This file is indexed.

/usr/include/deal.II/grid/grid_generator.h is in libdeal.ii-dev 6.3.1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
//---------------------------------------------------------------------------
//    $Id: grid_generator.h 20602 2010-02-13 17:44:17Z bangerth $
//    Version: $Name$
//
//    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by the deal.II authors
//
//    This file is subject to QPL and may not be  distributed
//    without copyright and license information. Please refer
//    to the file deal.II/doc/license.html for the  text  and
//    further information on this license.
//
//---------------------------------------------------------------------------
#ifndef __deal2__grid_generator_h
#define __deal2__grid_generator_h


#include <base/config.h>
#include <base/exceptions.h>
#include <base/point.h>
#include <base/table.h>
#include <grid/tria.h>
#include <map>

DEAL_II_NAMESPACE_OPEN

template <int dim, int spacedim> class Triangulation;
template <typename number> class Vector;
template <typename number> class SparseMatrix;


/**
 * This class provides a collection of functions for generating basic
 * triangulations. Below, we try to provide some pictures in order to
 * illustrate at least the more complex ones.
 *
 * Some of these functions receive a flag @p colorize. If this is
 * set, parts of the boundary receive different boundary numbers,
 * allowing them to be distinguished by application programs. See the
 * documentation of the functions for details.
 *
 * Additionally this class provides a function
 * (@p laplace_transformation) that smoothly transforms a grid
 * according to given new boundary points. This can be used to
 * transform (simple-shaped) grids to a more complicated ones, like a
 * shell onto a grid of an airfoil, for example.
 *
 * No meshes for the codimension one case are provided at the moment.
 *
 *
 * @ingroup grid
 * @author Wolfgang Bangerth, Ralf Hartmann, Guido Kanschat, Stefan
 * Nauber, Joerg Weimar, Yaqi Wang, Luca Heltai, 1998, 1999, 2000, 2001, 2002,
 * 2003, 2006, 2007, 2008.
 */
class GridGenerator
{
  public:
    				     /**
				      * Initialize the given
				      * triangulation with a hypercube
				      * (line in 1D, square in 2D,
				      * etc) consisting of exactly one
				      * cell. The hypercube volume is
				      * the tensor product interval
				      * <i>[left,right]<sup>dim</sup></i>
				      * in the present number of
				      * dimensions, where the limits
				      * are given as arguments. They
				      * default to zero and unity,
				      * then producing the unit
				      * hypercube.
				      *
				      * @image html hyper_cubes.png
				      *
				      * See also
				      * subdivided_hyper_cube() for a
				      * coarse mesh consisting of
				      * several cells. See
				      * hyper_rectangle(), if
				      * different lengths in different
				      * ordinate directions are
				      * required.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      */
    template <int dim, int spacedim>
    static void hyper_cube (Triangulation<dim,spacedim>  &tria,
			    const double        left = 0.,
			    const double        right= 1.);

    				     /**
				      * Same as hyper_cube(), but
				      * with the difference that not
				      * only one cell is created but
				      * each coordinate direction is
				      * subdivided into
				      * @p repetitions cells. Thus,
				      * the number of cells filling
				      * the given volume is
				      * <tt>repetitions<sup>dim</sup></tt>.
				      *
				      * If spacedim=dim+1 the same
				      * mesh as in the case
				      * spacedim=dim is created, but
				      * the vertices have an
				      * additional coordinate =0. So,
				      * if dim=1 one obtains line
				      * along the x axis in the xy
				      * plane, and if dim=3 one
				      * obtains a square in lying in
				      * the xy plane in 3d space.
				      *
				      * @note The triangulation needs
				      * to be void upon calling this
				      * function.
				      */
    template <int dim>
    static void subdivided_hyper_cube (Triangulation<dim>  &tria,
                                       const unsigned int  repetitions,
                                       const double        left = 0.,
                                       const double        right= 1.);

