This file is indexed.

/usr/include/deal.II/fe/fe_nedelec.h is in libdeal.ii-dev 6.3.1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
//---------------------------------------------------------------------------
//    $Id: fe_nedelec.h 18933 2009-06-12 08:53:35Z bangerth $
//    Version: $Name$
//
//    Copyright (C) 2002, 2003, 2004, 2005, 2006 by the deal.II authors
//
//    This file is subject to QPL and may not be  distributed
//    without copyright and license information. Please refer
//    to the file deal.II/doc/license.html for the  text  and
//    further information on this license.
//
//---------------------------------------------------------------------------
#ifndef __deal2__fe_nedelec_h
#define __deal2__fe_nedelec_h

#include <base/config.h>
#include <base/geometry_info.h>
#include <fe/fe.h>

DEAL_II_NAMESPACE_OPEN

template <int dim, int spacedim> class MappingQ;


/*!@addtogroup fe */
/*@{*/

/**
 * Implementation of continuous Nedelec elements for the space
 * H_curl. Note, however, that continuity only concerns the tangential
 * component of the vector field.
 *
 * The constructor of this class takes the degree @p p of this finite
 * element. However, presently, only lowest order elements
 * (i.e. <tt>p==1</tt>) are implemented. For a general overview of this
 * element and its properties, see the report by Anna Schneebeli that
 * is linked from the general documentation page of the library.
 *
 * This class has not yet been implemented for the codimension one case
 * (<tt>spacedim != dim</tt>).
 *
 *
 * <h3>Restriction on transformations</h3>
 *
 * In some sense, the implementation of this element is not complete,
 * but you will rarely notice. Here is the fact: since the element is
 * vector-valued already on the unit cell, the Jacobian matrix (or its
 * inverse) is needed already to generate the values of the shape
 * functions on the cells in real space. This is in contrast to most
 * other elements, where you only need the Jacobian for the
 * gradients. Thus, to generate the gradients of Nedelec shape
 * functions, one would need to have the derivatives of the inverse of
 * the Jacobian matrix.
 *
 * Basically, the Nedelec shape functions can be understood as the
 * gradients of scalar shape functions on the real cell. They are thus
 * the inverse Jacobian matrix times the gradients of scalar shape
 * functions on the unit cell. The gradient of Nedelec shape functions
 * is then, by the product rule, the sum of first the derivative (with
 * respect to true coordinates) of the inverse Jacobian times the
 * gradient (in unit coordinates) of the scalar shape function, plus
 * second the inverse Jacobian times the derivative (in true
 * coordinates) of the gradient (in unit coordinates) of the scalar
 * shape functions. Note that each of the derivatives in true
 * coordinates can be expressed as inverse Jacobian times gradient in
 * unit coordinates.
 *
 * The problem is the derivative of the inverse Jacobian. This rank-3
 * tensor can actually be computed (and we did so in very early
 * versions of the library), but is a large task and very time
 * consuming, so we dropped it. Since it is not available, we simply
 * drop this first term.
 *
 * What this means for the present case: first the computation of
 * gradients of Nedelec shape functions is wrong. Second, you will not
 * notice this usually, for two reasons:
 *
 * The first reason is that the gradient of the Jacobian vanishes if
 * the cells are mapped by an affine mapping, to which the usual
 * bilinear mapping reduces if the cell is a parallelogram. Then the
 * gradient of the shape functions is computed exact, since the first
 * term is zero.
 *
 * Second, with the Nedelec elements, you will usually want to compute
 * the curl, and extract and sum up the respective elements of the
 * full gradient tensor. However, the curl of the Jacobian vanishes,
 * so for the curl of shape functions the first term is irrelevant,
 * and the curl will be computed correctly as well.
 * 
 * 
 * <h3>Interpolation to finer and coarser meshes</h3>
 *
 * Each finite element class in deal.II provides matrices that are
