This file is indexed.

/usr/include/deal.II/fe/fe_base.h is in libdeal.ii-dev 6.3.1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
//---------------------------------------------------------------------------
//    $Id: fe_base.h 18744 2009-04-26 21:37:54Z bangerth $
//    Version: $Name$
//
//    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009 by the deal.II authors
//
//    This file is subject to QPL and may not be  distributed
//    without copyright and license information. Please refer
//    to the file deal.II/doc/license.html for the  text  and
//    further information on this license.
//
//---------------------------------------------------------------------------
#ifndef __deal2__fe_base_h
#define __deal2__fe_base_h

#include <base/config.h>
#include <base/exceptions.h>
#include <base/subscriptor.h>
#include <base/point.h>
#include <base/tensor.h>
#include <base/table.h>
#include <base/vector_slice.h>
#include <base/geometry_info.h>
#include <lac/full_matrix.h>
#include <fe/fe_update_flags.h>
#include <fe/mapping.h>

#include <string>
#include <vector>

DEAL_II_NAMESPACE_OPEN

template<int dim, int spacedim> class FESystem;


/**
 * A namespace solely for the purpose of defining the Domination enum as well
 * as associated operators.
 */
namespace FiniteElementDomination
{
				   /**
				    * An enum that describes the
				    * outcome of comparing two elements for
				    * mutual domination. If one element
				    * dominates another, then the
				    * restriction of the space described by
				    * the dominated element to a face of the
				    * cell is strictly larger than that of
				    * the dominating element. For example,
				    * in 2-d Q(2) elements dominate Q(4)
				    * elements, because the traces of Q(4)
				    * elements are quartic polynomials which
				    * is a space strictly larger than the
				    * quadratic polynomials (the restriction
				    * of the Q(2) element). In general, Q(k)
				    * dominates Q(k') if $k\le k'$.
				    *
				    * This enum is used in the
				    * FiniteElement::compare_for_face_domination()
				    * function that is used in the context
				    * of hp finite element methods when
				    * determining what to do at faces where
				    * two different finite elements meet
				    * (see the @ref hp_paper "hp paper" for a more detailed
				    * description of the following). In that
				    * case, the degrees of freedom of one
				    * side need to be constrained to those
				    * on the other side. The determination
				    * which side is which is based on the
				    * outcome of a comparison for mutual
				    * domination: the dominated side is
				    * constrained to the dominating one.
				    *
				    * A similar situation happens in 3d, where
				    * we have to consider different elements
				    * meeting at only an edge, not an entire
				    * face. Such comparisons are then
				    * implemented in the
				    * FiniteElement::compare_for_line_domination()
				    * function.
				    *
				    * Note that there are situations where
				    * neither side dominates. The @ref hp_paper "hp paper"
				    * lists two case, with the simpler one
				    * being that a $Q_2\times Q_1$
				    * vector-valued element (i.e. a
				    * <code>FESystem(FE_Q(2),1,FE_Q(1),1)</code>)
				    * meets a $Q_1\times Q_2$ element: here,
				    * for each of the two vector-components,
				    * we can define a domination
				    * relationship, but it is different for
				    * the two components.
				    *
				    * It is clear that the concept of
				    * domination doesn't matter for
				    * discontinuous elements. However,
				    * discontinuous elements may be part of
				    * vector-valued elements and may
				    * therefore be compared against each
				    * other for domination. They should
				    * return
				    * <code>either_element_can_dominate</code>
				    * in that case. Likewise, when comparing
				    * two identical finite elements, they
				    * should return this code; the reason is
				    * that we can not decide which element
				    * will dominate at the time we look at
				    * the first component of, for example,
				    * two $Q_2\times Q_1$ and $Q_2\times
				    * Q_2$ elements, and have to keep our
				    * options open until we get to the
				    * second base element.
				    *
				    * More details on domination can be found
				    * in the @ref hp_paper "hp paper".
				    */
  enum Domination
  {
	this_element_dominates,
	other_element_dominates,
	neither_element_dominates,
	either_element_can_dominate
  };