    				     /**
				      * Create a coordinate-parallel
				      * brick from the two
				      * diagonally opposite corner
				      * points @p p1 and @p p2.
				      *
				      * If the @p colorize flag is
				      * set, the
				      * @p boundary_indicators of the
				      * surfaces are assigned, such
				      * that the lower one in
				      * @p x-direction is 0, the
				      * upper one is 1. The indicators
				      * for the surfaces in
				      * @p y-direction are 2 and 3,
				      * the ones for @p z are 4 and
				      * 5. Additionally, material ids
				      * are assigned to the cells
				      * according to the octant their
				      * center is in: being in the right half
				      * plane for any coordinate
				      * direction <i>x<sub>i</sub></i>
				      * adds 2<sup>i</sup>. For
				      * instance, the center point
				      * (1,-1,1) yields a material id 5.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      */
    template <int dim, int spacedim>
    static void hyper_rectangle (Triangulation<dim,spacedim> &tria,
				 const Point<spacedim>       &p1,
				 const Point<spacedim>       &p2,
				 const bool                  colorize = false);

				     /**
				      * Create a coordinate-parallel
				      * parallelepiped from the two
				      * diagonally opposite corner
				      * points @p p1 and @p p2. In
				      * dimension @p i,
				      * <tt>repetitions[i]</tt> cells are
				      * generated.
				      *
				      * To get cells with an aspect
				      * ratio different from that of
				      * the domain, use different
				      * numbers of subdivisions in
				      * different coordinate
				      * directions. The minimum number
				      * of subdivisions in each
				      * direction is
				      * 1. @p repetitions is a list
				      * of integers denoting the
				      * number of subdivisions in each
				      * coordinate direction.
				      *
				      * If the @p colorize flag is
				      * set, the
				      * @p boundary_indicators of the
				      * surfaces are assigned, such
				      * that the lower one in
				      * @p x-direction is 0, the
				      * upper one is 1. The indicators
				      * for the surfaces in
				      * @p y-direction are 2 and 3,
				      * the ones for @p z are 4 and
				      * 5.  Additionally, material ids
				      * are assigned to the cells
				      * according to the octant their
				      * center is in: being in the right half
				      * plane for any coordinate
				      * direction <i>x<sub>i</sub></i>
				      * adds 2<sup>i</sup>. For
				      * instance, the center point
				      * (1,-1,1) yields a material id 5.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      *
				      * @note For an example of the
				      * use of this function see the
				      * step-28
				      * tutorial program.
				      */
    template <int dim>
    static
    void
    subdivided_hyper_rectangle (Triangulation<dim>              &tria,
				const std::vector<unsigned int> &repetitions,
				const Point<dim>                &p1,
				const Point<dim>                &p2,
				const bool                      colorize=false);

				     /**
				      * Like the previous
				      * function. However, here the
				      * second argument does not
				      * denote the number of
				      * subdivisions in each
				      * coordinate direction, but a
				      * sequence of step sizes for
				      * each coordinate direction. The
				      * domain will therefore be
				      * subdivided into
				      * <code>step_sizes[i].size()</code>
				      * cells in coordinate direction
				      * <code>i</code>, with widths
				      * <code>step_sizes[i][j]</code>
				      * for the <code>j</code>th cell.
				      *
				      * This function is therefore the
				      * right one to generate graded
				      * meshes where cells are
				      * concentrated in certain areas,
				      * rather than a uniformly
				      * subdivided mesh as the
				      * previous function generates.
				      *
				      * The step sizes have to add up
				      * to the dimensions of the hyper
				      * rectangle specified by the
				      * points @p p1 and @p p2.
				      */
    template <int dim>
    static
    void
    subdivided_hyper_rectangle(Triangulation<dim>                      &tria,
			       const std::vector<std::vector<double> > &step_sizes,
			       const Point<dim>                        &p_1,
			       const Point<dim>                        &p_2,
			       const bool                              colorize);