 * used to interpolate from coarser to finer meshes and the other way
 * round. Interpolation from a mother cell to its children is usually
 * trivial, since finite element spaces are normally nested and this
 * kind of interpolation is therefore exact. On the other hand, when
 * we interpolate from child cells to the mother cell, we usually have
 * to throw away some information.
 *
 * For continuous elements, this transfer usually happens by
 * interpolating the values on the child cells at the support points
 * of the shape functions of the mother cell. However, for
 * discontinuous elements, we often use a projection from the child
 * cells to the mother cell. The projection approach is only possible
 * for discontinuous elements, since it cannot be guaranteed that the
 * values of the projected functions on one cell and its neighbor
 * match. In this case, only an interpolation can be
 * used. (Internally, whether the values of a shape function are
 * interpolated or projected, or better: whether the matrices the
 * finite element provides are to be treated with the properties of a
 * projection or of an interpolation, is controlled by the
 * @p restriction_is_additive flag. See there for more information.)
 *
 * Here, things are not so simple: since the element has some
 * continuity requirements across faces, we can only resort to some
 * kind of interpolation. On the other hand, for the lowest order
 * elements, the values of generating functionals are the (constant)
 * tangential values of the shape functions. We would therefore really
 * like to take the mean value of the tangential values of the child
 * faces, and make this the value of the mother face. Then, however,
 * taking a mean value of two piecewise constant function is not an
 * interpolation, but a restriction. Since this is not possible, we
 * cannot use this.
 *
 * To make a long story somewhat shorter, when interpolating from
 * refined edges to a coarse one, we do not take the mean value, but
 * pick only one (the one from the first child edge). While this is
 * not optimal, it is certainly a valid choice (using an interpolation
 * point that is not in the middle of the cell, but shifted to one
 * side), and it also preserves the order of the interpolation.
 * 
 *
 * <h3>Numbering of the degrees of freedom (DoFs)</h3>
 *
 * Nedelec elements have their degrees of freedom on edges, with shape
 * functions being vector valued and pointing in tangential
 * direction. We use the standard enumeration and direction of edges
 * in deal.II, yielding the following shape functions in 2d:
 *
 *   @verbatim
 *       3
 *    2-->--3
 *    |     |
 *   0^     ^1
 *    |     |
 *    0-->--1
 *       2
 *   @endverbatim
 *
 * For the 3d case, the ordering follows the same scheme: the lines
 * are numbered as described in the documentation of the
 * Triangulation class, i.e.
 *   @verbatim
 *       *---7---*        *---7---*
 *      /|       |       /       /|
 *     4 |       11     4       5 11
 *    /  10      |     /       /  |
 *   *   |       |    *---6---*   |
 *   |   *---3---*    |       |   *
 *   |  /       /     |       9  /
 *   8 0       1      8       | 1
 *   |/       /       |       |/
 *   *---2---*        *---2---*
 *   @endverbatim
 * and their directions are as follows:
 *   @verbatim
 *         *--->---*        *--->---*
 *        /|       |       /       /|
 *       ^ |       ^      ^       ^ ^
 *      /  ^       |     /       /  |
 *     *   |       |    *--->---*   |
 *     |   *--->---*    |       |   *
 *     |  /       /     |       ^  /
 *     ^ ^       ^      ^       | ^
 *     |/       /       |       |/
 *     *--->---*        *--->---*
 *   @endverbatim
 *
 * The element does not make much sense in 1d, so it is not
 * implemented there.
 *
 *
 * @author Wolfgang Bangerth, Anna Schneebeli, 2002, 2003
 */
template <int dim, int spacedim=dim>
class FE_Nedelec : public FiniteElement<dim,spacedim>
{
  public:
				     /**
				      * Constructor for the Nedelec
				      * element of degree @p p.
				      */
    FE_Nedelec (const unsigned int p);
    
