This file is indexed.

/usr/include/deal.II/fe/fe_q.h is in libdeal.ii-dev 6.3.1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
//---------------------------------------------------------------------------
//    $Id: fe_q.h 21191 2010-06-10 11:50:17Z bangerth $
//    Version: $Name$
//
//    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 by the deal.II authors
//
//    This file is subject to QPL and may not be  distributed
//    without copyright and license information. Please refer
//    to the file deal.II/doc/license.html for the  text  and
//    further information on this license.
//
//---------------------------------------------------------------------------
#ifndef __deal2__fe_q_h
#define __deal2__fe_q_h

#include <base/config.h>
#include <base/tensor_product_polynomials.h>
#include <fe/fe_poly.h>

DEAL_II_NAMESPACE_OPEN


/*!@addtogroup fe */
/*@{*/

/**
 * Implementation of a scalar Lagrange finite element @p Qp that yields the
 * finite element space of continuous, piecewise polynomials of degree @p p in
 * each coordinate direction. This class is realized using tensor product
 * polynomials based on equidistant or given support points.
 *
 * The standard constructor of this class takes the degree @p p of this finite
 * element. Alternatively, it can take a quadrature formula @p points defining
 * the support points of the Lagrange interpolation in one coordinate direction.
 *
 * For more information about the <tt>spacedim</tt> template parameter
 * check the documentation of FiniteElement or the one of
 * Triangulation.
 *
 * <h3>Implementation</h3>
 *
 * The constructor creates a TensorProductPolynomials object that includes the
 * tensor product of @p LagrangeEquidistant polynomials of degree @p p. This
 * @p TensorProductPolynomials object provides all values and derivatives of
 * the shape functions.  In case a quadrature rule is given, the constructor
 * creates a TensorProductPolynomials object that includes the tensor product
 * of @p Lagrange polynomials with the support points from @p points.
 *
 * Furthermore the constructor fills the @p interface_constraints, the
 * @p prolongation (embedding) and the @p restriction matrices. These
 * are implemented only up to a certain degree and may not be
 * available for very high polynomial degree.
 *
 *
 * <h3>Numbering of the degrees of freedom (DoFs)</h3>
 *
 * The original ordering of the shape functions represented by the
 * TensorProductPolynomials is a tensor product
 * numbering. However, the shape functions on a cell are renumbered
 * beginning with the shape functions whose support points are at the
 * vertices, then on the line, on the quads, and finally (for 3d) on
 * the hexes. To be explicit, these numberings are listed in the
 * following:
 *
 * <h4>Q1 elements</h4>
 * <ul>
 * <li> 1D case:
 *   @verbatim
 *      0-------1
 *   @endverbatim
 *
 * <li> 2D case:
 *   @verbatim
 *      2-------3
 *      |       |
 *      |       |
 *      |       |
 *      0-------1
 *   @endverbatim
 *
 * <li> 3D case:
 *   @verbatim
 *         6-------7        6-------7
 *        /|       |       /       /|
 *       / |       |      /       / |
 *      /  |       |     /       /  |
 *     4   |       |    4-------5   |
 *     |   2-------3    |       |   3
 *     |  /       /     |       |  /
 *     | /       /      |       | /
 *     |/       /       |       |/
 *     0-------1        0-------1
 *   @endverbatim
 *
 *   The respective coordinate values of the support points of the degrees
 *   of freedom are as follows:
 *   <ul>
 *   <li> Index 0: <tt>[0, 0, 0]</tt>;
 *   <li> Index 1: <tt>[1, 0, 0]</tt>;
 *   <li> Index 2: <tt>[0, 1, 0]</tt>;
 *   <li> Index 3: <tt>[1, 1, 0]</tt>;
 *   <li> Index 4: <tt>[0, 0, 1]</tt>;
 *   <li> Index 5: <tt>[1, 0, 1]</tt>;
 *   <li> Index 6: <tt>[0, 1, 1]</tt>;