				   /**
				    * A generalization of the binary
				    * <code>and</code> operator to a comparison
				    * relationship. The way this works is
				    * pretty much as when you would want to
				    * define a comparison relationship for
				    * vectors: either all elements of the
				    * first vector are smaller, equal, or
				    * larger than those of the second vector,
				    * or some are and some are not.
				    *
				    * This operator is pretty much the same:
				    * if both arguments are
				    * <code>this_element_dominates</code> or
				    * <code>other_element_dominates</code>,
				    * then the returned value is that
				    * value. On the other hand, if one of the
				    * values is
				    * <code>either_element_can_dominate</code>,
				    * then the returned value is that of the
				    * other argument. If either argument is
				    * <code>neither_element_dominates</code>,
				    * or if the two arguments are
				    * <code>this_element_dominates</code> and
				    * <code>other_element_dominates</code>,
				    * then the returned value is
				    * <code>neither_element_dominates</code>.
				    */
  inline Domination operator & (const Domination d1,
				const Domination d2);
}


/**
 * Dimension independent data for finite elements. See the derived
 * class FiniteElement class for information on its use. All
 * its data are available to the implementation in a concrete finite
 * element class.
 *
 * @ingroup febase
 * @author Wolfgang Bangerth, Guido Kanschat, 1998, 1999, 2000, 2001, 2003, 2005
 */
template <int dim>
class FiniteElementData
{
  public:
				     /**
				      * Enumerator for the different
				      * types of continuity a finite
				      * element may have. Continuity
				      * is measured by the Sobolev
				      * space containing the
				      * constructed finite element
				      * space and is also called this
				      * way.
				      *
				      * Note that certain continuities
				      * may imply others. For
				      * instance, a function in
				      * <i>H<sup>1</sup></i> is in
				      * <i>H<sup>curl</sup></i> and
				      * <i>H<sup>div</sup></i> as
				      * well.
				      *
				      * If you are interested in
				      * continuity in the classical
				      * sense, then the following
				      * relations hold:
				      *
				      * <ol>
				      *
				      * <li> <i>H<sup>1</sup></i>
				      * implies that the function is
				      * continuous over cell
				      * boundaries.
				      *
				      * <li> <i>H<sup>2</sup></i>
				      * implies that the function is
				      * continuously differentiable
				      * over cell boundaries.
				      *
				      * <li> <i>L<sup>2</sup></i>
				      * indicates that the element is
				      * discontinuous. Since
				      * discontinuous elements have no
				      * topological couplings between
				      * grid cells and code may
				      * actually depend on this
				      * property, <i>L<sup>2</sup></i>
				      * conformity is handled in a
				      * special way in the sense that
				      * it is <b>not</b> implied by
				      * any higher conformity.
				      * </ol>
				      *
				      * In order to test if a finite
				      * element conforms to a certain
				      * space, use
				      * FiniteElementData<dim>::conforms().
				      */
    enum Conformity
    {
					   /**
					    * Indicates incompatible
					    * continuities of a
					    * system.
					    */
	  unknown = 0x00,
	  
					   /**
					    * Discontinuous
					    * elements. See above!
					    */
	  L2 = 0x01,
	  
					   /**
					    * Conformity with the
					    * space
					    * <i>H<sup>curl</sup></i>
					    * (continuous tangential
					    * component of a vector
					    * field)
					    */
	  Hcurl = 0x02,
	  
					   /**
					    * Conformity with the
					    * space
					    * <i>H<sup>div</sup></i>
					    * (continuous normal
					    * component of a vector
					    * field)
					    */
	  Hdiv = 0x04,
	  
					   /**
					    * Conformity with the
					    * space
					    * <i>H<sup>1</sup></i>
					    * (continuous)
					    */
	  H1 = Hcurl | Hdiv,
	  
					   /**
					    * Conformity with the
					    * space
					    * <i>H<sup>2</sup></i>
					    * (continuously
					    * differentiable)
					    */
	  H2 = 0x0e
    };

				     /**
				      * The dimension of the finite
				      * element, which is the template
				      * parameter <tt>dim</tt>
				      */
    static const unsigned int dimension = dim;
    