				     /**
				      * Return a string that uniquely
				      * identifies a finite
				      * element. This class returns
				      * <tt>FE_Nedelec<dim>(degree)</tt>, with
				      * @p dim and @p degree
				      * replaced by appropriate
				      * values.
				      */
    virtual std::string get_name () const;

				     /**
				      * Return the value of the
				      * @p componentth vector
				      * component of the @p ith shape
				      * function at the point
				      * @p p. See the
				      * FiniteElement base
				      * class for more information
				      * about the semantics of this
				      * function.
				      */
    virtual double shape_value_component (const unsigned int i,
					  const Point<dim> &p,
					  const unsigned int component) const;

				     /**
				      * Return the gradient of the
				      * @p componentth vector
				      * component of the @p ith shape
				      * function at the point
				      * @p p. See the
				      * FiniteElement base
				      * class for more information
				      * about the semantics of this
				      * function.
				      */
    virtual Tensor<1,dim> shape_grad_component (const unsigned int i,
						const Point<dim> &p,
						const unsigned int component) const;

				     /**
				      * Return the second derivative
				      * of the @p componentth vector
				      * component of the @p ith shape
				      * function at the point
				      * @p p. See the
				      * FiniteElement base
				      * class for more information
				      * about the semantics of this
				      * function.
				      */
    virtual Tensor<2,dim> shape_grad_grad_component (const unsigned int i,
						     const Point<dim> &p,
						     const unsigned int component) const;

				     /**
				      * Return the polynomial degree
				      * of this finite element,
				      * i.e. the value passed to the
				      * constructor.
				      */
    unsigned int get_degree () const;
    
				     /**
				      * Number of base elements in a
				      * mixed discretization. Here,
				      * this is of course equal to
				      * one.
				      */
    virtual unsigned int n_base_elements () const;
    
				     /**
				      * Access to base element
				      * objects. Since this element is
				      * atomic, <tt>base_element(0)</tt> is
				      * @p this, and all other
				      * indices throw an error.
				      */
    virtual const FiniteElement<dim,spacedim> &
    base_element (const unsigned int index) const;

                                     /**
                                      * Multiplicity of base element
                                      * @p index. Since this is an
                                      * atomic element,
                                      * <tt>element_multiplicity(0)</tt>
                                      * returns one, and all other
                                      * indices will throw an error.
                                      */
    virtual unsigned int element_multiplicity (const unsigned int index) const;
    
				     /**
				      * This function returns
				      * @p true, if the shape
				      * function @p shape_index has
				      * non-zero values on the face
				      * @p face_index. For the lowest
				      * order Nedelec elements, this
				      * is actually the case for the
				      * one on which the shape
				      * function is defined and all
				      * neighboring ones.
				      *
				      * Implementation of the
				      * interface in
				      * FiniteElement
				      */
    virtual bool has_support_on_face (const unsigned int shape_index,
				      const unsigned int face_index) const;

				     /**
				      * Determine an estimate for the
				      * memory consumption (in bytes)
				      * of this object.
				      *
				      * This function is made virtual,
				      * since finite element objects
				      * are usually accessed through
				      * pointers to their base class,
				      * rather than the class itself.
				      */
    virtual unsigned int memory_consumption () const;


				     /**
				      * Declare a nested class which
				      * will hold static definitions of
				      * various matrices such as
				      * constraint and embedding
				      * matrices. The definition of
				      * the various static fields are
				      * in the files <tt>fe_nedelec_[23]d.cc</tt>
				      * in the source directory.
				      */
    struct Matrices
    {
					 /**
					  * Embedding matrices. For
					  * each element type (the
					  * first index) there are as
					  * many embedding matrices as
					  * there are children per
					  * cell. The first index
					  * starts with linear
					  * elements and goes up in
					  * polynomial degree. The
					  * array may grow in the
					  * future with the number of
					  * elements for which these
					  * matrices have been
					  * computed. If for some
					  * element, the matrices have
					  * not been computed then you
					  * may use the element
					  * nevertheless but can not
					  * access the respective
					  * fields.
					  */
	static const double * const
	embedding[][GeometryInfo<dim>::max_children_per_cell];

					 /**
					  * Number of elements (first
					  * index) the above field
					  * has. Equals the highest
					  * polynomial degree for
					  * which the embedding
					  * matrices have been
					  * computed.
					  */
	static const unsigned int n_embedding_matrices;

					 /**
					  * As the
					  * @p embedding_matrices
					  * field, but for the
					  * interface constraints. One
					  * for each element for which
					  * it has been computed.
					  */
	static const double * const constraint_matrices[];

					 /**
					  * Like
					  * @p n_embedding_matrices,
					  * but for the number of
					  * interface constraint
					  * matrices.
					  */
	static const unsigned int n_constraint_matrices;
    };
  protected:    
				     /**
				      * @p clone function instead of
				      * a copy constructor.
				      *
				      * This function is needed by the
				      * constructors of @p FESystem.
				      */
    virtual FiniteElement<dim,spacedim> * clone() const;
  
				     /**
				      * Prepare internal data
				      * structures and fill in values
				      * independent of the cell.
				      */
    virtual
    typename Mapping<dim,spacedim>::InternalDataBase *
    get_data (const UpdateFlags,
	      const Mapping<dim,spacedim>& mapping,
	      const Quadrature<dim>& quadrature) const ;