				     /**
				      * Like the previous function, but with
				      * the following twist: the @p
				      * material_id argument is a
				      * dim-dimensional array that, for each
				      * cell, indicates which material_id
				      * should be set. In addition, and this
				      * is the major new functionality, if the
				      * material_id of a cell is <tt>(unsigned
				      * char)(-1)</tt>, then that cell is
				      * deleted from the triangulation,
				      * i.e. the domain will have a void
				      * there.
				      */
    template <int dim>
    static
    void
    subdivided_hyper_rectangle (Triangulation<dim>                       &tria,
				const std::vector< std::vector<double> > &spacing,
				const Point<dim>                         &p,
				const Table<dim,unsigned char>           &material_id,
				const bool                               colorize=false);

				     /**
				      * A parallelogram. The first
				      * corner point is the
				      * origin. The <tt>dim</tt>
				      * adjacent points are the
				      * one-dimensional subtensors of
				      * the tensor provided and
				      * additional points will be sums
				      * of these two vectors.
				      * Colorizing is done according
				      * to hyper_rectangle().
				      *
				      * @note This function is
				      * implemented in 2d only.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      */
    template <int dim>
    static void
    parallelogram(Triangulation<dim>&  tria,
		  const Tensor<2,dim>& corners,
		  const bool           colorize=false);


				     /**
				      * Hypercube with a layer of
				      * hypercubes around it. The
				      * first two parameters give the
				      * lower and upper bound of the
				      * inner hypercube in all
				      * coordinate directions.
				      * @p thickness marks the size of
				      * the layer cells.
				      *
				      * If the flag colorize is set,
				      * the outer cells get material
				      * id's according to the
				      * following scheme: extending
				      * over the inner cube in
				      * (+/-) x-direction: 1/2. In y-direction
				      * 4/8, in z-direction 16/32. The cells
				      * at corners and edges (3d) get
				      * these values bitwise or'd.
				      *
				      * Presently only available in 2d
				      * and 3d.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      */
    template <int dim>
    static void enclosed_hyper_cube (Triangulation<dim> &tria,
	 			     const double      left = 0.,
				     const double      right= 1.,
				     const double      thickness = 1.,
				     const bool        colorize = false);

				     /**
				      * Initialize the given
				      * triangulation with a
				      * hyperball, i.e. a circle or a
				      * ball around <tt>center</tt>
				      * with given <tt>radius</tt>.
				      *
				      * In order to avoid degenerate
				      * cells at the boundaries, the
				      * circle is triangulated by five
				      * cells, the ball by seven
				      * cells. The diameter of the
				      * center cell is chosen so that
				      * the aspect ratio of the
				      * boundary cells after one
				      * refinement is optimized.
				      *
				      * This function is declared to
				      * exist for triangulations of
				      * all space dimensions, but
				      * throws an error if called in
				      * 1d.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      */
    template <int dim>
    static void hyper_ball (Triangulation<dim> &tria,
			    const Point<dim>   &center = Point<dim>(),
			    const double      radius = 1.);

				     /**
				      * This class produces a half
				      * hyper-ball around
				      * <tt>center</tt>, which
				      * contains four elements in 2d
				      * and 6 in 3d. The cut plane is
				      * perpendicular to the
				      * <i>x</i>-axis.
				      *
				      * The boundary indicators for the final
				      * triangulation are 0 for the curved boundary and
				      * 1 for the cut plane.
				      *
				      * The appropriate
				      * boundary class is
				      * HalfHyperBallBoundary, or HyperBallBoundary.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      */
    template <int dim>
    static void half_hyper_ball (Triangulation<dim> &tria,
				 const Point<dim>   &center = Point<dim>(),
				 const double      radius = 1.);

				     /**
				      * Create a cylinder around the
				      * x-axis.  The cylinder extends
				      * from <tt>x=-half_length</tt> to
				      * <tt>x=+half_length</tt> and its
				      * projection into the
				      * @p yz-plane is a circle of
				      * radius @p radius.
				      *
				      * In two dimensions, the
				      * cylinder is a rectangle from
				      * <tt>x=-half_length</tt> to
				      * <tt>x=+half_length</tt> and
				      * from <tt>y=-radius</tt> to
				      * <tt>y=radius</tt>.
				      *
				      * The boundaries are colored
				      * according to the following
				      * scheme: 0 for the hull of the
				      * cylinder, 1 for the left hand
				      * face and 2 for the right hand
				      * face.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      */
    template <int dim>
    static void cylinder (Triangulation<dim> &tria,
			  const double      radius = 1.,
			  const double      half_length = 1.);