				     /**
				      * Number of degrees of freedom on
				      * a vertex.
				      */
    const unsigned int dofs_per_vertex;

				     /** Number of degrees of freedom
				      *  in a line; not including the
				      *  degrees of freedom on the
				      *  vertices of the line.
				      */
    const unsigned int dofs_per_line;

				     /** Number of degrees of freedom
				      *  in a quadrilateral; not
				      *  including the degrees of
				      *  freedom on the lines and
				      *  vertices of the
				      *  quadrilateral.
				      */
    const unsigned int dofs_per_quad;

				     /** Number of degrees of freedom
				      *  in a hexahedron; not
				      *  including the degrees of
				      *  freedom on the
				      *  quadrilaterals, lines and
				      *  vertices of the hecahedron.
				      */
    const unsigned int dofs_per_hex;

				     /**
				      * First index of dof on a line.
				      */
    const unsigned int first_line_index;
    
				     /**
				      * First index of dof on a quad.
				      */
    const unsigned int first_quad_index;
    
				     /**
				      * First index of dof on a hexahedron.
				      */
    const unsigned int first_hex_index;
    
				     /**
				      * First index of dof on a line for face data.
				      */
    const unsigned int first_face_line_index;
    
				     /**
				      * First index of dof on a quad for face data.
				      */
    const unsigned int first_face_quad_index;

				     /**
				      * Number of degrees of freedom
				      * on a face. This is the
				      * accumulated number of degrees
				      * of freedom on all the objects
				      * of dimension up to
				      * <tt>dim-1</tt> constituting a
				      * face.
				      */
    const unsigned int dofs_per_face;
    
				     /**
				      * Total number of degrees of freedom
				      * on a cell. This is the
				      * accumulated number of degrees
				      * of freedom on all the objects
				      * of dimension up to
				      * <tt>dim</tt> constituting a
				      * cell.
				      */
    const unsigned int dofs_per_cell;

				     /**
				      * Number of vector components of
				      * this finite element, and
				      * dimension of the image
				      * space. For vector-valued
				      * finite elements (i.e. when
				      * this number is greater than
				      * one), the number of vector
				      * components is in many cases
				      * equal to the number of base
				      * elements glued together with
				      * the help of the FESystem
				      * class. However, for elements
				      * like the Nedelec element, the
				      * number is greater than one
				      * even though we only have one
				      * base element.
				      */
    const unsigned int components;
				     /**
				      * The number of vector blocks a
				      * BlockVector for this element
				      * should contain. For primitive
				      * elements, this is equal to
				      * #components, but for vector
				      * valued base elements it may
				      * differ. Actually, in systems
				      * this is the sum of the base
				      * element multiplicities.
				      */
    const unsigned int blocks;
    
				     /**
				      * Maximal polynomial degree of a
				      * shape function in a single
				      * coordinate direction.
				      */
    const unsigned int degree;

				     /**
				      * Indicate the space this element conforms to.
				      */
    const Conformity conforming_space;
    
    				     /**
				      * Default
				      * constructor. Constructs an
				      * element with no dofs. Checking
				      * n_dofs_per_cell() is therefore
				      * a good way to check if
				      * something went wrong.
				      */
    FiniteElementData ();

				     /**
				      * Constructor, computing all
				      * necessary values from the
				      * distribution of dofs to
				      * geometrcal objects.
				      *
				      * @param dofs_per_object Number
				      * of dofs on geometrical objects
				      * for each dimension. In this
				      * vector, entry 0 refers to dofs
				      * on vertices, entry 1 on lines
				      * and so on. Its length must be
				      * <i>dim+1</i>.
				      * @param n_components Number of
				      * vector components of the
				      * element.
				      * @param degree
				      * Maximal polynomial degree in a
				      * single direction.
				      * @param conformity The finite
				      * element space has continuity
				      * of this Sobolev space.
				      * @param n_blocks Number of
				      * vector blocks.
				      */
    FiniteElementData (const std::vector<unsigned int> &dofs_per_object,
		       const unsigned int n_components,
		       const unsigned int degree,
		       const Conformity conformity = unknown,
		       const unsigned int n_blocks = numbers::invalid_unsigned_int);

