on the middle vertex plus those on the two lines), and
 * <i>n</i> is that of the unrefined side (those dofs on the two
 * vertices plus those on the line). The matrix is thus a rectangular
 * one. The $m\times n$ size of the #interface_constraints matrix can
 * also be accessed through the interface_constraints_size() function.
 *
 * The mapping of the dofs onto the indices of the matrix on the
 * unrefined side is as follows: let $d_v$ be the number of dofs on a
 * vertex, $d_l$ that on a line, then $n=0...d_v-1$ refers to the dofs
 * on vertex zero of the unrefined line, $n=d_v...2d_v-1$ to those on
 * vertex one, $n=2d_v...2d_v+d_l-1$ to those on the line.
 *
 * Similarly, $m=0...d_v-1$ refers to the dofs on the middle vertex of
 * the refined side (vertex one of child line zero, vertex zero of
 * child line one), $m=d_v...d_v+d_l-1$ refers to the dofs on child
 * line zero, $m=d_v+d_l...d_v+2d_l-1$ refers to the dofs on child
 * line one.  Please note that we do not need to reserve space for the
 * dofs on the end vertices of the refined lines, since these must be
 * mapped one-to-one to the appropriate dofs of the vertices of the
 * unrefined line.
 *
 * It should be noted that it is not possible to distribute a constrained
 * degree of freedom to other degrees of freedom which are themselves
 * constrained. Only one level of indirection is allowed. It is not known
 * at the time of this writing whether this is a constraint itself.
 *
 * 
 * <h4>Finite elements in three dimensions</h4>
 *
 * For the interface constraints, almost the same holds as for the 2D case.
 * The numbering for the indices $n$ on the mother face is obvious and keeps
 * to the usual numbering of degrees of freedom on quadrilaterals.
 *
 * The numbering of the degrees of freedom on the interior of the refined
 * faces for the index $m$ is as follows: let $d_v$ and $d_l$ be as above,
 * and $d_q$ be the number of degrees of freedom per quadrilateral (and
 * therefore per face), then $m=0...d_v-1$ denote the dofs on the vertex at
 * the center, $m=d_v...5d_v-1$ for the dofs on the vertices at the center
 * of the bounding lines of the quadrilateral,
 * $m=5d_v..5d_v+4*d_l-1$ are for the degrees of freedom on
 * the four lines connecting the center vertex to the outer boundary of the
 * mother face, $m=5d_v+4*d_l...5d_v+4*d_l+8*d_l-1$ for the degrees of freedom
 * on the small lines surrounding the quad,
 * and $m=5d_v+12*d_l...5d_v+12*d_l+4*d_q-1$ for the dofs on the
 * four child faces. Note the direction of the lines at the boundary of the
 * quads, as shown below.
 *
 * The order of the twelve lines and the four child faces can be extracted
 * from the following sketch, where the overall order of the different
 * dof groups is depicted:
 * @verbatim
 *    *--15--4--16--*
 *    |      |      |
 *    10 19  6  20  12
 *    |      |      |
 *    1--7---0--8---2
 *    |      |      |
 *    9  17  5  18  11
 *    |      |      |
 *    *--13--3--14--*
 * @endverbatim
 * The numbering of vertices and lines, as well as the numbering of
 * children within a line is consistent with the one described in
 * Triangulation. Therefore, this numbering is seen from the
 * outside and inside, respectively, depending on the face.
 *
 * The three-dimensional case has a few pitfalls available for derived classes
 * that want to implement constraint matrices. Consider the following case:
 * @verbatim
 *          *-------*
 *         /       /|
 *        /       / |
 *       /       /  |
 *      *-------*   |
 *      |       |   *-------*
 *      |       |  /       /|
 *      |   1   | /       / |
 *      |       |/       /  |
 *      *-------*-------*   |
 *      |       |       |   *
 *      |       |       |  /
 *      |   2   |   3   | /
 *      |       |       |/
 *      *-------*-------*
 * @endverbatim
 * Now assume that we want to refine cell 2. We will end up with two faces
 * with hanging nodes, namely the faces between cells 1 and 2, as well as
 * between cells 2 and 3. Constraints have to be applied to the degrees of
 * freedom on both these faces. The problem is that there is now an edge
 * (the top right one of cell 2) which is part of both faces. The hanging
 * node(s) on this edge are therefore constrained twice, once from both
 * faces. To be meaningful, these constraints of course have to be
 * consistent: both faces have to constrain the hanging nodes on the edge to
 * the same nodes on the coarse edge (and only on the edge, as there can
 * then be no constraints to nodes on the rest of the face), and they have
 * to do so with the same weights. This is sometimes tricky since the nodes
 * on the edge may have different local numbers.
 *
 * For the constraint matrix this means the following: if a degree of freedom
 * on one edge of a face is constrained by some other nodes on the same edge
 * with some weights, then the weights have to be exactly the same as those
 * for constrained nodes on the three other edges with respect to the
 * corresponding nodes on these edges. If this isn't the case, you will get
 * into trouble with the ConstraintMatrix class that is the primary consumer
 * of the constraint information: while that class is able to handle
 * constraints that are entered more than once (as is necessary for the case
 * above), it insists that the weights are exactly the same.
 *
 * <h4>Helper functions</h4>
 *
 * Construction of a finite element and computation of the matrices
 * described above may be a tedious task, in particular if it has to
 * be performed for several dimensions. Therefore, some
 * functions in FETools have been provided to help with these tasks.
 *
 * <h5>Computing the correct basis from "raw" basis functions</h5>
 *
 * First, aready the basis of the shape function space may be
 * difficult to implement for arbitrary order and dimension. On the
 * other hand, if the @ref GlossNodes "node values" are given, then
 * the duality relation between node functionals and basis functions
 * defines the basis. As a result, the shape function space may be
 * defined with arbitrary "raw" basis functions, such that the actual
 * finite element basis is computed from linear combinations of
 * them. The coefficients of these combinations are determined by the
 * duality of node values.
 *
 * Using this matrix allows the construction of the basis of shape
 * functions in two steps.
 * <ol>
 *
 * <li>Define the space of shape functions using an arbitrary basis
 * <i>w<sub>j</sub></i> and compute the matrix <i>M</i> of node
 * functionals <i>N<sub>i</sub></i> applied to these basis functions,
 * such that its entries are <i>m<sub>ij</sub> =
 * N<sub>i</sub>(w<sub>j</sub>)</i>.
 *
 * <li>Compute the basis <i>v<sub>j</sub></i> of the finite element
 * shape function space by applying <i>M<sup>-1</sup></i> to the basis
 * <i>w<sub>j</sub></i>.
 * </ol>
 *
 * The function computing the matrix <i>M</i> for you is
 * FETools::compute_node_matrix(). It relies on the existence of
 * #generalized_support_points and implementation of interpolate()
 * with VectorSlice argument.
 *
 * The piece of code in the constructor of a finite element
 * responsible for this looks like
 * @code
  FullMatrix<double> M(this->dofs_per_cell, this->dofs_per_cell);
  FETools::compute_node_matrix(M, *this);
  this->inverse_node_matrix.reinit(this->dofs_per_cell, this->dofs_per_cell);
  this->inverse_node_matrix.invert(M);
 * @endcode
 * Don't forget to make sure that #unit_support_points or
 * #generalized_support_points are initialized before this!
 *
 * <h5>Computing the #prolongation matrices for multigrid</h5>
 *
 * Once the shape functions are set up, the grid transfer matrices for
 * Multigrid accessed by get_prolongation_matrix() can be computed
 * automatically, using FETools::compute_embedding_matrices().
 *
 * This can be achieved by
 * @code
  for (unsigned int i=0; i<GeometryInfo<dim>::children_per_cell; ++i)
    this->prolongation[i].reinit (this->dofs_per_cell,
				  this->dofs_per_cell);
  FETools::compute_embedding_matrices (*this, this->prolongation);
 * @endcode
 *
 * <h5>Computing the #restriction matrices for error estimators</h5>
 *
 * missing...
 *
 * <h5>Computing #interface_constraints</h5>
 *
 * Constraint matrices can be computed semi-automatically using
 * FETools::compute_face_embedding_matrices(). This function computes
 * the representation of the coarse mesh functions by fine mesh
 * functions for each child of a face separately. These matrices must
 * be convoluted into a single rectangular constraint matrix,
 * eliminating degrees of freedom on common vertices and edges as well
 * as on the coarse grid vertices. See the discussion above for details.
 *
 * @ingroup febase fe
 * 
 * @author Wolfgang Bangerth, Guido Kanschat, Ralf Hartmann, 1998, 2000, 2001, 2005
 */
template <int dim, int spacedim=dim>
class FiniteElement : public Subscriptor,
		      public FiniteElementData<dim>
{
  public:
				   /**
				    * Base class for internal data.
				    * Adds data for second derivatives to
				    * Mapping::InternalDataBase()
				    *
				    * For information about the
				    * general purpose of this class,
				    * see the documentation of the
				    * base class.
				    *
				    * @author Guido Kanschat, 2001
				    */
  class InternalDataBase : public Mapping<dim,spacedim>::InternalDataBase
    {
      public:      
					 /**
					  * Destructor. Needed to
					  * avoid memory leaks with
					  * difference quotients.
					  */
	virtual ~InternalDataBase ();

					 /**
					  * Initialize some pointers
					  * used in the computation of
					  * second derivatives by
					  * finite differencing of
					  * gradients.
					  */
	void initialize_2nd (const FiniteElement<dim,spacedim> *element,
			     const Mapping<dim,spacedim>       &mapping,
			     const Quadrature<dim>    &quadrature);
	
