This file is indexed.

/usr/include/deal.II/lac/eigen.h is in libdeal.ii-dev 6.3.1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//---------------------------------------------------------------------------
//    $Id: eigen.h 14038 2006-10-23 02:46:34Z bangerth $
//    Version: $Name$
//
//    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006 by the deal.II authors
//
//    This file is subject to QPL and may not be  distributed
//    without copyright and license information. Please refer
//    to the file deal.II/doc/license.html for the  text  and
//    further information on this license.
//
//---------------------------------------------------------------------------
#ifndef __deal2__eigen_h
#define __deal2__eigen_h


#include <base/config.h>
#include <lac/shifted_matrix.h>
#include <lac/solver.h>
#include <lac/solver_control.h>
#include <lac/solver_cg.h>
#include <lac/solver_gmres.h>
#include <lac/solver_minres.h>
#include <lac/vector_memory.h>
#include <lac/precondition.h>

#include <cmath>

DEAL_II_NAMESPACE_OPEN


/*!@addtogroup Solvers */
/*@{*/

/**
 * Power method (von Mises) for eigenvalue computations.
 *
 * This method determines the largest eigenvalue of a matrix by
 * applying increasing powers of this matrix to a vector. If there is
 * an eigenvalue $l$ with dominant absolute value, the iteration vectors
 * will become aligned to its eigenspace and $Ax = lx$.
 *
 * A shift parameter allows to shift the spectrum, so it is possible
 * to compute the smallest eigenvalue, too.
 *
 * Convergence of this method is known to be slow.
 *
 * @author Guido Kanschat, 2000
 */
template <class VECTOR = Vector<double> >
class EigenPower : private Solver<VECTOR>
{
  public:
    				     /**
				      * Standardized data struct to
				      * pipe additional data to the
				      * solver.
				      */
    struct AdditionalData
    {
					 /**
					  * Shift parameter. This
					  * parameter allows to shift
					  * the spectrum to compute a
					  * different eigenvalue.
					  */
	double shift;
					 /**
					  * Constructor. Set the shift parameter.
					  */
	AdditionalData (const double shift = 0.)
                        :
			shift(shift)
	  {}
	
    };

				     /**
				      * Constructor.
				      */
    EigenPower (SolverControl &cn,
		VectorMemory<VECTOR> &mem,
		const AdditionalData &data=AdditionalData());

				     /**
				      * Virtual destructor.
				      */
    virtual ~EigenPower ();

				     /**
				      * Power method. @p x is the
				      * (not necessarily normalized,
				      * but nonzero) start vector for
				      * the power method. After the
				      * iteration, @p value is the
				      * approximated eigenvalue and
				      * @p x is the corresponding
				      * eigenvector, normalized with
				      * respect to the l2-norm.
				      */
    template <class MATRIX>
    void
    solve (double       &value,
	   const MATRIX &A,
	   VECTOR       &x);

  protected:
				     /**
				      * Shift parameter.
				      */
    AdditionalData additional_data;
};

/**
 * Inverse iteration (Wieland) for eigenvalue computations.
 *
 * This class implements an adaptive version of the inverse iteration by Wieland.
 *
 * There are two choices for the stopping criterion: by default, the
 * norm of the residual $A x - l x$ is computed. Since this might not
 * converge to zero for non-symmetric matrices with non-trivial Jordan
 * blocks, it can be replaced by checking the difference of successive
 * eigenvalues. Use AdditionalData::use_residual for switching
 * this option.
 *
 * Usually, the initial guess entering this method is updated after
 * each step, replacing it with the new approximation of the
 * eigenvalue. Using a parameter AdditionalData::relaxation
 * between 0 and 1, this update can be damped. With relaxation
 * parameter 0, no update is performed. This damping allows for slower
 * adaption of the shift value to make sure that the method converges
 * to the eigenvalue closest to the initial guess. This can be aided
 * by the parameter AdditionalData::start_adaption, which
 * indicates the first iteration step in which the shift value should
 * be adapted.
 *
 * @author Guido Kanschat, 2000, 2003
 */
template <class VECTOR = Vector<double> >
class EigenInverse : private Solver<VECTOR>
{
  public:
      				     /**
				      * Standardized data struct to
				      * pipe additional data to the
				      * solver.
				      */
    struct AdditionalData
    {
                                         /**
					  * Damping of the updated shift value.
					  */
        double relaxation;
      
					 /**
					  * Start step of adaptive
					  * shift parameter.
					  */
        unsigned int start_adaption;
					 /**
					  * Flag for the stopping criterion.
					  */
        bool use_residual;
					 /**
					  * Constructor.
					  */
	AdditionalData (double relaxation = 1.,
			unsigned int start_adaption = 6,
			bool use_residual = true)
                        :
                        relaxation(relaxation),
                        start_adaption(start_adaption),
                        use_residual(use_residual)
          {}
	
    };
    
  				     /**
				      * Constructor.
				      */
    EigenInverse (SolverControl &cn,
		  VectorMemory<VECTOR> &mem,
		  const AdditionalData &data=AdditionalData());


				     /**
				      * Virtual destructor.
				      */
    virtual ~EigenInverse ();

				     /**
				      * Inverse method. @p value is
				      * the start guess for the
				      * eigenvalue and @p x is the
				      * (not necessarily normalized,
				      * but nonzero) start vector for
				      * the power method. After the
				      * iteration, @p value is the
				      * approximated eigenvalue and
				      * @p x is the corresponding
				      * eigenvector, normalized with
				      * respect to the l2-norm.
				      */
    template <class MATRIX>
    void
    solve (double       &value,
	   const MATRIX &A,
	   VECTOR       &x);

  protected:
				     /**
				      * Flags for execution.
				      */
    AdditionalData additional_data;
};