                                     /**
                                      * Create a cutted cone around
                                      * the x-axis.  The cone extends
                                      * from <tt>x=-half_length</tt>
                                      * to <tt>x=half_length</tt> and
                                      * its projection into the @p
                                      * yz-plane is a circle of radius
                                      * @p radius_0 at
                                      * <tt>x=-half_length</tt> and a
                                      * circle of radius @p radius_1
                                      * at <tt>x=+half_length</tt>.
                                      * In between the radius is
                                      * linearly decreasing.
                                      *
                                      * In two dimensions, the cone is
                                      * a trapezoid from
                                      * <tt>x=-half_length</tt> to
                                      * <tt>x=+half_length</tt> and
                                      * from <tt>y=-radius</tt> to
                                      * <tt>y=radius_0</tt> at
                                      * <tt>x=-half_length</tt> and
                                      * from <tt>y=-radius_1</tt> to
                                      * <tt>y=radius_1</tt> at
                                      * <tt>x=+half_length</tt>.  In
                                      * between the range of
                                      * <tt>y</tt> is linearly
                                      * decreasing.
				      *
                                      * The boundaries are colored
                                      * according to the following
                                      * scheme: 0 for the hull of the
                                      * cone, 1 for the left hand
                                      * face and 2 for the right hand
                                      * face.
                                      *
				      * An example of use can be found in the
				      * documentation of the ConeBoundary
				      * class, with which you probably want to
				      * associate boundary indicator 0 (the
				      * hull of the cone).
				      * 
                                      * @note The triangulation needs to be
                                      * void upon calling this
                                      * function.
				      *
				      * @author Markus B&uuml;rg, 2009
                                      */
    template <int dim>
    static void
    truncated_cone (Triangulation<dim> &tria,
		    const double radius_0 = 1.0,
		    const double radius_1 = 0.5,
		    const double half_length = 1.0);

				     /**
				      * Initialize the given
				      * triangulation with a hyper-L
				      * consisting of exactly
				      * <tt>2^dim-1</tt> cells. It
				      * produces the hypercube with
				      * the interval [<i>left,right</i>] without
				      * the hypercube made out of the
				      * interval [<i>(a+b)/2,b</i>].
				      *
				      * @image html hyper_l.png
				      *
				      * The triangulation needs to be
				      * void upon calling this
				      * function.
				      *
				      * This function is declared to
				      * exist for triangulations of
				      * all space dimensions, but
				      * throws an error if called in
				      * 1d.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      */
    template <int dim>
    static void hyper_L (Triangulation<dim> &tria,
			 const double      left = -1.,
			 const double      right= 1.);

                                     /**
				      * Initialize the given
				      * Triangulation with a hypercube
				      * with a slit. In each
				      * coordinate direction, the
				      * hypercube extends from @p left
				      * to @p right.
				      *
				      * In 2d, the split goes in
				      * vertical direction from
				      * <tt>x=(left+right)/2,
				      * y=left</tt> to the center of
				      * the square at
				      * <tt>x=y=(left+right)/2</tt>.
				      *
				      * In 3d, the 2d domain is just
				      * extended in the
				      * <i>z</i>-direction, such that
				      * a plane cuts the lower half of
				      * a rectangle in two.