				     /**
				      * Implementation of the same
				      * function in
				      * FiniteElement.
				      */
    virtual void
    fill_fe_values (const Mapping<dim,spacedim>                      &mapping,
		    const typename Triangulation<dim,spacedim>::cell_iterator &cell,
		    const Quadrature<dim>                            &quadrature,
		    typename Mapping<dim,spacedim>::InternalDataBase &mapping_internal,
		    typename Mapping<dim,spacedim>::InternalDataBase &fe_internal,
		    FEValuesData<dim,spacedim>                       &data,
		    CellSimilarity::Similarity                  &cell_similarity) const;
    
				     /**
				      * Implementation of the same
				      * function in
				      * FiniteElement.
				      */
    virtual void
    fill_fe_face_values (const Mapping<dim,spacedim> &mapping,
			 const typename Triangulation<dim,spacedim>::cell_iterator &cell,
			 const unsigned int                    face_no,
			 const Quadrature<dim-1>                &quadrature,
			 typename Mapping<dim,spacedim>::InternalDataBase      &mapping_internal,
			 typename Mapping<dim,spacedim>::InternalDataBase      &fe_internal,
			 FEValuesData<dim,spacedim>& data) const ;
    
				     /**
				      * Implementation of the same
				      * function in
				      * FiniteElement.
				      */
    virtual void
    fill_fe_subface_values (const Mapping<dim,spacedim> &mapping,
			    const typename Triangulation<dim,spacedim>::cell_iterator &cell,
			    const unsigned int                    face_no,
			    const unsigned int                    sub_no,
			    const Quadrature<dim-1>                &quadrature,
			    typename Mapping<dim,spacedim>::InternalDataBase      &mapping_internal,
			    typename Mapping<dim,spacedim>::InternalDataBase      &fe_internal,
			    FEValuesData<dim,spacedim>& data) const ;

  private:
    
				     /**
				      * Only for internal use. Its
				      * full name is
				      * @p get_dofs_per_object_vector
				      * function and it creates the
				      * @p dofs_per_object vector that is
				      * needed within the constructor to
				      * be passed to the constructor of
				      * @p FiniteElementData.
				      */
    static std::vector<unsigned int> get_dpo_vector(const unsigned int degree);


				     /**
				      * Initialize the hanging node
				      * constraints matrices. Called
				      * from the constructor.
				      */
    void initialize_constraints ();

				     /**
				      * Initialize the embedding
				      * matrices. Called from the
				      * constructor.
				      */
    void initialize_embedding ();

				     /**
				      * Initialize the restriction
				      * matrices. Called from the
				      * constructor.
				      */
    void initialize_restriction ();
    
				     /**
				      * Initialize the
				      * @p unit_support_points field
				      * of the FiniteElement
				      * class. Called from the
				      * constructor.
				      */
    void initialize_unit_support_points ();

				     /**
				      * Initialize the
				      * @p unit_face_support_points field
				      * of the FiniteElement
				      * class. Called from the
				      * constructor.
				      */
    void initialize_unit_face_support_points ();
    
				     /**
				      * Given a set of flags indicating
				      * what quantities are requested
				      * from a @p FEValues object,
				      * return which of these can be
				      * precomputed once and for
				      * all. Often, the values of
				      * shape function at quadrature
				      * points can be precomputed, for
				      * example, in which case the
				      * return value of this function
				      * would be the logical and of
				      * the input @p flags and
				      * @p update_values.
				      *
				      * For the present kind of finite
				      * element, this is exactly the
				      * case.
				      */
    virtual UpdateFlags update_once (const UpdateFlags flags) const;
  
				     /**
				      * This is the opposite to the
				      * above function: given a set of
				      * flags indicating what we want
				      * to know, return which of these
				      * need to be computed each time
				      * we visit a new cell.
				      *
				      * If for the computation of one
				      * quantity something else is
				      * also required (for example, we
				      * often need the covariant
				      * transformation when gradients
				      * need to be computed), include
				      * this in the result as well.
				      */
    virtual UpdateFlags update_each (const UpdateFlags flags) const;
    
				     /**
				      * Degree of the polynomials.
				      */  
    const unsigned int degree;

				     /**
				      * Fields of cell-independent data.
				      *
				      * For information about the
				      * general purpose of this class,
				      * see the documentation of the
				      * base class.
				      */
    class InternalData : public FiniteElement<dim,spacedim>::InternalDataBase
    {
      public:
					 /**
					  * Array with shape function
					  * values in quadrature
					  * points. There is one row
					  * for each shape function,
					  * containing values for each
					  * quadrature point. Since
					  * the shape functions are
					  * vector-valued (with as
					  * many components as there
					  * are space dimensions), the
					  * value is a tensor.
					  *
					  * In this array, we store
					  * the values of the shape
					  * function in the quadrature
					  * points on the unit
					  * cell. The transformation
					  * to the real space cell is
					  * then simply done by
					  * multiplication with the
					  * Jacobian of the mapping.
					  */
	std::vector<std::vector<Tensor<1,dim> > > shape_values;