					 /**
					  * Storage for FEValues
					  * objects needed to
					  * approximate second
					  * derivatives.
					  *
					  * The ordering is <i>p+hx</i>,
					  * <i>p+hy</i>, <i>p+hz</i>,
					  * <i>p-hx</i>, <i>p-hy</i>,
					  * <i>p-hz</i>, where unused
					  * entries in lower dimensions
					  * are missing.
					  */
	std::vector<FEValues<dim,spacedim>*> differences;
    };

  public:
				     /**
				      * Constructor
				      */
    FiniteElement (const FiniteElementData<dim> &fe_data,
		   const std::vector<bool>      &restriction_is_additive_flags,
		   const std::vector<std::vector<bool> > &nonzero_components);

				     /**
				      * Virtual destructor. Makes sure
				      * that pointers to this class
				      * are deleted properly.
				      */
    virtual ~FiniteElement ();
    
				     /**
				      * Return a string that uniquely
				      * identifies a finite
				      * element. The general
				      * convention is that this is the
				      * class name, followed by the
				      * dimension in angle
				      * brackets, and the polynomial
				      * degree and whatever else is
				      * necessary in parentheses. For
				      * example, <tt>FE_Q<2>(3)</tt> is the
				      * value returned for a cubic
				      * element in 2d.
				      *
				      * Systems of elements have their
				      * own naming convention, see the
				      * FESystem class.
				      */
    virtual std::string get_name () const = 0;

				     /**
				      * This operator returns a
				      * reference to the present
				      * object if the argument given
				      * equals to zero. While this
				      * does not seem particularly
				      * useful, it is helpful in
				      * writing code that works with
				      * both ::DoFHandler and the hp
				      * version hp::DoFHandler, since
				      * one can then write code like
				      * this:
				      * @verbatim
				      *   dofs_per_cell
				      *     = dof_handler->get_fe()[cell->active_fe_index()].dofs_per_cell;
				      * @endverbatim
				      *
				      * This code doesn't work in both
				      * situations without the present
				      * operator because
				      * DoFHandler::get_fe() returns a
				      * finite element, whereas
				      * hp::DoFHandler::get_fe()
				      * returns a collection of finite
				      * elements that doesn't offer a
				      * <code>dofs_per_cell</code>
				      * member variable: one first has
				      * to select which finite element
				      * to work on, which is done
				      * using the
				      * operator[]. Fortunately,
				      * <code>cell-@>active_fe_index()</code>
				      * also works for non-hp classes
				      * and simply returns zero in
				      * that case. The present
				      * operator[] accepts this zero
				      * argument, by returning the
				      * finite element with index zero
				      * within its collection (that,
				      * of course, consists only of
				      * the present finite element
				      * anyway).
				      */
    const FiniteElement<dim,spacedim> & operator[] (const unsigned int fe_index) const;
    
				     /**
				      * @name Shape function access
				      * @{
				      */
    
				     /**
				      * Return the value of the
				      * @p ith shape function at the
				      * point @p p. @p p is a point
				      * on the reference element. If
				      * the finite element is
				      * vector-valued, then return the
				      * value of the only non-zero
				      * component of the vector value
				      * of this shape function. If the
				      * shape function has more than
				      * one non-zero component (which
				      * we refer to with the term
				      * non-primitive), then derived
				      * classes implementing this
				      * function should throw an
				      * exception of type
				      * ExcShapeFunctionNotPrimitive. In
				      * that case, use the
				      * shape_value_component()
				      * function.
				      *
				      * An
				      * ExcUnitShapeValuesDoNotExist
				      * is thrown if the shape values
				      * of the FiniteElement under
				      * consideration depends on the
				      * shape of the cell in real
				      * space.
				      */
    virtual double shape_value (const unsigned int  i,
			        const Point<dim>   &p) const;

				     /**
				      * Just like for shape_value(),
				      * but this function will be
				      * called when the shape function
				      * has more than one non-zero
				      * vector component. In that
				      * case, this function should
				      * return the value of the
				      * @p component-th vector
				      * component of the @p ith shape
				      * function at point @p p.
				      */
    virtual double shape_value_component (const unsigned int i,
					  const Point<dim>   &p,
					  const unsigned int component) const;
    
				     /**
				      * Return the gradient of the
				      * @p ith shape function at the
				      * point @p p. @p p is a point
				      * on the reference element, and
				      * likewise the gradient is the
				      * gradient on the unit cell with
				      * respect to unit cell
				      * coordinates. If
				      * the finite element is
				      * vector-valued, then return the
				      * value of the only non-zero
				      * component of the vector value
				      * of this shape function. If the
				      * shape function has more than
				      * one non-zero component (which
				      * we refer to with the term
				      * non-primitive), then derived
				      * classes implementing this
				      * function should throw an
				      * exception of type
				      * ExcShapeFunctionNotPrimitive. In
				      * that case, use the
				      * shape_grad_component()
				      * function.
				      *
				      * An
				      * ExcUnitShapeValuesDoNotExist
				      * is thrown if the shape values
				      * of the FiniteElement under
				      * consideration depends on the
				      * shape of the cell in real
				      * space.
				      */
    virtual Tensor<1,dim> shape_grad (const unsigned int  i,
				      const Point<dim>   &p) const;

				     /**
				      * Just like for shape_grad(),
				      * but this function will be
				      * called when the shape function
				      * has more than one non-zero
				      * vector component. In that
				      * case, this function should
				      * return the gradient of the
				      * @p component-th vector
				      * component of the @p ith shape
				      * function at point @p p.
				      */
    virtual Tensor<1,dim> shape_grad_component (const unsigned int i,
						const Point<dim>   &p,
						const unsigned int component) const;

				     /**
				      * Return the tensor of second
				      * derivatives of the @p ith
				      * shape function at point @p p
				      * on the unit cell. The
				      * derivatives are derivatives on
				      * the unit cell with respect to
				      * unit cell coordinates. If
				      * the finite element is
				      * vector-valued, then return the
				      * value of the only non-zero
				      * component of the vector value
				      * of this shape function. If the
				      * shape function has more than
				      * one non-zero component (which
				      * we refer to with the term
				      * non-primitive), then derived
				      * classes implementing this
				      * function should throw an
				      * exception of type
				      * ExcShapeFunctionNotPrimitive. In
				      * that case, use the
				      * shape_grad_grad_component()
				      * function.
				      *
				      * An
				      * ExcUnitShapeValuesDoNotExist
				      * is thrown if the shape values
				      * of the FiniteElement under
				      * consideration depends on the
				      * shape of the cell in real
				      * space.
				      */
    virtual Tensor<2,dim> shape_grad_grad (const unsigned int  i,
					   const Point<dim>   &p) const;

				     /**
				      * Just like for shape_grad_grad(),
				      * but this function will be
				      * called when the shape function
				      * has more than one non-zero
				      * vector component. In that
				      * case, this function should
				      * return the gradient of the
				      * @p component-th vector
				      * component of the @p ith shape
				      * function at point @p p.
				      */
    virtual Tensor<2,dim> shape_grad_grad_component (const unsigned int i,
						     const Point<dim>   &p,
						     const unsigned int component) const;
				     /**
				      * Check for non-zero values on a
				      * face in order to optimize out
				      * matrix elements.
				      *
				      * This function returns
				      * @p true, if the shape
				      * function @p shape_index has
				      * non-zero values on the face
				      * @p face_index.
				      *
				      * A default implementation is
				      * provided in this basis class
				      * which always returns @p
				      * true. This is the safe way to
				      * go.
				      */
    virtual bool has_support_on_face (const unsigned int shape_index,
				      const unsigned int face_index) const;
    
				     //@}
				     /**
				      * @name Transfer and constraint matrices
				      * @{
				      */
    
				     /**
				      * Projection from a fine grid
				      * space onto a coarse grid
				      * space. If this projection
				      * operator is associated with a
				      * matrix @p P, then the
				      * restriction of this matrix
				      * @p P_i to a single child cell
				      * is returned here.
				      *
				      * The matrix @p P is the
				      * concatenation or the sum of
				      * the cell matrices @p P_i,
				      * depending on the
				      * #restriction_is_additive_flags. This
				      * distinguishes interpolation
				      * (concatenation) and projection
				      * with respect to scalar
				      * products (summation).
				      *
				      * Row and column indices are
				      * related to coarse grid and
				      * fine grid spaces,
				      * respectively, consistent with
				      * the definition of the
				      * associated operator.
				      *
				      * If projection matrices are not
				      * implemented in the derived
				      * finite element class, this
				      * function aborts with 
				      * ExcProjectionVoid. You can
				      * check whether this is the case
				      * by calling the
				      * restriction_is_implemented()
				      * or the
				      * isotropic_restriction_is_implemented()
				      * function.
				      */
    const FullMatrix<double> &
    get_restriction_matrix (const unsigned int child,
			    const RefinementCase<dim> &refinement_case=RefinementCase<dim>::isotropic_refinement) const;

				     /**
				      * Embedding matrix between grids.
				      * 
				      * The identity operator from a
				      * coarse grid space into a fine
				      * grid space is associated with
				      * a matrix @p P. The
				      * restriction of this matrix @p P_i to
				      * a single child cell is
				      * returned here.
				      *
				      * The matrix @p P is the
				      * concatenation, not the sum of
				      * the cell matrices
				      * @p P_i. That is, if the same
				      * non-zero entry <tt>j,k</tt> exists
				      * in in two different child
				      * matrices @p P_i, the value
				      * should be the same in both
				      * matrices and it is copied into
				      * the matrix @p P only once.
				      *
				      * Row and column indices are
				      * related to fine grid and
				      * coarse grid spaces,
				      * respectively, consistent with
				      * the definition of the
				      * associated operator.
				      *
				      * These matrices are used by
				      * routines assembling the
				      * prolongation matrix for
				      * multi-level methods.  Upon
				      * assembling the transfer matrix
				      * between cells using this
				      * matrix array, zero elements in
				      * the prolongation matrix are
				      * discarded and will not fill up
				      * the transfer matrix.
				      *
				      * If projection matrices are not
				      * implemented in the derived
				      * finite element class, this
				      * function aborts with
				      * ExcEmbeddingVoid. You can
				      * check whether this is the case
				      * by calling the
				      * prolongation_is_implemented()
				      * or the
				      * isotropic_prolongation_is_implemented()
				      * function.
				      */
    const FullMatrix<double> &
    get_prolongation_matrix (const unsigned int child,
			     const RefinementCase<dim> &refinement_case=RefinementCase<dim>::isotropic_refinement) const;