				      * This function is declared to
				      * exist for triangulations of
				      * all space dimensions, but
				      * throws an error if called in
				      * 1d.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      */
    template <int dim>
    static void hyper_cube_slit (Triangulation<dim> &tria,
				 const double      left = 0.,
				 const double      right= 1.,
				 const bool colorize = false);

				     /**
				      * Produce a hyper-shell,
				      * the region between two
				      * spheres around <tt>center</tt>,
				      * with given
				      * <tt>inner_radius</tt> and
				      * <tt>outer_radius</tt>.
				      *
				      * If the flag @p colorize is @p
				      * true, then the outer boundary
				      * will have the id 1, while the
				      * inner boundary has id zero. If
				      * the flag is @p false, both
				      * have id zero.
				      *
				      * In 2D, the number
				      * <tt>n_cells</tt> of elements
				      * for this initial triangulation
				      * can be chosen arbitrarily. If
				      * the number of initial cells is
				      * zero (as is the default), then
				      * it is computed adaptively such
				      * that the resulting elements
				      * have the least aspect ratio.
				      *
				      * In 3D, only two different
				      * numbers are meaningful, 6 for
				      * a surface based on a
				      * hexahedron and 12 for the
				      * rhombic dodecahedron.
				      *
				      * @image html hypershell3d-6.png
				      * @image html hypershell3d-12.png
				      *
				      * This function is declared to
				      * exist for triangulations of
				      * all space dimensions, but
				      * throws an error if called in
				      * 1d. It is also currently not
				      * implemented in 3d.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      */
    template <int dim>
    static void hyper_shell (Triangulation<dim>   &tria,
			     const Point<dim>     &center,
			     const double        inner_radius,
			     const double        outer_radius,
			     const unsigned int  n_cells = 0,
			     bool colorize = false);

				     /**
				      * Produce a half hyper-shell,
				      * i.e. the space between two
				      * circles in two space
				      * dimensions and the region
				      * between two spheres in 3d,
				      * with given inner and outer
				      * radius and a given number of
				      * elements for this initial
				      * triangulation.  However,
				      * opposed to the previous
				      * function, it does not produce
				      * a whole shell, but only one
				      * half of it, namely that part
				      * for which the first component
				      * is restricted to non-negative
				      * values. The purpose of this
				      * class is to enable
				      * computations for solutions
				      * which have rotational
				      * symmetry, in which case the
				      * half shell in 2d represents a
				      * shell in 3d.
				      *
				      * If the number of
				      * initial cells is zero (as is
				      * the default), then it is
				      * computed adaptively such that
				      * the resulting elements have
				      * the least aspect ratio.
				      *
				      * At present, this function only
				      * exists in 2d.
				      *
				      * @note The triangulation needs to be
				      * void upon calling this
				      * function.
				      */
    template <int dim>
    static void half_hyper_shell (Triangulation<dim>   &tria,
				  const Point<dim>     &center,
				  const double        inner_radius,
				  const double        outer_radius,
				  const unsigned int  n_cells = 0);

				     /**
				      * Produce a domain that is the space
				      * between two cylinders in 3d, with
				      * given length, inner and outer radius
				      * and a given number of elements for
				      * this initial triangulation. If @p
				      * n_radial_cells is zero (as is the
				      * default), then it is computed
				      * adaptively such that the resulting
				      * elements have the least aspect
				      * ratio. The same holds for @p
				      * n_axial_cells.
				      *
				      * @note Although this function
				      * is declared as a template, it
				      * does not make sense in 1D and
				      * 2D.
				      *
				      * @note The triangulation needs
				      * to be void upon calling this
				      * function.
				      */
    template <int dim>
    static void cylinder_shell (Triangulation<dim>   &tria,
                                const double        length,
                                const double        inner_radius,
                                const double        outer_radius,
                                const unsigned int  n_radial_cells = 0,
                                const unsigned int  n_axial_cells = 0);

				     /**
				      * This class produces a square
				      * on the <i>xy</i>-plane with a
				      * circular hole in the middle,
				      * times the interval [0.L]
				      * (only in 3d).
				      *
				      *	 @image html cubes_hole.png
				      *
				      * It is implemented in 2d and
				      * 3d, and takes the following
				      * arguments:
				      *
				      * @arg @p inner_radius: size of the
                                      *    internal hole
				      * @arg @p  outer_radius: size of the
                                      *    biggest enclosed cylinder
				      * @arg @p L: extension on the @p z-direction
				      * @arg @p repetitions: number of subdivisions
				      *      along the @p z-direction
				      * @arg @p colorize: wether to assign different
				      *     boundary indicators to different faces.
				      *    The colors are given in lexicographic
				      *    ordering for the flat faces (0 to 3 in 2d,
				      *    0 to 5 in 3d) plus the curved hole
				      *    (4 in 2d, and 6 in 3d).
				      *    If @p colorize is set to false, then flat faces
				      *    get the number 0 and the hole gets number 1.
				      */
    template<int dim>
    static void hyper_cube_with_cylindrical_hole (Triangulation<dim> &triangulation,
						const double inner_radius = .25,
						const double outer_radius = .5,
						const double L = .5,
						const unsigned int repetition = 1,
						const bool colorize = false);