					 /**
					  * Array with shape function
					  * gradients in quadrature
					  * points. There is one
					  * row for each shape
					  * function, containing
					  * values for each quadrature
					  * point.
					  *
					  * We store the gradients in
					  * the quadrature points on
					  * the unit cell. We then
					  * only have to apply the
					  * transformation (which is a
					  * matrix-vector
					  * multiplication) when
					  * visiting an actual cell.
					  */
	std::vector<std::vector<Tensor<2,dim> > > shape_gradients;
    };
    
				     /**
				      * Allow access from other
				      * dimensions.
				      */
    template <int , int> friend class FE_Nedelec;
};

/*@}*/

#ifndef DOXYGEN


/* -------------- declaration of explicit specializations ------------- */

template <>
void FE_Nedelec<1,1>::initialize_unit_face_support_points ();

template <>
double
FE_Nedelec<1,1>::shape_value_component (const unsigned int ,
                                      const Point<1>    &,
                                      const unsigned int ) const;

template <>
double
FE_Nedelec<2,2>::shape_value_component (const unsigned int ,
                                      const Point<2>    &,
                                      const unsigned int ) const;

template <>
double
FE_Nedelec<3,3>::shape_value_component (const unsigned int ,
                                      const Point<3>    &,
                                      const unsigned int ) const;

template <>
Tensor<1,1>
FE_Nedelec<1,1>::shape_grad_component (const unsigned int ,
                                     const Point<1>    &,
                                     const unsigned int ) const;

template <>
Tensor<1,2>
FE_Nedelec<2,2>::shape_grad_component (const unsigned int ,
                                     const Point<2>    &,
                                     const unsigned int ) const;

template <>
Tensor<1,3>
FE_Nedelec<3,3>::shape_grad_component (const unsigned int ,
                                     const Point<3>    &,
                                     const unsigned int ) const;

template <>
Tensor<2,1>
FE_Nedelec<1,1>::shape_grad_grad_component (const unsigned int ,
                                          const Point<1>    &,
                                          const unsigned int ) const;

template <>
Tensor<2,2>
FE_Nedelec<2,2>::shape_grad_grad_component (const unsigned int ,
                                          const Point<2>    &,
                                          const unsigned int ) const;

template <>
Tensor<2,3>
FE_Nedelec<3,3>::shape_grad_grad_component (const unsigned int ,
                                          const Point<3>    &,
                                          const unsigned int ) const;



// declaration of explicit specializations of member variables, if the
// compiler allows us to do that (the standard says we must)
#ifndef DEAL_II_MEMBER_VAR_SPECIALIZATION_BUG
template <> 
const double * const 
FE_Nedelec<1,1>::Matrices::embedding[][GeometryInfo<1>::max_children_per_cell];

template <>
const unsigned int FE_Nedelec<1,1>::Matrices::n_embedding_matrices;

template <>
const double * const FE_Nedelec<1,1>::Matrices::constraint_matrices[];

template <>
const unsigned int FE_Nedelec<1,1>::Matrices::n_constraint_matrices;

template <> 
const double * const 
FE_Nedelec<2,2>::Matrices::embedding[][GeometryInfo<2>::max_children_per_cell];

template <>
const unsigned int FE_Nedelec<2,2>::Matrices::n_embedding_matrices;

template <>
const double * const FE_Nedelec<2,2>::Matrices::constraint_matrices[];

template <>
const unsigned int FE_Nedelec<2,2>::Matrices::n_constraint_matrices;

template <> 
const double * const 
FE_Nedelec<3,3>::Matrices::embedding[][GeometryInfo<3>::max_children_per_cell];

template <>
const unsigned int FE_Nedelec<3,3>::Matrices::n_embedding_matrices;

template <>
const double * const FE_Nedelec<3,3>::Matrices::constraint_matrices[];

template <>
const unsigned int FE_Nedelec<3,3>::Matrices::n_constraint_matrices;

#endif
#endif // DOXYGEN

DEAL_II_NAMESPACE_CLOSE

#endif