                                     /**
                                      * Return whether this element implements
                                      * its prolongation matrices. The return
                                      * value also indicates whether a call to
                                      * the get_prolongation_matrix()
                                      * function will generate an error or
                                      * not.
				      *
				      * Note, that this function
				      * returns <code>true</code> only
				      * if the prolongation matrices of
				      * the isotropic and all
				      * anisotropic refinement cases
				      * are implemented. If you are
				      * interested in the prolongation
				      * matrices for isotropic
				      * refinement only, use the
				      * isotropic_prolongation_is_implemented
				      * function instead.
                                      *
                                      * This function is mostly here in order
                                      * to allow us to write more efficient
                                      * test programs which we run on all
                                      * kinds of weird elements, and for which
                                      * we simply need to exclude certain
                                      * tests in case something is not
                                      * implemented. It will in general
                                      * probably not be a great help in
                                      * applications, since there is not much
                                      * one can do if one needs these features
                                      * and they are not implemented. This
                                      * function could be used to check
                                      * whether a call to
                                      * <tt>get_prolongation_matrix()</tt> will
                                      * succeed; however, one then still needs
                                      * to cope with the lack of information
                                      * this just expresses.
                                      */
    bool prolongation_is_implemented () const;

                                     /**
                                      * Return whether this element implements
                                      * its prolongation matrices for isotropic
                                      * children. The return value also
                                      * indicates whether a call to the @p
                                      * get_prolongation_matrix function will
                                      * generate an error or not.
                                      *
                                      * This function is mostly here in order
                                      * to allow us to write more efficient
                                      * test programs which we run on all
                                      * kinds of weird elements, and for which
                                      * we simply need to exclude certain
                                      * tests in case something is not
                                      * implemented. It will in general
                                      * probably not be a great help in
                                      * applications, since there is not much
                                      * one can do if one needs these features
                                      * and they are not implemented. This
                                      * function could be used to check
                                      * whether a call to
                                      * <tt>get_prolongation_matrix()</tt> will
                                      * succeed; however, one then still needs
                                      * to cope with the lack of information
                                      * this just expresses.
                                      */
    bool isotropic_prolongation_is_implemented () const;

                                     /**
                                      * Return whether this element implements
                                      * its restriction matrices. The return
                                      * value also indicates whether a call to
                                      * the get_restriction_matrix()
                                      * function will generate an error or
                                      * not.
				      *
				      * Note, that this function
				      * returns <code>true</code> only
				      * if the restriction matrices of
				      * the isotropic and all
				      * anisotropic refinement cases
				      * are implemented. If you are
				      * interested in the restriction
				      * matrices for isotropic
				      * refinement only, use the
				      * isotropic_restriction_is_implemented
				      * function instead.
                                      *
                                      * This function is mostly here in order
                                      * to allow us to write more efficient
                                      * test programs which we run on all
                                      * kinds of weird elements, and for which
                                      * we simply need to exclude certain
                                      * tests in case something is not
                                      * implemented. It will in general
                                      * probably not be a great help in
                                      * applications, since there is not much
                                      * one can do if one needs these features
                                      * and they are not implemented. This
                                      * function could be used to check
                                      * whether a call to
                                      * <tt>get_restriction_matrix()</tt> will
                                      * succeed; however, one then still needs
                                      * to cope with the lack of information
                                      * this just expresses.
                                      */
    bool restriction_is_implemented () const;

                                     /**
                                      * Return whether this element implements
                                      * its restriction matrices for isotropic
                                      * children. The return value also
                                      * indicates whether a call to the @p
                                      * get_restriction_matrix function will
                                      * generate an error or not.
                                      *
                                      * This function is mostly here in order
                                      * to allow us to write more efficient
                                      * test programs which we run on all
                                      * kinds of weird elements, and for which
                                      * we simply need to exclude certain
                                      * tests in case something is not
                                      * implemented. It will in general
                                      * probably not be a great help in
                                      * applications, since there is not much
                                      * one can do if one needs these features
                                      * and they are not implemented. This
                                      * function could be used to check
                                      * whether a call to
                                      * <tt>get_restriction_matrix()</tt> will
                                      * succeed; however, one then still needs
                                      * to cope with the lack of information
                                      * this just expresses.
                                      */
    bool isotropic_restriction_is_implemented () const;
    

				     /**
				      * Access the
				      * #restriction_is_additive_flags
				      * field. See there for more
				      * information on its contents.
				      *
				      * The index must be between zero
				      * and the number of shape
				      * functions of this element.
				      */
    bool restriction_is_additive (const unsigned int index) const;

    				     /**
				      * Return a readonly reference to
				      * the matrix which describes the
				      * constraints at the interface
				      * between a refined and an
				      * unrefined cell.
				      * 
				      * The matrix is obviously empty
				      * in only one dimension,
				      * since there are no constraints
				      * then.
				      *
				      * Note that some finite elements
				      * do not (yet) implement hanging
				      * node constraints. If this is
				      * the case, then this function
				      * will generate an exception,
				      * since no useful return value
				      * can be generated. If you
				      * should have a way to live with
				      * this, then you might want to
				      * use the
				      * constraints_are_implemented()
				      * function to check up front
				      * whethehr this function will
				      * succeed or generate the
				      * exception.
				      */
    const FullMatrix<double> & constraints (const internal::SubfaceCase<dim> &subface_case=internal::SubfaceCase<dim>::case_isotropic) const;

                                     /**
                                      * Return whether this element
                                      * implements its hanging node
                                      * constraints. The return value
                                      * also indicates whether a call
                                      * to the constraints() function
                                      * will generate an error or not.
                                      *
                                      * This function is mostly here
                                      * in order to allow us to write
                                      * more efficient test programs
                                      * which we run on all kinds of
                                      * weird elements, and for which
                                      * we simply need to exclude
                                      * certain tests in case hanging
                                      * node constraints are not
                                      * implemented. It will in
                                      * general probably not be a
                                      * great help in applications,
                                      * since there is not much one
                                      * can do if one needs hanging
                                      * node constraints and they are
                                      * not implemented. This function
                                      * could be used to check whether
                                      * a call to <tt>constraints()</tt>
                                      * will succeed; however, one
                                      * then still needs to cope with
                                      * the lack of information this
                                      * just expresses.
                                      */
    bool constraints_are_implemented (const internal::SubfaceCase<dim> &subface_case=internal::SubfaceCase<dim>::case_isotropic) const;


                                     /**
                                      * Return whether this element
                                      * implements its hanging node
                                      * constraints in the new way,
				      * which has to be used to make
				      * elements "hp compatible".
				      * That means, the element properly
				      * implements the
				      * get_face_interpolation_matrix
				      * and get_subface_interpolation_matrix
				      * methods. Therefore the return
				      * value also indicates whether a call
                                      * to the get_face_interpolation_matrix()
				      * method and the get_subface_interpolation_matrix()
				      * method will generate an error or not.
                                      *
				      * Currently the main purpose of this
				      * function is to allow the
				      * make_hanging_node_constraints method
				      * to decide whether the new procedures,
				      * which are supposed to work in the hp
				      * framework can be used, or if the old
				      * well verified but not hp capable
				      * functions should be used.  Once the
				      * transition to the new scheme for
				      * computing the interface constraints is
				      * complete, this function will be
				      * superfluous and will probably go away.
				      *
				      * Derived classes should implement this
				      * function accordingly. The default
				      * assumption is that a finite element
				      * does not provide hp capable face
				      * interpolation, and the default
				      * implementation therefore returns @p
				      * false.
                                      */
    virtual bool hp_constraints_are_implemented () const;


				     /**
				      * Return the matrix
				      * interpolating from the given
				      * finite element to the present
				      * one. The size of the matrix is
				      * then #dofs_per_cell times
				      * <tt>source.#dofs_per_cell</tt>.
				      *
				      * Derived elements will have to
				      * implement this function. They
				      * may only provide interpolation
				      * matrices for certain source
				      * finite elements, for example
				      * those from the same family. If
				      * they don't implement
				      * interpolation from a given
				      * element, then they must throw
				      * an exception of type
				      * ExcInterpolationNotImplemented.
				      */
    virtual void
    get_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
			      FullMatrix<double>       &matrix) const;
				     //@}

				     /**
				      * @name Functions to support hp 
				      * @{
				      */
    

				     /**
				      * Return the matrix
				      * interpolating from a face of
				      * of one element to the face of
				      * the neighboring element. 
				      * The size of the matrix is
				      * then <tt>source.#dofs_per_face</tt> times
				      * <tt>this->#dofs_per_face</tt>.
				      *
				      * Derived elements will have to
				      * implement this function. They
				      * may only provide interpolation
				      * matrices for certain source
				      * finite elements, for example
				      * those from the same family. If
				      * they don't implement
				      * interpolation from a given
				      * element, then they must throw
				      * an exception of type
				      * ExcInterpolationNotImplemented.
				      */
    virtual void
    get_face_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
				   FullMatrix<double>       &matrix) const;
    