 *   <li> Index 7: <tt>[1, 1, 1]</tt>;
 *   </ul>
 * </ul>
 * <h4>Q2 elements</h4>
 * <ul>
 * <li> 1D case:
 *   @verbatim
 *      0---2---1
 *   @endverbatim
 *
 * <li> 2D case:
 *   @verbatim
 *      2---7---3
 *      |       |
 *      4   8   5
 *      |       |
 *      0---6---1
 *   @endverbatim
 *
 * <li> 3D case:
 *   @verbatim
 *         6--15---7        6--15---7
 *        /|       |       /       /|
 *      12 |       19     12      1319
 *      /  18      |     /       /  |
 *     4   |       |    4---14--5   |
 *     |   2---11--3    |       |   3
 *     |  /       /     |      17  /
 *    16 8       9     16       | 9
 *     |/       /       |       |/
 *     0---10--1        0---8---1
 *
 *         *-------*        *-------*
 *        /|       |       /       /|
 *       / |  23   |      /  25   / |
 *      /  |       |     /       /  |
 *     *   |       |    *-------*   |
 *     |20 *-------*    |       |21 *
 *     |  /       /     |   22  |  /
 *     | /  24   /      |       | /
 *     |/       /       |       |/
 *     *-------*        *-------*
 *   @endverbatim
 *   The center vertex has number 26.
 *
 *   The respective coordinate values of the support points of the degrees
 *   of freedom are as follows:
 *   <ul>
 *   <li> Index 0: <tt>[0, 0, 0]</tt>;
 *   <li> Index 1: <tt>[1, 0, 0]</tt>;
 *   <li> Index 2: <tt>[0, 1, 0]</tt>;
 *   <li> Index 3: <tt>[1, 1, 0]</tt>;
 *   <li> Index 4: <tt>[0, 0, 1]</tt>;
 *   <li> Index 5: <tt>[1, 0, 1]</tt>;
 *   <li> Index 6: <tt>[0, 1, 1]</tt>;
 *   <li> Index 7: <tt>[1, 1, 1]</tt>;
 *   <li> Index 8: <tt>[0, 1/2, 0]</tt>;
 *   <li> Index 9: <tt>[1, 1/2, 0]</tt>;
 *   <li> Index 10: <tt>[1/2, 0, 0]</tt>;
 *   <li> Index 11: <tt>[1/2, 1, 0]</tt>;
 *   <li> Index 12: <tt>[0, 1/2, 1]</tt>;
 *   <li> Index 13: <tt>[1, 1/2, 1]</tt>;
 *   <li> Index 14: <tt>[1/2, 0, 1]</tt>;
 *   <li> Index 15: <tt>[1/2, 1, 1]</tt>;
 *   <li> Index 16: <tt>[0, 0, 1/2]</tt>;
 *   <li> Index 17: <tt>[1, 0, 1/2]</tt>;
 *   <li> Index 18: <tt>[0, 1, 1/2]</tt>;
 *   <li> Index 19: <tt>[1, 1, 1/2]</tt>;
 *   <li> Index 20: <tt>[0, 1/2, 1/2]</tt>;
 *   <li> Index 21: <tt>[1, 1/2, 1/2]</tt>;
 *   <li> Index 22: <tt>[1/2, 0, 1/2]</tt>;
 *   <li> Index 23: <tt>[1/2, 1, 1/2]</tt>;
 *   <li> Index 24: <tt>[1/2, 1/2, 0]</tt>;
 *   <li> Index 25: <tt>[1/2, 1/2, 1]</tt>;
 *   <li> Index 26: <tt>[1/2, 1/2, 1/2]</tt>;
 *   </ul>
 * </ul>
 * <h4>Q3 elements</h4>
 * <ul>
 * <li> 1D case:
 *   @verbatim
 *      0--2--3--1
 *   @endverbatim
 *
 * <li> 2D case:
 *   @verbatim
 *      2--10-11-3
 *      |        |
 *      5  14 15 7
 *      |        |
 *      4  12 13 6
 *      |        |
 *      0--8--9--1
 *   @endverbatim
 * </ul>
 * <h4>Q4 elements</h4>
 * <ul>
 * <li> 1D case:
 *   @verbatim
 *      0--2--3--4--1
 *   @endverbatim
 *
 * <li> 2D case:
 *   @verbatim
 *      2--13-14-15-3
 *      |           |
 *      6  22 23 24 9
 *      |           |
 *      5  19 20 21 8
 *      |           |
 *      4  16 17 18 7
 *      |           |
 *      0--10-11-12-1
 *   @endverbatim
 * </ul>
 *
 * @author Wolfgang Bangerth, 1998, 2003; Guido Kanschat, 2001; Ralf Hartmann, 2001, 2004, 2005; Oliver Kayser-Herold, 2004; Katharina Kormann, 2008; Martin Kronbichler, 2008
 */
template <int dim, int spacedim=dim>
class FE_Q : public FE_Poly<TensorProductPolynomials<dim>,dim,spacedim>
{
  public:
				     /**
				      * Constructor for tensor product
				      * polynomials of degree @p p.
				      */
    FE_Q (const unsigned int p);

				     /**
				      * Constructor for tensor product
				      * polynomials with support points @p
				      * points based on a one-dimensional
				      * quadrature formula. The degree of the
				      * finite element is
				      * <tt>points.size()-1</tt>.  Note that
				      * the first point has to be 0 and the
				      * last one 1.
				      */