				     /**
				      * Produce a ring of cells in 3D that is
				      * cut open, twisted and glued together
				      * again. This results in a kind of
				      * moebius-loop.
				      *
				      * @param tria        The triangulation to be worked on.
				      * @param n_cells     The number of cells in the loop. Must be greater than 4.
				      * @param n_rotations The number of rotations (Pi/2 each) to be performed before glueing the loop together.
				      * @param R           The radius of the circle, which forms the middle line of the torus containing the loop of cells. Must be greater than @p r.
				      * @param r           The radius of the cylinder bend together as loop.
				      */
    static void moebius (Triangulation<3,3>&  tria,
			 const unsigned int   n_cells,
			 const unsigned int   n_rotations,
			 const double         R,
			 const double         r);

				     /**
				      * This function transformes the
				      * @p Triangulation @p tria
				      * smoothly to a domain that is
				      * described by the boundary
				      * points in the map
				      * @p new_points. This map maps
				      * the point indices to the
				      * boundary points in the
				      * transformed domain.
				      *
				      * Note, that the
				      * @p Triangulation is changed
				      * in-place, therefore you don't
				      * need to keep two
				      * triangulations, but the given
				      * triangulation is changed
				      * (overwritten).
				      *
				      * In 1d, this function is not
				      * currently implemented.
				      */
    template <int dim>
    static void laplace_transformation (Triangulation<dim> &tria,
					const std::map<unsigned int,Point<dim> > &new_points);

				     /**
				      * Exception
				      */
    DeclException0 (ExcInvalidRadii);
                                     /**
                                      * Exception
                                      */
    DeclException1 (ExcInvalidRepetitions,
                    int,
                    << "The number of repetitions " << arg1
                    << " must be >=1.");
				     /**
				      * Exception
				      */
    DeclException1 (ExcInvalidRepetitionsDimension,
                    int,
                    << "The vector of repetitions  must have "
		    << arg1 <<" elements.");

  private:
				     /**
				      * Perform the action specified
				      * by the @p colorize flag of
				      * the hyper_rectangle()
				      * function of this class.
				      */
    template <int dim, int spacedim>
    static void colorize_hyper_rectangle (Triangulation<dim,spacedim> &tria);

				     /**
				      * Perform the action specified
				      * by the @p colorize flag of
				      * the
				      * subdivided_hyper_rectangle()
				      * function of this class. This
				      * function is singled out
				      * because it is dimension
				      * specific.
				      */
    template <int dim>
    static
    void
    colorize_subdivided_hyper_rectangle (Triangulation<dim> &tria,
					 const Point<dim>   &p1,
					 const Point<dim>   &p2,
					 const double        epsilon);

				     /**
				      * Assign boundary number zero to
				      * the inner shell boundary and 1
				      * to the outer.
				      */
    template<int dim>
    static
    void
    colorize_hyper_shell (Triangulation<dim>& tria,
			  const Point<dim>& center,
			  const double inner_radius,
			  const double outer_radius);

				     /**
				      * Solve the Laplace equation for
				      * @p laplace_transformation
				      * function for one of the
				      * @p dim space
				      * dimensions. Externalized into
				      * a function of its own in order
				      * to allow parallel execution.
				      */
    static
    void
    laplace_solve (const SparseMatrix<double>          &S,
		   const std::map<unsigned int,double> &m,
		   Vector<double>                      &u);
};




DEAL_II_NAMESPACE_CLOSE

#endif