				     /**
				      * Return the matrix
				      * interpolating from a face of
				      * of one element to the subface of
				      * the neighboring element. 
				      * The size of the matrix is
				      * then <tt>source.#dofs_per_face</tt> times
				      * <tt>this->#dofs_per_face</tt>.
				      *
				      * Derived elements will have to
				      * implement this function. They
				      * may only provide interpolation
				      * matrices for certain source
				      * finite elements, for example
				      * those from the same family. If
				      * they don't implement
				      * interpolation from a given
				      * element, then they must throw
				      * an exception of type
				      * ExcInterpolationNotImplemented.
				      */
    virtual void
    get_subface_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
				      const unsigned int        subface,
				      FullMatrix<double>       &matrix) const;
				     //@}
    

				     /**
				      * If, on a vertex, several
				      * finite elements are active,
				      * the hp code first assigns the
				      * degrees of freedom of each of
				      * these FEs different global
				      * indices. It then calls this
				      * function to find out which of
				      * them should get identical
				      * values, and consequently can
				      * receive the same global DoF
				      * index. This function therefore
				      * returns a list of identities
				      * between DoFs of the present
				      * finite element object with the
				      * DoFs of @p fe_other, which is
				      * a reference to a finite
				      * element object representing
				      * one of the other finite
				      * elements active on this
				      * particular vertex. The
				      * function computes which of the
				      * degrees of freedom of the two
				      * finite element objects are
				      * equivalent, and returns a list
				      * of pairs of global dof indices
				      * in @p identities. The first
				      * index of each pair denotes one
				      * of the vertex dofs of the
				      * present element, whereas the
				      * second is the corresponding
				      * index of the other finite
				      * element.
				      */
    virtual
    std::vector<std::pair<unsigned int, unsigned int> >
    hp_vertex_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;

				     /**
				      * Same as
				      * hp_vertex_dof_indices(),
				      * except that the function
				      * treats degrees of freedom on
				      * lines.
				      */
    virtual
    std::vector<std::pair<unsigned int, unsigned int> >
    hp_line_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;

				     /**
				      * Same as
				      * hp_vertex_dof_indices(),
				      * except that the function
				      * treats degrees of freedom on
				      * quads.
				      */
    virtual
    std::vector<std::pair<unsigned int, unsigned int> >
    hp_quad_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;

				     /**
				      * Return whether this element dominates
				      * the one given as argument when they
				      * meet at a common face,
				      * whether it is the other way around,
				      * whether neither dominates, or if
				      * either could dominate.
				      *
				      * For a definition of domination, see
				      * FiniteElementBase::Domination and in
				      * particular the @ref hp_paper "hp paper".
				      */
    virtual
    FiniteElementDomination::Domination
    compare_for_face_domination (const FiniteElement<dim,spacedim> &fe_other) const;
    
				     //@}
    
				     /**
				      * Comparison operator. We also
				      * check for equality of the
				      * constraint matrix, which is
				      * quite an expensive operation.
				      * Do therefore use this function
				      * with care, if possible only
				      * for debugging purposes.
				      *
				      * Since this function is not
				      * that important, we avoid an
				      * implementational question
				      * about comparing arrays and do
				      * not compare the matrix arrays
				      * #restriction and
				      * #prolongation.
				      */
    bool operator == (const FiniteElement<dim,spacedim> &) const;

				     /**
				      * @name Index computations
				      * @{
				      */
				     /**
				      * Compute vector component and
				      * index of this shape function
				      * within the shape functions
				      * corresponding to this
				      * component from the index of a
				      * shape function within this
				      * finite element.
				      *
				      * If the element is scalar, then
				      * the component is always zero,
				      * and the index within this
				      * component is equal to the
				      * overall index.
				      *
				      * If the shape function
				      * referenced has more than one
				      * non-zero component, then it
				      * cannot be associated with one
				      * vector component, and an
				      * exception of type
				      * ExcShapeFunctionNotPrimitive
				      * will be raised.
				      *
				      * Note that if the element is
				      * composed of other (base)
				      * elements, and a base element
				      * has more than one component
				      * but all its shape functions
				      * are primitive (i.e. are
				      * non-zero in only one
				      * component), then this mapping
				      * contains valid
				      * information. However, the
				      * index of a shape function of
				      * this element within one
				      * component (i.e. the second
				      * number of the respective entry
				      * of this array) does not
				      * indicate the index of the
				      * respective shape function
				      * within the base element (since
				      * that has more than one
				      * vector-component). For this
				      * information, refer to the
				      * #system_to_base_table field
				      * and the
				      * system_to_base_index()
				      * function.
				      *
				      * The use of this function is
				      * explained extensively in the
				      * step-8 and @ref
				      * step_20 "step-20" tutorial
				      * programs as well as in the
				      * @ref vector_valued module.
				      */
    std::pair<unsigned int, unsigned int>
    system_to_component_index (const unsigned int index) const;

				     /**
				      * Compute the shape function for
				      * the given vector component and
				      * index.
				      *
				      * If the element is scalar, then
				      * the component must be zero,
				      * and the index within this
				      * component is equal to the
				      * overall index.
				      *
				      * This is the opposite operation
				      * from the system_to_component_index()
				      * function.
				      */
   unsigned int component_to_system_index(const unsigned int component,
                                          const unsigned int index) const;
  
				     /**
				      * Same as
				      * system_to_component_index(),
				      * but do it for shape functions
				      * and their indices on a
				      * face. The range of allowed
				      * indices is therefore
				      * 0..#dofs_per_face.
				      *
				      * You will rarely need this
				      * function in application
				      * programs, since almost all
				      * application codes only need to
				      * deal with cell indices, not
				      * face indices. The function is
				      * mainly there for use inside
				      * the library.
				      */
    std::pair<unsigned int, unsigned int>
    face_system_to_component_index (const unsigned int index) const;

				     /**
				      * For faces with non-standard
				      * face_orientation in 3D, the dofs on
				      * faces (quads) have to be permuted in
				      * order to be combined with the correct
				      * shape functions. Given a local dof @p
				      * index on a quad, return the local index,
				      * if the face has non-standard
				      * face_orientation, face_flip or
				      * face_rotation. In 2D and 1D there is no
				      * need for permutation and consequently
				      * an exception is thrown.
				      */
    unsigned int adjust_quad_dof_index_for_face_orientation (const unsigned int index,
							     const bool face_orientation,
							     const bool face_flip,
							     const bool face_rotation) const;

				     /**
				      * For lines with non-standard
				      * line_orientation in 3D, the dofs on
				      * lines have to be permuted in order to be
				      * combined with the correct shape
				      * functions. Given a local dof @p index on
				      * a line, return the local index, if the
				      * line has non-standard
				      * line_orientation. In 2D and 1D there is
				      * no need for permutation, so the given
				      * index is simply returned.
				      */
    unsigned int adjust_line_dof_index_for_line_orientation (const unsigned int index,
							     const bool line_orientation) const;
    
				     /**
				      * Return in which of the vector
				      * components of this finite
				      * element the @p ith shape
				      * function is non-zero. The
				      * length of the returned array
				      * is equal to the number of
				      * vector components of this
				      * element.
				      *
				      * For most finite element
				      * spaces, the result of this
				      * function will be a vector with
				      * exactly one element being
				      * @p true, since for most
				      * spaces the individual vector
				      * components are independent. In
				      * that case, the component with
				      * the single zero is also the
				      * first element of what
				      * system_to_component_index()
				      * returns.
				      *
				      * Only for those
				      * spaces that couple the
				      * components, for example to
				      * make a shape function
				      * divergence free, will there be
				      * more than one @p true entry.
				      */
    const std::vector<bool> &
    get_nonzero_components (const unsigned int i) const;

				     /**
				      * Return in how many vector
				      * components the @p ith shape
				      * function is non-zero. This
				      * value equals the number of
				      * entries equal to @p true in
				      * the result of the
				      * get_nonzero_components()
				      * function.
				      *
				      * For most finite element
				      * spaces, the result will be
				      * equal to one. It is not equal
				      * to one only for those ansatz
				      * spaces for which vector-valued
				      * shape functions couple the
				      * individual components, for
				      * example in order to make them
				      * divergence-free.
				      */
    unsigned int
    n_nonzero_components (const unsigned int i) const;

				     /**
				      * Return whether the @p ith
				      * shape function is primitive in
				      * the sense that the shape
				      * function is non-zero in only
				      * one vector
				      * component. Non-primitive shape
				      * functions would then, for
				      * example, be those of
				      * divergence free ansatz spaces,
				      * in which the individual vector
				      * components are coupled.
				      *
				      * The result of the function is
				      * @p true if and only if the
				      * result of
				      * <tt>n_nonzero_components(i)</tt> is
				      * equal to one.
				      */
    bool
    is_primitive (const unsigned int i) const;

				     /**
				      * Return whether the entire
				      * finite element is primitive,
				      * in the sense that all its
				      * shape functions are
				      * primitive. If the finite
				      * element is scalar, then this
				      * is always the case.
				      *
				      * Since this is an extremely
				      * common operation, the result
				      * is cached in the
				      * #cached_primitivity
				      * variable which is computed in
				      * the constructor.
				      */
    bool
    is_primitive () const;
    
				     /**
				      * Number of base elements in a
				      * mixed discretization.
				      *
				      * Note that even for vector
				      * valued finite elements, the
				      * number of components needs not
				      * coincide with the number of
				      * base elements, since they may
				      * be reused. For example, if you
				      * create a FESystem with
				      * three identical finite element
				      * classes by using the
				      * constructor that takes one
				      * finite element and a
				      * multiplicity, then the number
				      * of base elements is still one,
				      * although the number of
				      * components of the finite
				      * element is equal to the
				      * multiplicity.
				      */
    virtual unsigned int n_base_elements () const = 0;

				     /**
				      * Access to base element
				      * objects. If the element is
				      * scalar, then
				      * <code>base_element(0)</code> is
				      * @p this.
				      */
    virtual
    const FiniteElement<dim,spacedim> &
    base_element (const unsigned int index) const = 0;