    FE_Q (const Quadrature<1> &points);
				     /**
				      * Return a string that uniquely
				      * identifies a finite
				      * element. This class returns
				      * <tt>FE_Q<dim>(degree)</tt>, with
				      * @p dim and @p degree
				      * replaced by appropriate
				      * values.
				      */
    virtual std::string get_name () const;

				     /**
				      * Return the matrix
				      * interpolating from the given
				      * finite element to the present
				      * one. The size of the matrix is
				      * then @p dofs_per_cell times
				      * <tt>source.dofs_per_cell</tt>.
				      *
				      * These matrices are only
				      * available if the source
				      * element is also a @p FE_Q
				      * element. Otherwise, an
				      * exception of type
				      * FiniteElement<dim,spacedim>::ExcInterpolationNotImplemented
				      * is thrown.
				      */
    virtual void
    get_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
			      FullMatrix<double>       &matrix) const;


				     /**
				      * Return the matrix
				      * interpolating from a face of
				      * of one element to the face of
				      * the neighboring element.
				      * The size of the matrix is
				      * then <tt>source.dofs_per_face</tt> times
				      * <tt>this->dofs_per_face</tt>.
				      *
				      * Derived elements will have to
				      * implement this function. They
				      * may only provide interpolation
				      * matrices for certain source
				      * finite elements, for example
				      * those from the same family. If
				      * they don't implement
				      * interpolation from a given
				      * element, then they must throw
				      * an exception of type
				      * FiniteElement<dim,spacedim>::ExcInterpolationNotImplemented.
				      */
    virtual void
    get_face_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
				   FullMatrix<double>       &matrix) const;

				     /**
				      * Return the matrix
				      * interpolating from a face of
				      * of one element to the face of
				      * the neighboring element.
				      * The size of the matrix is
				      * then <tt>source.dofs_per_face</tt> times
				      * <tt>this->dofs_per_face</tt>.
				      *
				      * Derived elements will have to
				      * implement this function. They
				      * may only provide interpolation
				      * matrices for certain source
				      * finite elements, for example
				      * those from the same family. If
				      * they don't implement
				      * interpolation from a given
				      * element, then they must throw
				      * an exception of type
				      * FiniteElement<dim,spacedim>::ExcInterpolationNotImplemented.
				      */
    virtual void
    get_subface_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
				      const unsigned int        subface,
				      FullMatrix<double>       &matrix) const;

				     /**
				      * Check for non-zero values on a face.
				      *
				      * This function returns
				      * @p true, if the shape
				      * function @p shape_index has
				      * non-zero values on the face
				      * @p face_index.
				      *
				      * Implementation of the
				      * interface in
				      * FiniteElement
				      */
    virtual bool has_support_on_face (const unsigned int shape_index,
				      const unsigned int face_index) const;

				     /**
				      * @name Functions to support hp
				      * @{
				      */

                                     /**
                                      * Return whether this element
                                      * implements its hanging node
                                      * constraints in the new way,
				      * which has to be used to make
				      * elements "hp compatible".
                                      *
				      * For the FE_Q class the result is
				      * always true (independent of the degree
				      * of the element), as it implements the
				      * complete set of functions necessary
				      * for hp capability.
                                      */
    virtual bool hp_constraints_are_implemented () const;

				     /**
				      * If, on a vertex, several
				      * finite elements are active,
				      * the hp code first assigns the
				      * degrees of freedom of each of
				      * these FEs different global
				      * indices. It then calls this
				      * function to find out which of
				      * them should get identical
				      * values, and consequently can
				      * receive the same global DoF
				      * index. This function therefore
				      * returns a list of identities
				      * between DoFs of the present
				      * finite element object with the
				      * DoFs of @p fe_other, which is
				      * a reference to a finite
				      * element object representing
				      * one of the other finite
				      * elements active on this
				      * particular vertex. The
				      * function computes which of the
				      * degrees of freedom of the two
				      * finite element objects are
				      * equivalent, and returns a list
				      * of pairs of global dof indices
				      * in @p identities. The first
				      * index of each pair denotes one
				      * of the vertex dofs of the
				      * present element, whereas the
				      * second is the corresponding
				      * index of the other finite
				      * element.
				      */
    virtual
    std::vector<std::pair<unsigned int, unsigned int> >
    hp_vertex_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;

				     /**
				      * Same as
				      * hp_vertex_dof_indices(),
				      * except that the function
				      * treats degrees of freedom on
				      * lines.
				      */
    virtual
    std::vector<std::pair<unsigned int, unsigned int> >
    hp_line_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;

				     /**
				      * Same as
				      * hp_vertex_dof_indices(),
				      * except that the function
				      * treats degrees of freedom on
				      * quads.
				      */
    virtual
    std::vector<std::pair<unsigned int, unsigned int> >
    hp_quad_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;