/*@}*/
//---------------------------------------------------------------------------


template <class VECTOR>
EigenPower<VECTOR>::EigenPower (SolverControl &cn,
				VectorMemory<VECTOR> &mem,
				const AdditionalData &data)
                :
		Solver<VECTOR>(cn, mem),
		additional_data(data)
{}



template <class VECTOR>
EigenPower<VECTOR>::~EigenPower ()
{}



template <class VECTOR>
template <class MATRIX>
void
EigenPower<VECTOR>::solve (double       &value,
			   const MATRIX &A,
			   VECTOR       &x)
{
  SolverControl::State conv=SolverControl::iterate;

  deallog.push("Power method");

  VECTOR* Vy = this->memory.alloc (); VECTOR& y = *Vy; y.reinit (x);
  VECTOR* Vr = this->memory.alloc (); VECTOR& r = *Vr; r.reinit (x);
  
  double length = x.l2_norm ();
  double old_length = 0.;
  x.scale(1./length);
  
  A.vmult (y,x);
  
				   // Main loop
  for(int iter=0; conv==SolverControl::iterate; iter++)
    {
      y.add(additional_data.shift, x);
      
				       // Compute absolute value of eigenvalue
      old_length = length;
      length = y.l2_norm ();

				       // do a little trick to compute the sign
				       // with not too much effect of round-off errors.
      double entry = 0.;
      unsigned int i = 0;
      double thresh = length/x.size();
      do 
	{
	  Assert (i<x.size(), ExcInternalError());
	  entry = y (i++);
	}
      while (std::fabs(entry) < thresh);

      --i;

				       // Compute unshifted eigenvalue
      value = (entry * x (i) < 0.) ? -length : length;
      value -= additional_data.shift;

				       // Update normalized eigenvector
      x.equ (1/length, y);

				       // Compute residual
      A.vmult (y,x);

				       // Check the change of the eigenvalue
				       // Brrr, this is not really a good criterion
      conv = this->control().check (iter, std::fabs(1./length-1./old_length));
    }
  
  this->memory.free(Vy);
  this->memory.free(Vr);

  deallog.pop();

				   // in case of failure: throw
				   // exception
  if (this->control().last_check() != SolverControl::success)
    throw SolverControl::NoConvergence (this->control().last_step(),
					this->control().last_value());
				   // otherwise exit as normal
}

//---------------------------------------------------------------------------

template <class VECTOR>
EigenInverse<VECTOR>::EigenInverse (SolverControl &cn,
				    VectorMemory<VECTOR> &mem,
				    const AdditionalData &data)
                :
		Solver<VECTOR>(cn, mem),
		additional_data(data)
{}



template <class VECTOR>
EigenInverse<VECTOR>::~EigenInverse ()
{}



template <class VECTOR>
template <class MATRIX>
void
EigenInverse<VECTOR>::solve (double       &value,
			     const MATRIX &A,
			     VECTOR       &x)
{
  deallog.push("Wielandt");

  SolverControl::State conv=SolverControl::iterate;

				   // Prepare matrix for solver
  ShiftedMatrix <MATRIX> A_s(A, -value);

				   // Define solver
  ReductionControl inner_control (5000, 1.e-16, 1.e-5, false, false);
  PreconditionIdentity prec;
  SolverGMRES<VECTOR>
    solver(inner_control, this->memory);

				   // Next step for recomputing the shift
  unsigned int goal = additional_data.start_adaption;
  
				   // Auxiliary vector
  VECTOR* Vy = this->memory.alloc (); VECTOR& y = *Vy; y.reinit (x);
  VECTOR* Vr = this->memory.alloc (); VECTOR& r = *Vr; r.reinit (x);
  
  double length = x.l2_norm ();
  double old_value = value;
  
  x.scale(1./length);
  
				   // Main loop
  for (unsigned int iter=0; conv==SolverControl::iterate; iter++)
    {
      solver.solve (A_s, y, x, prec);
      
				       // Compute absolute value of eigenvalue
      length = y.l2_norm ();

				       // do a little trick to compute the sign
				       // with not too much effect of round-off errors.
      double entry = 0.;
      unsigned int i = 0;
      double thresh = length/x.size();
      do 
	{
	  Assert (i<x.size(), ExcInternalError());
	  entry = y (i++);
	}
      while (std::fabs(entry) < thresh);

      --i;

				       // Compute unshifted eigenvalue
      value = (entry * x (i) < 0.) ? -length : length;
      value = 1./value;      
      value -= A_s.shift ();

      if (iter==goal)
	{
	  const double new_shift = - additional_data.relaxation * value
	    + (1.-additional_data.relaxation) * A_s.shift();
	  A_s.shift(new_shift);
	  ++goal;
	}
      
				       // Update normalized eigenvector
      x.equ (1./length, y);
				       // Compute residual
      if (additional_data.use_residual)
	{
	  y.equ (value, x);
	  A.vmult(r,x);
	  r.sadd(-1., value, x);
	  double res = r.l2_norm();
					   // Check the residual
	  conv = this->control().check (iter, res);
	} else {
	  conv = this->control().check (iter, std::fabs(1./value-1./old_value));
	}
      old_value = value;
    }

  this->memory.free(Vy);
  this->memory.free(Vr);
  
  deallog.pop();

				   // in case of failure: throw
				   // exception
  if (this->control().last_check() != SolverControl::success)
    throw SolverControl::NoConvergence (this->control().last_step(),
					this->control().last_value());
				   // otherwise exit as normal
}

DEAL_II_NAMESPACE_CLOSE

#endif