                                     /**
                                      * This index denotes how often
                                      * the base element @p index is
                                      * used in a composed element. If
                                      * the element is scalar, then
                                      * the result is always equal to
                                      * one. See the documentation for
                                      * the n_base_elements()
                                      * function for more details.
                                      */
    virtual
    unsigned int
    element_multiplicity (const unsigned int index) const = 0;
    
                                     /**
                                      * Return for shape function
                                      * @p index the base element it
                                      * belongs to, the number of the
                                      * copy of this base element
                                      * (which is between zero and the
                                      * multiplicity of this element),
                                      * and the index of this shape
                                      * function within this base
                                      * element.
                                      *
                                      * If the element is not composed of
				      * others, then base and instance
				      * are always zero, and the index
				      * is equal to the number of the
				      * shape function. If the element
				      * is composed of single
				      * instances of other elements
				      * (i.e. all with multiplicity
				      * one) all of which are scalar,
				      * then base values and dof
				      * indices within this element
				      * are equal to the
				      * #system_to_component_table. It
				      * differs only in case the
				      * element is composed of other
				      * elements and at least one of
				      * them is vector-valued itself.
				      *
				      * This function returns valid
				      * values also in the case of
				      * vector-valued
				      * (i.e. non-primitive) shape
				      * functions, in contrast to the
				      * system_to_component_index()
				      * function.
                                      */
    std::pair<std::pair<unsigned int, unsigned int>, unsigned int>
    system_to_base_index (const unsigned int index) const;

                                     /**
                                      * Same as
                                      * system_to_base_index(), but
                                      * for degrees of freedom located
                                      * on a face. The range of allowed
				      * indices is therefore
				      * 0..#dofs_per_face.
				      *
				      * You will rarely need this
				      * function in application
				      * programs, since almost all
				      * application codes only need to
				      * deal with cell indices, not
				      * face indices. The function is
				      * mainly there for use inside
				      * the library.
                                      */
    std::pair<std::pair<unsigned int, unsigned int>, unsigned int>
    face_system_to_base_index (const unsigned int index) const;

				     /**
				      * Given a base element number,
				      * return the first block of a
				      * BlockVector it would generate.
				      */
    unsigned int first_block_of_base (const unsigned int b) const;
    
 				     /**
				      * For each vector component,
				      * return which base
				      * element implements this
				      * component and which vector
				      * component in this base element
				      * this is. This information is
				      * only of interest for
				      * vector-valued finite elements
				      * which are composed of several
				      * sub-elements. In that case,
				      * one may want to obtain
				      * information about the element
				      * implementing a certain vector
				      * component, which can be done
				      * using this function and the
				      * FESystem::base_element()
				      * function.
				      *
				      * If this is a scalar finite
				      * element, then the return value
				      * is always equal to a pair of
				      * zeros.
				      */
    std::pair<unsigned int, unsigned int>
    component_to_base_index (const unsigned int component) const;
    
    
				     /**
				      * Return the base element for
				      * this block and the number of
				      * the copy of the base element.
				      */
    std::pair<unsigned int,unsigned int>
    block_to_base_index (const unsigned int block) const;
    
				     /**
				      * The vector block and the index
				      * inside the block for this
				      * shape function.
				      */
    std::pair<unsigned int,unsigned int>
    system_to_block_index (const unsigned int component) const;

				     /**
				      * The vector block for this
				      * component.
				      */
    unsigned int
    component_to_block_index (const unsigned int component) const;

				     //@}
    
				     /**
				      * @name Support points and interpolation
				      * @{
				      */
    
				     /**
				      * Return the support points of
				      * the trial functions on the
				      * unit cell, if the derived
				      * finite element defines some.
				      * Finite elements that allow
				      * some kind of interpolation
				      * operation usually have support
				      * points. On the other hand,
				      * elements that define their
				      * degrees of freedom by, for
				      * example, moments on faces, or
				      * as derivatives, don't have
				      * support points. In that case,
				      * the returned field is empty.
				      *
				      * If the finite element defines
				      * support points, then their
				      * number equals the number of
				      * degrees of freedom of the
				      * element.  The order of points
				      * in the array matches that
				      * returned by the
				      * <tt>cell->get_dof_indices</tt>
				      * function.
				      *
				      * See the class documentation
				      * for details on support points.
				      */
    const std::vector<Point<dim> > &
    get_unit_support_points () const;    

				     /**
				      * Return whether a finite
				      * element has defined support
				      * points. If the result is true,
				      * then a call to the
				      * get_unit_support_points()
				      * yields a non-empty array.
				      *
				      * The result may be false if an
				      * element is not defined by
				      * interpolating shape functions,
				      * for example by P-elements on
				      * quadrilaterals. It will
				      * usually only be true if the
				      * element constructs its shape
				      * functions by the requirement
				      * that they be one at a certain
				      * point and zero at all the
				      * points associated with the
				      * other shape functions.
				      *
				      * In composed elements (i.e. for
				      * the FESystem class, the
				      * result will be true if all all
				      * the base elements have defined
				      * support points.
				      */
    bool has_support_points () const;

                                     /**
                                      * Return the position of the
                                      * support point of the
                                      * @p indexth shape function. If
                                      * it does not exist, raise an
                                      * exception.
                                      *
                                      * The default implementation
                                      * simply returns the respective
                                      * element from the array you get
                                      * from
                                      * get_unit_support_points(),
                                      * but derived elements may
                                      * overload this function. In
                                      * particular, note that the
                                      * FESystem class overloads
                                      * it so that it can return the
                                      * support points of individual
                                      * base elements, of not all the
                                      * base elements define support
                                      * points. In this way, you can
                                      * still ask for certain support
                                      * points, even if
                                      * get_unit_support_points()
                                      * only returns an empty array.
                                      */
    virtual
    Point<dim>
    unit_support_point (const unsigned int index) const;
    
				     /**
				      * Return the support points of
				      * the trial functions on the
				      * unit face, if the derived
				      * finite element defines some.
				      * Finite elements that allow
				      * some kind of interpolation
				      * operation usually have support
				      * points. On the other hand,
				      * elements that define their
				      * degrees of freedom by, for
				      * example, moments on faces, or
				      * as derivatives, don't have
				      * support points. In that case,
				      * the returned field is empty
				      *
				      * Note that elements that have
				      * support points need not
				      * necessarily have some on the
				      * faces, even if the
				      * interpolation points are
				      * located physically on a
				      * face. For example, the
				      * discontinuous elements have
				      * interpolation points on the
				      * vertices, and for higher
				      * degree elements also on the
				      * faces, but they are not
				      * defined to be on faces since
				      * in that case degrees of
				      * freedom from both sides of a
				      * face (or from all adjacent
				      * elements to a vertex) would be
				      * identified with each other,
				      * which is not what we would
				      * like to have). Logically,
				      * these degrees of freedom are
				      * therefore defined to belong to
				      * the cell, rather than the face
				      * or vertex. In that case, the
				      * returned element would
				      * therefore have length zero.
				      *
				      * If the finite element defines
				      * support points, then their
				      * number equals the number of
				      * degrees of freedom on the face
				      * (#dofs_per_face). The order
				      * of points in the array matches
				      * that returned by the
				      * <tt>cell->get_dof_indices</tt>
				      * function.
				      *
				      * See the class documentation
				      * for details on support points.
				      */
    const std::vector<Point<dim-1> > &
    get_unit_face_support_points () const;    

				     /**
				      * Return whether a finite
				      * element has defined support
				      * points on faces. If the result
				      * is true, then a call to the
				      * get_unit_face_support_points()
				      * yields a non-empty array.
				      *
				      * For more information, see the
				      * documentation for the
				      * has_support_points()
				      * function.
				      */
    bool has_face_support_points () const;

                                     /**
                                      * The function corresponding to
                                      * the unit_support_point()
                                      * function, but for faces. See
                                      * there for more information.
                                      */
    virtual
    Point<dim-1>
    unit_face_support_point (const unsigned int index) const;
    
				     /**
				      * Return a support point vector
				      * for generalized interpolation.
				      */
    const std::vector<Point<dim> > &
    get_generalized_support_points () const;    

				     /**
				      * Returns <tt>true</tt> if the
				      * class provides nonempty
				      * vectors either from
				      * get_unit_support_points() or
				      * get_generalized_support_points().
				      */
    bool has_generalized_support_points () const;

				     /**
				      *
				      */
    const std::vector<Point<dim-1> > &
    get_generalized_face_support_points () const;

				     /**
				      * Return whether a finite
				      * element has defined
				      * generalized support
				      * points on faces. If the result
				      * is true, then a call to the
				      * get_generalized_face_support_points
				      * yields a non-empty array.
				      *
				      * For more information, see the
				      * documentation for the
				      * has_support_points()
				      * function.
				      */
    bool has_generalized_face_support_points () const;

				     /**
				      * Interpolate a set of scalar
				      * values, computed in the
				      * generalized support points.
				      *
				      * @note This function is
				      * implemented in
				      * FiniteElement for the case
				      * that the element has support
				      * points. In this case, the
				      * resulting coefficients are
				      * just the values in the suport
				      * points. All other elements
				      * must reimplement it.
				      */
    virtual void interpolate(std::vector<double>&       local_dofs,
			     const std::vector<double>& values) const;
      
				     /**
				      * Interpolate a set of vector
				      * values, computed in the
				      * generalized support points.
				      *
				      * Since a finite element often
				      * only interpolates part of a
				      * vector, <tt>offset</tt> is
				      * used to determine the first
				      * component of the vector to be
				      * interpolated. Maybe consider
				      * changing your data structures
				      * to use the next function.
				      */
    virtual void interpolate(std::vector<double>&                local_dofs,
			     const std::vector<Vector<double> >& values,
			     unsigned int offset = 0) const;
      
				     /**
				      * Interpolate a set of vector
				      * values, computed in the
				      * generalized support points.
				      */
    virtual void interpolate(
      std::vector<double>& local_dofs,
      const VectorSlice<const std::vector<std::vector<double> > >& values) const;
      