				     /**
				      * Return whether this element dominates
				      * the one given as argument when they
				      * meet at a common face,
				      * whether it is the other way around,
				      * whether neither dominates, or if
				      * either could dominate.
				      *
				      * For a definition of domination, see
				      * FiniteElementBase::Domination and in
				      * particular the @ref hp_paper "hp paper".
				      */
    virtual
    FiniteElementDomination::Domination
    compare_for_face_domination (const FiniteElement<dim,spacedim> &fe_other) const;
				     //@}

				     /**
				      * Determine an estimate for the
				      * memory consumption (in bytes)
				      * of this object.
				      *
				      * This function is made virtual,
				      * since finite element objects
				      * are usually accessed through
				      * pointers to their base class,
				      * rather than the class itself.
				      */
    virtual unsigned int memory_consumption () const;

  protected:
				     /**
				      * @p clone function instead of
				      * a copy constructor.
				      *
				      * This function is needed by the
				      * constructors of @p FESystem.
				      */
    virtual FiniteElement<dim,spacedim> * clone() const;

  private:

				     /**
				      * Only for internal use. Its
				      * full name is
				      * @p get_dofs_per_object_vector
				      * function and it creates the
				      * @p dofs_per_object vector that is
				      * needed within the constructor to
				      * be passed to the constructor of
				      * @p FiniteElementData.
				      */
    static std::vector<unsigned int> get_dpo_vector(const unsigned int degree);

				     /**
				      * This is an analogon to the
				      * FETools::lexicographic_to_hierarchic_numbering
				      * function, but working on
				      * faces. Called from the
				      * constructor.
				      */
    static
    std::vector<unsigned int>
    face_lexicographic_to_hierarchic_numbering (const unsigned int degree);

				     /**
				      * Initialize the hanging node
				      * constraints matrices. Called
				      * from the constructor.
				      */
    void initialize_constraints ();

				     /**
				      * Initialize the embedding
				      * matrices. Called from the
				      * constructor.
				      */
    void initialize_embedding ();

				     /**
				      * Initialize the restriction
				      * matrices. Called from the
				      * constructor.
				      */
    void initialize_restriction ();

				     /**
				      * Initialize the
				      * @p unit_support_points field
				      * of the FiniteElement
				      * class. Called from the
				      * constructor.
				      */
    void initialize_unit_support_points ();

					     /**
				      * Initialize the @p unit_support_points
				      * field of the FiniteElement
				      * class. Called from the constructor in
				      * case the finite element is based on
				      * quadrature points.
				      */
    void initialize_unit_support_points (const Quadrature<1> &points);

				     /**
				      * Initialize the
				      * @p unit_face_support_points field
				      * of the FiniteElement
				      * class. Called from the
				      * constructor.
				      */
    void initialize_unit_face_support_points ();

					     /**
				      * Initialize the @p
				      * unit_face_support_points field of the
				      * FiniteElement class. Called from the
				      * constructor in case the finite element
				      * is based on quadrature points.
				      */
    void initialize_unit_face_support_points (const Quadrature<1> &points);

				     /**
				      * Initialize the
				      * @p adjust_quad_dof_index_for_face_orientation_table field
				      * of the FiniteElement
				      * class. Called from the
				      * constructor.
				      */
    void initialize_quad_dof_index_permutation ();

				     /**
				      * Mapping from hierarchic to
				      * lexicographic numbering on
				      * first face. Hierarchic is the
				      * numbering of the shape
				      * functions.
				      */
    const std::vector<unsigned int> face_index_map;


				     /**
				      * Forward declaration of a class
				      * into which we put significant
				      * parts of the implementation.
				      *
				      * See the .cc file for more
				      * information.
				      */
    struct Implementation;

				     /**
				      * Allow access from other
				      * dimensions. We need this since
				      * we want to call the functions
				      * @p get_dpo_vector and
				      * @p lexicographic_to_hierarchic_numbering
				      * for the faces of the finite
				      * element of dimension dim+1.
				      */
    template <int, int> friend class FE_Q;

    friend class FE_Q<dim,spacedim>::Implementation;
};



/*@}*/

/* -------------- declaration of explicit specializations ------------- */

template <>
void FE_Q<1>::initialize_unit_face_support_points ();

template <>
std::vector<unsigned int>
FE_Q<1>::face_lexicographic_to_hierarchic_numbering (const unsigned int);


#if deal_II_dimension != 3

template <>
void FE_Q<1,2>::initialize_unit_face_support_points ();

template <>
std::vector<unsigned int>
FE_Q<1,2>::face_lexicographic_to_hierarchic_numbering (const unsigned int);

#endif


DEAL_II_NAMESPACE_CLOSE

#endif