				     /**
				      * Number of dofs per vertex.
				      */
    unsigned int n_dofs_per_vertex () const;

				     /**
				      * Number of dofs per line. Not
				      * including dofs on lower
				      * dimensional objects.
				      */
    unsigned int n_dofs_per_line () const;

    				     /**
				      * Number of dofs per quad. Not
				      * including dofs on lower
				      * dimensional objects.
				      */
    unsigned int n_dofs_per_quad () const;

    				     /**
				      * Number of dofs per hex. Not
				      * including dofs on lower
				      * dimensional objects.
				      */
    unsigned int n_dofs_per_hex () const;

    				     /**
				      * Number of dofs per face,
				      * accumulating degrees of
				      * freedom of all lower
				      * dimensional objects.
				      */
    unsigned int n_dofs_per_face () const;

    				     /**
				      * Number of dofs per cell,
				      * accumulating degrees of
				      * freedom of all lower
				      * dimensional objects.
				      */
    unsigned int n_dofs_per_cell () const;

				     /**
				      * Return the number of degrees
				      * per structdim-dimensional
				      * object. For structdim==0, the
				      * function therefore returns
				      * dofs_per_vertex, for
				      * structdim==1 dofs_per_line,
				      * etc. This function is mostly
				      * used to allow some template
				      * trickery for functions that
				      * should work on all sorts of
				      * objects without wanting to use
				      * the different names (vertex,
				      * line, ...) associated with
				      * these objects.
				      */
    template <int structdim>
    unsigned int n_dofs_per_object () const;
    
    				     /**
				      * Number of components.
				      */
    unsigned int n_components () const;

    				     /**
				      * Number of blocks.
				      */
    unsigned int n_blocks () const;

				     /**
				      * Maximal polynomial degree of a
				      * shape function in a single
				      * coordinate direction.
				      *
				      * This function can be used to
				      * determine the optimal
				      * quadrature rule.
				      */
    unsigned int tensor_degree () const;

				     /**
				      * Test whether a finite element
				      * space conforms to a certain
				      * Sobolev space.
				      *
				      * @note This function will
				      * return a true value even if
				      * the finite element space has
				      * higher regularity than asked
				      * for.
				      */
    bool conforms (const Conformity) const;

				     /**
				      * Given an index in the natural
				      * ordering of indices on a face,
				      * return the index of the same
				      * degree of freedom on the cell.
				      * 
				      */
    unsigned int face_to_cell_index (const unsigned int face_index,
				     const unsigned int face,
				     const bool face_orientation = true,
				     const bool face_flip        = false,
				     const bool face_rotation    = false) const;
    
				     /**
				      * @deprecated This function is
				      * just a special version of
				      * face_to_cell_index for the face
				      * zero. It is therefore of
				      * limited use in aplications and
				      * most of the time, the other
				      * function is what is required.
				      *
				      * Given an index in the natural
				      * ordering of indices on a face,
				      * return the index of an
				      * equivalent degree of freedom
				      * on the cell.
				      *
				      * To explain the concept,
				      * consider the case where we
				      * would like to know whether a
				      * degree of freedom on a face is
				      * primitive. Unfortunately, the
				      * is_primitive() function in the
				      * FiniteElement class takes a
				      * cell index, so we would need
				      * to find the cell index of the
				      * shape function that
				      * corresponds to the present
				      * face index. This function does
				      * that.
				      *
				      * Code implementing this would
				      * then look like this:
				      * @code
				      * for (i=0; i<dofs_per_face; ++i)
				      *  if (fe.is_primitive(fe.face_to_equivalent_cell_index(i)))
				      *   ... do whatever
				      * @endcode
				      *
				      */
    unsigned int face_to_equivalent_cell_index (const unsigned int index) const;
    
				     /**
				      * Comparison operator.
				      */
    bool operator == (const FiniteElementData &) const;
};