				     //@}
    
				     /**
				      * Determine an estimate for the
				      * memory consumption (in bytes)
				      * of this object.
				      *
				      * This function is made virtual,
				      * since finite element objects
				      * are usually accessed through
				      * pointers to their base class,
				      * rather than the class itself.
				      */
    virtual unsigned int memory_consumption () const;
				     /**
				      * Exception
				      *
				      * @ingroup Exceptions
				      */
    DeclException1 (ExcShapeFunctionNotPrimitive,
		    int,
		    << "The shape function with index " << arg1
		    << " is not primitive, i.e. it is vector-valued and "
		    << "has more than one non-zero vector component. This "
		    << "function cannot be called for these shape functions. "
		    << "Maybe you want to use the same function with the "
		    << "_component suffix?");
				     /**
				      * Exception
				      *
				      * @ingroup Exceptions
				      */
    DeclException0 (ExcFENotPrimitive);
				     /**
				      * Exception
				      *
				      * @ingroup Exceptions
				      */
    DeclException0 (ExcUnitShapeValuesDoNotExist);

				     /**
				      * Attempt to access support
				      * points of a finite element
				      * which is not Lagrangian.
				      *
				      * @ingroup Exceptions
				      */
    DeclException0 (ExcFEHasNoSupportPoints);

				     /**
				      * Attempt to access embedding
				      * matrices of a finite element
				      * which did not implement these
				      * matrices.
				      *
				      * @ingroup Exceptions
				      */
    DeclException0 (ExcEmbeddingVoid);
    
				     /**
				      * Attempt to access restriction
				      * matrices of a finite element
				      * which did not implement these
				      * matrices.
				      *
				      * Exception
				      * @ingroup Exceptions
				      */
    DeclException0 (ExcProjectionVoid);
    
				     /**
				      * Attempt to access constraint
				      * matrices of a finite element
				      * which did not implement these
				      * matrices.
				      *
				      * Exception
				      * @ingroup Exceptions
				      */
    DeclException0 (ExcConstraintsVoid);
    
				     /**
				      * Exception
				      * @ingroup Exceptions
				      */
    DeclException2 (ExcWrongInterfaceMatrixSize,
		    int, int,
		    << "The interface matrix has a size of " << arg1
		    << "x" << arg2
		    << ", which is not reasonable in the present dimension.");
				     /**
				      * Exception
				      * @ingroup Exceptions
				      */
    DeclException2 (ExcComponentIndexInvalid,
		    int, int,
		    << "The component-index pair (" << arg1 << ", " << arg2
		    << ") is invalid, i.e. non-existent");
                                     /**
                                      * Exception
				      * @ingroup Exceptions
                                      */
    DeclException0 (ExcInterpolationNotImplemented);
    
				     /**
				      * Exception
				      *
				      * @ingroup Exceptions
				      */
    DeclException0 (ExcBoundaryFaceUsed);
				     /**
				      * Exception
				      *
				      * @ingroup Exceptions
				      */
    DeclException0 (ExcJacobiDeterminantHasWrongSign);
    
  protected:

				     /**
				      * Reinit the vectors of
				      * restriction and prolongation
				      * matrices to the right sizes:
				      * For every refinement case,
				      * except for
				      * RefinementCase::no_refinement,
				      * and for every child of that
				      * refinement case the space of
				      * one restriction and
				      * prolongation matrix is
				      * allocated, see the
				      * documentation of the
				      * restriction and prolongation
				      * vectors for more detail on the
				      * actual vector sizes.
				      *
				      * @param
				      * isotropic_restriction_only:
				      * only the restriction matrices
				      * required for isotropic
				      * refinement are reinited to the
				      * right size.
				      * @param
				      * isotropic_prolongation_only:
				      * only the prolongation matrices
				      * required for isotropic
				      * refinement are reinited to the
				      * right size.
				      */
    void reinit_restriction_and_prolongation_matrices(const bool isotropic_restriction_only=false,
						      const bool isotropic_prolongation_only=false);
    
    
				     /**
				      * Store whether all shape
				      * functions are primitive. Since
				      * finding this out is a very
				      * common operation, we cache the
				      * result, i.e. compute the value
				      * in the constructor for simpler
				      * access.
				      */
    const bool cached_primitivity;

 				     /**
				      * Vector of projection
				      * matrices. See
				      * get_restriction_matrix()
				      * above. The constructor
				      * initializes these matrices to
				      * zero dimensions, which can be
				      * changed by derived classes
				      * implementing them.
				      *
				      * Note, that
				      * <code>restriction[refinement_case-1][child]</code>
				      * includes the restriction
				      * matrix of child
				      * <code>child</code> for the
				      * RefinementCase
				      * <code>refinement_case</code>. Here,
				      * we use
				      * <code>refinement_case-1</code>
				      * instead of
				      * <code>refinement_case</code>
				      * as for
				      * RefinementCase::no_refinement(=0)
				      * there are no restriction
				      * matrices available.
				      */
    std::vector<std::vector<FullMatrix<double> > > restriction;

    				     /**
				      * Vector of embedding
				      * matrices. See
				      * <tt>get_prolongation_matrix()</tt>
				      * above. The constructor
				      * initializes these matrices to
				      * zero dimensions, which can be
				      * changed by derived classes
				      * implementing them.
				      *
				      * Note, that
				      * <code>prolongation[refinement_case-1][child]</code>
				      * includes the prolongation
				      * matrix of child
				      * <code>child</code> for the
				      * RefinementCase
				      * <code>refinement_case</code>. Here,
				      * we use
				      * <code>refinement_case-1</code>
				      * instead of
				      * <code>refinement_case</code>
				      * as for
				      * RefinementCase::no_refinement(=0)
				      * there are no prolongation
				      * matrices available.
				      */
    std::vector<std::vector<FullMatrix<double> > > prolongation;

   				     /**
				      * Specify the constraints which
				      * the dofs on the two sides of a
				      * cell interface underly if the
				      * line connects two cells of
				      * which one is refined once.
				      *
				      * For further details see the
				      * general description of the
				      * derived class.
				      *
				      * This field is obviously
				      * useless in one dimension
				      * and has there a zero size.
				      */
    FullMatrix<double> interface_constraints;

				     /**
				      * List of support points on the
				      * unit cell, in case the finite
				      * element has any. The
				      * constructor leaves this field
				      * empty, derived classes may
				      * write in some contents.
				      *
				      * Finite elements that allow
				      * some kind of interpolation
				      * operation usually have support
				      * points. On the other hand,
				      * elements that define their
				      * degrees of freedom by, for
				      * example, moments on faces, or
				      * as derivatives, don't have
				      * support points. In that case,
				      * this field remains empty.
				      */
    std::vector<Point<dim> > unit_support_points;

				     /**
				      * Same for the faces. See the
				      * description of the
				      * get_unit_face_support_points()
				      * function for a discussion of
				      * what contributes a face
				      * support point.
				      */
    std::vector<Point<dim-1> > unit_face_support_points;
    
				     /**
				      * Support points used for
				      * interpolation functions of
				      * non-Lagrangian elements.
				      */
    std::vector<Point<dim> > generalized_support_points;
    
				     /**
				      * Face support points used for
				      * interpolation functions of
				      * non-Lagrangian elements.
				      */    
    std::vector<Point<dim-1> > generalized_face_support_points;
    
				     /**
				      * For faces with non-standard
				      * face_orientation in 3D, the dofs on
				      * faces (quads) have to be permuted in
				      * order to be combined with the correct
				      * shape functions. Given a local dof @p
				      * index on a quad, return the shift in the
				      * local index, if the face has
				      * non-standard face_orientation,
				      * i.e. <code>old_index + shift =
				      * new_index</code>. In 2D and 1D there is
				      * no need for permutation so the vector is
				      * empty. In 3D it has the size of <code>
				      * #dofs_per_quad * 8 </code>, where 8 is
				      * the number of orientations, a face can
				      * be in (all comibinations of the three
				      * bool flags face_orientation, face_flip
				      * and face_rotation).
				      *
				      * The standard implementation fills this
				      * with zeros, i.e. no permuatation at
				      * all. Derived finite element classes have
				      * to fill this Table with the correct
				      * values.
				      */
    Table<2,int> adjust_quad_dof_index_for_face_orientation_table;

				     /**
				      * For lines with non-standard
				      * line_orientation in 3D, the dofs on
				      * lines have to be permuted in
				      * order to be combined with the correct
				      * shape functions. Given a local dof @p
				      * index on a line, return the shift in the
				      * local index, if the line has
				      * non-standard line_orientation,
				      * i.e. <code>old_index + shift =
				      * new_index</code>. In 2D and 1D there is
				      * no need for permutation so the vector is
				      * empty. In 3D it has the size of
				      * #dofs_per_line.
				      *
				      * The standard implementation fills this
				      * with zeros, i.e. no permuatation at
				      * all. Derived finite element classes have
				      * to fill this vector with the correct
				      * values.
				      */
    std::vector<int> adjust_line_dof_index_for_line_orientation_table;

                                     /**
                                      * Return the size of interface
                                      * constraint matrices. Since
                                      * this is needed in every
                                      * derived finite element class
                                      * when initializing their size,
                                      * it is placed into this
                                      * function, to avoid having to
                                      * recompute the
                                      * dimension-dependent size of
                                      * these matrices each time.
                                      *
                                      * Note that some elements do not
                                      * implement the interface
                                      * constraints for certain
                                      * polynomial degrees. In this
                                      * case, this function still
                                      * returns the size these
                                      * matrices should have when
                                      * implemented, but the actual
                                      * matrices are empty.
                                      */
    TableIndices<2>
    interface_constraints_size () const;

                                     /**
				      * Compute second derivatives by
				      * finite differences of
				      * gradients.
				      */
    void compute_2nd (const Mapping<dim,spacedim>                      &mapping,
		      const typename Triangulation<dim,spacedim>::cell_iterator    &cell,
		      const unsigned int                       offset,
		      typename Mapping<dim,spacedim>::InternalDataBase &mapping_internal,
		      InternalDataBase                        &fe_internal,
		      FEValuesData<dim,spacedim>                       &data) const;

				     /**
				      * Given the pattern of nonzero
				      * components for each shape
				      * function, compute for each
				      * entry how many components are
				      * non-zero for each shape
				      * function. This function is
				      * used in the constructor of
				      * this class.
				      */
    static
    std::vector<unsigned int>
    compute_n_nonzero_components (const std::vector<std::vector<bool> > &nonzero_components);

				     /**
				      * Determine the values a finite
				      * element should compute on
				      * initialization of data for
				      * FEValues.
				      *
				      * Given a set of flags
				      * indicating what quantities are
				      * requested from a FEValues
				      * object, update_once() and
				      * update_each() compute which
				      * values must really be
				      * computed. Then, the
				      * <tt>fill_*_values</tt> functions
				      * are called with the result of
				      * these.
				      *
				      * Furthermore, values must be
				      * computed either on the unit
				      * cell or on the physical
				      * cell. For instance, the
				      * function values of FE_Q do
				      * only depend on the quadrature
				      * points on the unit
				      * cell. Therefore, this flags
				      * will be returned by
				      * update_once(). The gradients
				      * require computation of the
				      * covariant transformation
				      * matrix. Therefore,
				      * @p update_covariant_transformation
				      * and @p update_gradients will
				      * be returned by
				      * update_each().
				      *
				      * For an example see the same
				      * function in the derived class
				      * FE_Q.
				      */
    virtual UpdateFlags update_once (const UpdateFlags flags) const = 0;
  
				     /**
				      * Complementary function for
				      * update_once().
				      *
				      * While update_once() returns
				      * the values to be computed on
				      * the unit cell for yielding the
				      * required data, this function
				      * determines the values that
				      * must be recomputed on each
				      * cell.
				      *
				      * Refer to update_once() for
				      * more details.
				      */
    virtual UpdateFlags update_each (const UpdateFlags flags) const = 0;
  
				     /**
				      * A sort of virtual copy
				      * constructor. Some places in
				      * the library, for example the
				      * constructors of FESystem as
				      * well as the hp::FECollection
				      * class, need to make copied of
				      * finite elements without
				      * knowing their exact type. They
				      * do so through this function.
				      */
    virtual FiniteElement<dim,spacedim> *clone() const = 0;    
    
  private:
				     /**
				      * Store what
				      * system_to_component_index()
				      * will return.
				      */
    std::vector< std::pair<unsigned int, unsigned int> > system_to_component_table;

                                     /**
  				      * Map between linear dofs and
 				      * component dofs on face. This
 				      * is filled with default values
 				      * in the constructor, but
 				      * derived classes will have to
 				      * overwrite the information if
 				      * necessary.
 				      *
 				      * By component, we mean the
 				      * vector component, not the base
 				      * element. The information thus
 				      * makes only sense if a shape
 				      * function is non-zero in only
 				      * one component.
				      */
    std::vector< std::pair<unsigned int, unsigned int> > face_system_to_component_table;

				     /**
				      * For each shape function, store
				      * to which base element and
				      * which instance of this base
				      * element (in case its
				      * multiplicity is greater than
				      * one) it belongs, and its index
				      * within this base element. If
				      * the element is not composed of
				      * others, then base and instance
				      * are always zero, and the index
				      * is equal to the number of the
				      * shape function. If the element
				      * is composed of single
				      * instances of other elements
				      * (i.e. all with multiplicity
				      * one) all of which are scalar,
				      * then base values and dof
				      * indices within this element
				      * are equal to the
				      * #system_to_component_table. It
				      * differs only in case the
				      * element is composed of other
				      * elements and at least one of
				      * them is vector-valued itself.
				      *
				      * This array has valid values
				      * also in the case of
				      * vector-valued
				      * (i.e. non-primitive) shape
				      * functions, in contrast to the
				      * #system_to_component_table.
				      */
    std::vector<std::pair<std::pair<unsigned int,unsigned int>,unsigned int> >
    system_to_base_table;

				     /**
				      * Likewise for the indices on
				      * faces.
				      */
    std::vector<std::pair<std::pair<unsigned int,unsigned int>,unsigned int> >
    face_system_to_base_table;

				     /**
				      * For each base element, store
				      * the first block in a block
				      * vector it will generate.
				      */
    std::vector<unsigned int> first_block_of_base_table;
    
				     /**
				      * The base element establishing
				      * a component.
				      *
				      * For each component number
				      * <tt>c</tt>, the entries have
				      * the following meaning:
				      * <dl>
				      * <dt><tt>table[c].first.first</tt></dt>
				      * <dd>Number of the base element for <tt>c</tt>.</dd>
				      * <dt><tt>table[c].first.second</tt></dt>
				      * <dd>Component in the base element for <tt>c</tt>.</dd>
				      * <dt><tt>table[c].second</tt></dt>
				      * <dd>Multiple of the base element for <tt>c</tt>.</dd>
				      * </dl>
				      *
				      * This variable is set to the
				      * correct size by the
				      * constructor of this class, but
				      * needs to be initialized by
				      * derived classes, unless its
				      * size is one and the only entry
				      * is a zero, which is the case
				      * for scalar elements. In that
				      * case, the initialization by
				      * the base class is sufficient.
				      */
    std::vector<std::pair<std::pair<unsigned int, unsigned int>, unsigned int> >
    component_to_base_table;
    
				     /**
				      * Projection matrices are
				      * concatenated or summed up.
				      *
				      * This flags decides on how the
				      * projection matrices of the
				      * children of the same father
				      * are put together to one
				      * operator. The possible modes
				      * are concatenation and
				      * summation.
				      *
				      * If the projection is defined
				      * by an interpolation operator,
				      * the child matrices are
				      * concatenated, i.e. values
				      * belonging to the same node
				      * functional are identified and
				      * enter the interpolated value
				      * only once. In this case, the
				      * flag must be @p false.
				      *
				      * For projections with respect
				      * to scalar products, the child
				      * matrices must be summed up to
				      * build the complete matrix. The
				      * flag should be @p true.
				      *
				      * For examples of use of these
				      * flags, see the places in the
				      * library where it is queried.
				      * 
				      * There is one flag per shape
				      * function, indicating whether
				      * it belongs to the class of
				      * shape functions that are
				      * additive in the restriction or
				      * not.
				      *
				      * Note that in previous versions
				      * of the library, there was one
				      * flag per vector component of
				      * the element. This is based on
				      * the fact that all the shape
				      * functions that belong to the
				      * same vector component must
				      * necessarily behave in the same
				      * way, to make things
				      * reasonable. However, the
				      * problem is that it is
				      * sometimes impossible to query
				      * this flag in the vector-valued
				      * case: this used to be done
				      * with the
				      * #system_to_component_index
				      * function that returns which
				      * vector component a shape
				      * function is associated
				      * with. The point is that since
				      * we now support shape functions
				      * that are associated with more
				      * than one vector component (for
				      * example the shape functions of
				      * Raviart-Thomas, or Nedelec
				      * elements), that function can
				      * no more be used, so it can be
				      * difficult to find out which
				      * for vector component we would
				      * like to query the
				      * restriction-is-additive flags.
				      */
    const std::vector<bool> restriction_is_additive_flags;

				     /**
				      * For each shape function, give
				      * a vector of bools (with size
				      * equal to the number of vector
				      * components which this finite
				      * element has) indicating in
				      * which component each of these
				      * shape functions is non-zero.
				      *
				      * For primitive elements, there
				      * is only one non-zero
				      * component.
				      */
    const std::vector<std::vector<bool> > nonzero_components;

				     /**
				      * This array holds how many
				      * values in the respective entry
				      * of the #nonzero_components
				      * element are non-zero. The
				      * array is thus a short-cut to
				      * allow faster access to this
				      * information than if we had to
				      * count the non-zero entries
				      * upon each request for this
				      * information. The field is
				      * initialized in the constructor
				      * of this class.
				      */
    const std::vector<unsigned int> n_nonzero_components_table;

				     /**
				      * Second derivatives of shapes
				      * functions are not computed
				      * analytically, but by finite
				      * differences of the
				      * gradients. This static
				      * variable denotes the step
				      * length to be used for
				      * that. It's value is set to
				      * 1e-6.
				      */
    static const double fd_step_length;

				     /**
				      * Prepare internal data
				      * structures and fill in values
				      * independent of the
				      * cell. Returns a pointer to an
				      * object of which the caller of
				      * this function then has to
				      * assume ownership (which
				      * includes destruction when it
				      * is no more needed).
				      */
    virtual typename Mapping<dim,spacedim>::InternalDataBase*
    get_data (const UpdateFlags      flags,
	      const Mapping<dim,spacedim>    &mapping,
	      const Quadrature<dim> &quadrature) const = 0;

				     /**
				      * Prepare internal data
				      * structure for transformation
				      * of faces and fill in values
				      * independent of the
				      * cell. Returns a pointer to an
				      * object of which the caller of
				      * this function then has to
				      * assume ownership (which
				      * includes destruction when it
				      * is no more needed).
				      */
    virtual typename Mapping<dim,spacedim>::InternalDataBase*
    get_face_data (const UpdateFlags        flags,
		   const Mapping<dim,spacedim>      &mapping,
		   const Quadrature<dim-1> &quadrature) const;