// --------- inline and template functions ---------------


#ifndef DOXYGEN

namespace FiniteElementDomination
{
  inline
  Domination operator & (const Domination d1,
			 const Domination d2)
  {
				     // go through the entire list of
				     // possibilities. note that if we were
				     // into speed, obfuscation and cared
				     // enough, we could implement this
				     // operator by doing a bitwise & (and) if
				     // we gave these values to the enum
				     // values: neither_element_dominates=0,
				     // this_element_dominates=1,
				     // other_element_dominates=2,
				     // either_element_can_dominate=3
				     // =this_element_dominates|other_element_dominates
    switch (d1)
      {
	case this_element_dominates:
	      if ((d2 == this_element_dominates) ||
		  (d2 == either_element_can_dominate))
		return this_element_dominates;
	      else
		return neither_element_dominates;
	      
	case other_element_dominates:
	      if ((d2 == other_element_dominates) ||
		  (d2 == either_element_can_dominate))
		return other_element_dominates;
	      else
		return neither_element_dominates;

	case neither_element_dominates:
	      return neither_element_dominates;

	case either_element_can_dominate:
	      return d2;

	default:
					       // shouldn't get here
	      Assert (false, ExcInternalError());
      }

    return neither_element_dominates;
  }
}


template <int dim>
inline
unsigned int 
FiniteElementData<dim>::n_dofs_per_vertex () const
{
  return dofs_per_vertex;
}



template <int dim>
inline
unsigned int 
FiniteElementData<dim>::n_dofs_per_line () const
{
  return dofs_per_line;
}



template <int dim>
inline
unsigned int 
FiniteElementData<dim>::n_dofs_per_quad () const
{
  return dofs_per_quad;
}



template <int dim>
inline
unsigned int 
FiniteElementData<dim>::n_dofs_per_hex () const
{
  return dofs_per_hex;
}



template <int dim>
inline
unsigned int 
FiniteElementData<dim>::n_dofs_per_face () const
{
  return dofs_per_face;
}



template <int dim>
inline
unsigned int 
FiniteElementData<dim>::n_dofs_per_cell () const
{
  return dofs_per_cell;
}



template <int dim>
template <int structdim>
inline
unsigned int
FiniteElementData<dim>::n_dofs_per_object () const
{
  switch (structdim)
    {
      case 0:
	    return dofs_per_vertex;
      case 1:
	    return dofs_per_line;
      case 2:
	    return dofs_per_quad;
      case 3:
	    return dofs_per_hex;
      default:
	    Assert (false, ExcInternalError());
    }
  return numbers::invalid_unsigned_int;
}



template <int dim>
inline
unsigned int 
FiniteElementData<dim>::n_components () const
{
  return components;
}



template <int dim>
inline
unsigned int 
FiniteElementData<dim>::n_blocks () const
{
  return blocks;
}



template <int dim>
inline
unsigned int 
FiniteElementData<dim>::tensor_degree () const
{
  return degree;
}


template <int dim>
inline
bool
FiniteElementData<dim>::conforms (const Conformity space) const
{
  return ((space & conforming_space) == space);
}



template <>
inline
unsigned int
FiniteElementData<1>::
face_to_equivalent_cell_index (const unsigned int index) const
{
  Assert (index < dofs_per_face,
	  ExcIndexRange (index, 0, dofs_per_face));
  return index;
}



template <>
inline
unsigned int
FiniteElementData<2>::
face_to_equivalent_cell_index (const unsigned int index) const
{
  Assert (index < dofs_per_face,
	  ExcIndexRange (index, 0, dofs_per_face));

				   // on face 0, the vertices are 0 and 2
  if (index < this->dofs_per_vertex)
    return index;
  else if (index < 2*this->dofs_per_vertex)
    return index + this->dofs_per_vertex;
  else
				     // this is a dof on line 0, so on the
				     // cell there are now 4 vertices instead
				     // of only 2 ahead of this one
    return index + 2*this->dofs_per_vertex;
}




template <>
inline
unsigned int
FiniteElementData<3>::
face_to_equivalent_cell_index (const unsigned int index) const
{
				   // this case is just way too
				   // complicated. fall back to
				   // face_to_cell_index
  return face_to_cell_index(index, 0, true);
}

#endif // DOXYGEN


DEAL_II_NAMESPACE_CLOSE

#endif