				     /**
				      * Prepare internal data
				      * structure for transformation
				      * of children of faces and fill
				      * in values independent of the
				      * cell. Returns a pointer to an
				      * object of which the caller of
				      * this function then has to
				      * assume ownership (which
				      * includes destruction when it
				      * is no more needed).
				      */
    virtual typename Mapping<dim,spacedim>::InternalDataBase*
    get_subface_data (const UpdateFlags        flags,
		      const Mapping<dim,spacedim>      &mapping,
		      const Quadrature<dim-1> &quadrature) const;

				     /**
				      * Fill the fields of
				      * FEValues. This function
				      * performs all the operations
				      * needed to compute the data of an
				      * FEValues object.
				      *
				      * The same function in
				      * @p mapping must have been
				      * called for the same cell first!
				      */				      
    virtual void
    fill_fe_values (const Mapping<dim,spacedim>                               &mapping,
		    const typename Triangulation<dim,spacedim>::cell_iterator &cell,
		    const Quadrature<dim>                                     &quadrature,
		    typename Mapping<dim,spacedim>::InternalDataBase          &mapping_internal,
		    typename Mapping<dim,spacedim>::InternalDataBase          &fe_internal,
		    FEValuesData<dim,spacedim>                                &data,
		    CellSimilarity::Similarity                           &cell_similarity) const = 0;
    
				     /**
				      * Fill the fields of
				      * FEFaceValues. This function
				      * performs all the operations
				      * needed to compute the data of an
				      * FEFaceValues object.
				      *
				      * The same function in
				      * @p mapping must have been
				      * called for the same cell first!
				      */				      
    virtual void
    fill_fe_face_values (const Mapping<dim,spacedim>                   &mapping,
			 const typename Triangulation<dim,spacedim>::cell_iterator &cell,
			 const unsigned int                    face_no,
			 const Quadrature<dim-1>              &quadrature,
			 typename Mapping<dim,spacedim>::InternalDataBase       &mapping_internal,
			 typename Mapping<dim,spacedim>::InternalDataBase       &fe_internal,
			 FEValuesData<dim,spacedim>                    &data) const = 0;
    
				     /**
				      * Fill the fields of
				      * FESubfaceValues. This function
				      * performs all the operations
				      * needed to compute the data of an
				      * FESubfaceValues object.
				      *
				      * The same function in
				      * @p mapping must have been
				      * called for the same cell first!
				      */				      
    virtual void
    fill_fe_subface_values (const Mapping<dim,spacedim>                   &mapping,
			    const typename Triangulation<dim,spacedim>::cell_iterator &cell,
			    const unsigned int                    face_no,
			    const unsigned int                    sub_no,
			    const Quadrature<dim-1>              &quadrature,
			    typename Mapping<dim,spacedim>::InternalDataBase &mapping_internal,
			    typename Mapping<dim,spacedim>::InternalDataBase &fe_internal,
			    FEValuesData<dim,spacedim>                    &data) const = 0;

    friend class InternalDataBase;
    friend class FEValuesBase<dim,spacedim>;
    friend class FEValues<dim,spacedim>;
    friend class FEFaceValues<dim,spacedim>;
    friend class FESubfaceValues<dim,spacedim>;
    template <int, int > friend class FESystem;
    template <class POLY, int dim_, int spacedim_> friend class FE_PolyTensor;
    friend class hp::FECollection<dim,spacedim>;

};


//----------------------------------------------------------------------//


template <int dim, int spacedim>
inline
const FiniteElement<dim,spacedim> &
FiniteElement<dim,spacedim>::operator[] (const unsigned int fe_index) const
{
  Assert (fe_index == 0,
	  ExcMessage ("A fe_index of zero is the only index allowed here"));
  return *this;
}



template <int dim, int spacedim>  
inline
std::pair<unsigned int,unsigned int>
FiniteElement<dim,spacedim>::system_to_component_index (const unsigned int index) const
{
  Assert (index < system_to_component_table.size(),
	 ExcIndexRange(index, 0, system_to_component_table.size()));
  Assert (is_primitive (index),
	  ( typename FiniteElement<dim,spacedim>::ExcShapeFunctionNotPrimitive(index)) );
  return system_to_component_table[index];
}



template <int dim, int spacedim>  
inline
unsigned int
FiniteElement<dim,spacedim>::component_to_system_index (const unsigned int component,
                                                   const unsigned int index) const
{
   std::vector< std::pair<unsigned int, unsigned int> >::const_iterator
      it = std::find(system_to_component_table.begin(), system_to_component_table.end(),
                     std::pair<unsigned int, unsigned int>(component, index));

   Assert(it != system_to_component_table.end(), ExcComponentIndexInvalid(component, index));
   return std::distance(system_to_component_table.begin(), it);
}



template <int dim, int spacedim>  
inline
std::pair<unsigned int,unsigned int>
FiniteElement<dim,spacedim>::face_system_to_component_index (const unsigned int index) const
{
  Assert(index < face_system_to_component_table.size(),
	 ExcIndexRange(index, 0, face_system_to_component_table.size()));

                                   // in debug mode, check whether the
                                   // function is primitive, since
                                   // otherwise the result may have no
                                   // meaning
                                   //
                                   // since the primitivity tables are
                                   // all geared towards cell dof
                                   // indices, rather than face dof
                                   // indices, we have to work a
                                   // little bit...
                                   //
                                   // in 1d, the face index is equal
                                   // to the cell index
  Assert (is_primitive(this->face_to_equivalent_cell_index(index)),
          (typename FiniteElement<dim,spacedim>::ExcShapeFunctionNotPrimitive(index)) );

  return face_system_to_component_table[index];
}



template <int dim, int spacedim>  
inline
std::pair<std::pair<unsigned int,unsigned int>,unsigned int>
FiniteElement<dim,spacedim>::system_to_base_index (const unsigned int index) const
{
  Assert (index < system_to_base_table.size(),
	 ExcIndexRange(index, 0, system_to_base_table.size()));
  return system_to_base_table[index];
}




template <int dim, int spacedim>  
inline
std::pair<std::pair<unsigned int,unsigned int>,unsigned int>
FiniteElement<dim,spacedim>::face_system_to_base_index (const unsigned int index) const
{
  Assert(index < face_system_to_base_table.size(),
	 ExcIndexRange(index, 0, face_system_to_base_table.size()));
  return face_system_to_base_table[index];
}



template <int dim, int spacedim>  
inline
unsigned int
FiniteElement<dim,spacedim>::first_block_of_base (const unsigned int index) const
{
  Assert(index < first_block_of_base_table.size(),
	 ExcIndexRange(index, 0, first_block_of_base_table.size()));

  return first_block_of_base_table[index];
}



template <int dim, int spacedim>  
inline
std::pair<unsigned int,unsigned int>
FiniteElement<dim,spacedim>::component_to_base_index (const unsigned int index) const
{
  Assert(index < component_to_base_table.size(),
	 ExcIndexRange(index, 0, component_to_base_table.size()));

  return component_to_base_table[index].first;
}



template <int dim, int spacedim>  
inline
std::pair<unsigned int,unsigned int>
FiniteElement<dim,spacedim>::block_to_base_index (const unsigned int index) const
{
  Assert(index < this->n_blocks(),
	 ExcIndexRange(index, 0, this->n_blocks()));
  
  for (int i=first_block_of_base_table.size()-1; i>=0; --i)
    if (first_block_of_base_table[i] <= index)
      return std::pair<unsigned int, unsigned int>(static_cast<unsigned int> (i),
						   index - first_block_of_base_table[i]);
  return std::make_pair(numbers::invalid_unsigned_int,
			numbers::invalid_unsigned_int);
}



template <int dim, int spacedim>  
inline
std::pair<unsigned int,unsigned int>
FiniteElement<dim,spacedim>::system_to_block_index (const unsigned int index) const
{
  Assert (index < this->dofs_per_cell,
	  ExcIndexRange(index, 0, this->dofs_per_cell));
				   // The block is computed simply as
				   // first block of this base plus
				   // the index within the base blocks
  return std::pair<unsigned int, unsigned int>(
     first_block_of_base(system_to_base_table[index].first.first)
     + system_to_base_table[index].first.second,
     system_to_base_table[index].second);
}



template <int dim, int spacedim>
inline
bool
FiniteElement<dim,spacedim>::restriction_is_additive (const unsigned int index) const
{
  Assert(index < this->dofs_per_cell,
	 ExcIndexRange(index, 0, this->dofs_per_cell));
  return restriction_is_additive_flags[index];
}



template <int dim, int spacedim>  
inline
const std::vector<bool> &
FiniteElement<dim,spacedim>::get_nonzero_components (const unsigned int i) const
{
  Assert (i < this->dofs_per_cell, ExcIndexRange (i, 0, this->dofs_per_cell));
  return nonzero_components[i];
}



template <int dim, int spacedim>  
inline
unsigned int
FiniteElement<dim,spacedim>::n_nonzero_components (const unsigned int i) const
{
  Assert (i < this->dofs_per_cell, ExcIndexRange (i, 0, this->dofs_per_cell));
  return n_nonzero_components_table[i];
}



template <int dim, int spacedim>  
inline
bool
FiniteElement<dim,spacedim>::is_primitive (const unsigned int i) const
{
  Assert (i < this->dofs_per_cell, ExcIndexRange (i, 0, this->dofs_per_cell));

				   // return primitivity of a shape
				   // function by checking whether it
				   // has more than one non-zero
				   // component or not. we could cache
				   // this value in an array of bools,
				   // but accessing a bit-vector (as
				   // std::vector<bool> is) is
				   // probably more expensive than
				   // just comparing against 1
				   //
				   // for good measure, short circuit the test
				   // if the entire FE is primitive
  return ((cached_primitivity == true)
	  ||
	  (n_nonzero_components_table[i] == 1));
}



template <int dim, int spacedim>  
inline
bool
FiniteElement<dim,spacedim>::is_primitive () const
{
  return cached_primitivity;
}


DEAL_II_NAMESPACE_CLOSE

#endif