/usr/include/gmm/gmm_interface.h is in libgmm-dev 4.0.0-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 | // -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 2002-2008 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++ is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
// License for more details.
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
//
// As a special exception, you may use this file as it is a part of a free
// software library without restriction. Specifically, if other files
// instantiate templates or use macros or inline functions from this file,
// or you compile this file and link it with other files to produce an
// executable, this file does not by itself cause the resulting executable
// to be covered by the GNU Lesser General Public License. This exception
// does not however invalidate any other reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================
/**@file gmm_interface.h
@author Yves Renard <Yves.Renard@insa-lyon.fr>
@date October 13, 2002.
@brief gmm interface for STL vectors.
*/
#ifndef GMM_INTERFACE_H__
#define GMM_INTERFACE_H__
#include "gmm_blas.h"
#include "gmm_sub_index.h"
namespace gmm {
/* ********************************************************************* */
/* */
/* What is needed for a Vector type : */
/* Vector v(n) defines a vector with n components. */
/* v[i] allows to access to the ith component of v. */
/* linalg_traits<Vector> should be filled with appropriate definitions */
/* */
/* for a dense vector : the minimum is two random iterators (begin and */
/* end) and a pointer to a valid origin. */
/* for a sparse vector : the minimum is two forward iterators, with */
/* a method it.index() which gives the index of */
/* a non zero element, an interface object */
/* should describe the method to add new non */
/* zero element, and a pointer to a valid */
/* origin. */
/* */
/* What is needed for a Matrix type : */
/* Matrix m(n, m) defines a matrix with n rows and m columns. */
/* m(i, j) allows to access to the element at row i and column j. */
/* linalg_traits<Matrix> should be filled with appropriate definitions */
/* */
/* What is needed for an iterator on dense vector */
/* to be standard random access iterator */
/* */
/* What is needed for an iterator on a sparse vector */
/* to be a standard bidirectional iterator */
/* elt should be sorted with increasing indices. */
/* it.index() gives the index of the non-zero element. */
/* */
/* Remark : If original iterators are not convenient, they could be */
/* redefined and interfaced in linalg_traits<Vector> without changing */
/* the original Vector type. */
/* */
/* ********************************************************************* */
/* ********************************************************************* */
/* Simple references on vectors */
/* ********************************************************************* */
template <typename PT> struct simple_vector_ref {
typedef simple_vector_ref<PT> this_type;
typedef typename std::iterator_traits<PT>::value_type V;
typedef V * CPT;
typedef typename std::iterator_traits<PT>::reference ref_V;
typedef typename linalg_traits<this_type>::iterator iterator;
typedef typename linalg_traits<this_type>::reference reference;
typedef typename linalg_traits<this_type>::porigin_type porigin_type;
iterator begin_, end_;
porigin_type origin;
size_type size_;
simple_vector_ref(ref_V v) : begin_(vect_begin(const_cast<V&>(v))),
end_(vect_end(const_cast<V&>(v))),
origin(linalg_origin(const_cast<V&>(v))),
size_(vect_size(v)) {}
simple_vector_ref(const simple_vector_ref<CPT> &cr)
: begin_(cr.begin_),end_(cr.end_),origin(cr.origin),size_(cr.size_) {}
simple_vector_ref(void) {}
reference operator[](size_type i) const
{ return linalg_traits<V>::access(origin, begin_, end_, i); }
};
template <typename IT, typename ORG, typename PT> inline
void set_to_begin(IT &it, ORG o, simple_vector_ref<PT> *,linalg_modifiable) {
typedef typename linalg_traits<simple_vector_ref<PT> >::V_reference ref_t;
set_to_begin(it, o, PT(), ref_t());
}
template <typename IT, typename ORG, typename PT> inline
void set_to_begin(IT &it, ORG o, const simple_vector_ref<PT> *,
linalg_modifiable) {
typedef typename linalg_traits<simple_vector_ref<PT> >::V_reference ref_t;
set_to_begin(it, o, PT(), ref_t());
}
template <typename IT, typename ORG, typename PT> inline
void set_to_end(IT &it, ORG o, simple_vector_ref<PT> *, linalg_modifiable) {
typedef typename linalg_traits<simple_vector_ref<PT> >::V_reference ref_t;
set_to_end(it, o, PT(), ref_t());
}
template <typename IT, typename ORG, typename PT> inline
void set_to_end(IT &it, ORG o, const simple_vector_ref<PT> *,
linalg_modifiable) {
typedef typename linalg_traits<simple_vector_ref<PT> >::V_reference ref_t;
set_to_end(it, o, PT(), ref_t());
}
template <typename PT> struct linalg_traits<simple_vector_ref<PT> > {
typedef simple_vector_ref<PT> this_type;
typedef this_type *pthis_type;
typedef typename std::iterator_traits<PT>::value_type V;
typedef typename linalg_traits<V>::origin_type origin_type;
typedef V *pV;
typedef typename linalg_traits<V>::is_reference V_reference;
typedef typename which_reference<PT>::is_reference is_reference;
typedef abstract_vector linalg_type;
typedef typename linalg_traits<V>::value_type value_type;
typedef typename select_ref<value_type, typename
linalg_traits<V>::reference, PT>::ref_type reference;
typedef typename select_ref<const origin_type *, origin_type *,
PT>::ref_type porigin_type;
typedef typename select_ref<typename linalg_traits<V>::const_iterator,
typename linalg_traits<V>::iterator, PT>::ref_type iterator;
typedef typename linalg_traits<V>::const_iterator const_iterator;
typedef typename linalg_traits<V>::storage_type storage_type;
typedef linalg_true index_sorted;
static size_type size(const this_type &v) { return v.size_; }
static inline iterator begin(this_type &v) {
iterator it = v.begin_;
set_to_begin(it, v.origin, pthis_type(), is_reference());
return it;
}
static inline const_iterator begin(const this_type &v) {
const_iterator it = v.begin_;
set_to_begin(it, v.origin, pthis_type(), is_reference());
return it;
}
static inline iterator end(this_type &v) {
iterator it = v.end_;
set_to_end(it, v.origin, pthis_type(), is_reference());
return it;
}
static inline const_iterator end(const this_type &v) {
const_iterator it = v.end_;
set_to_end(it, v.origin, pthis_type(), is_reference());
return it;
}
static origin_type* origin(this_type &v) { return v.origin; }
static const origin_type* origin(const this_type &v) { return v.origin; }
static void clear(origin_type* o, const iterator &it, const iterator &ite)
{ linalg_traits<V>::clear(o, it, ite); }
static void do_clear(this_type &v) { clear(v.origin, v.begin_, v.end_); }
static value_type access(const origin_type *o, const const_iterator &it,
const const_iterator &ite, size_type i)
{ return linalg_traits<V>::access(o, it, ite, i); }
static reference access(origin_type *o, const iterator &it,
const iterator &ite, size_type i)
{ return linalg_traits<V>::access(o, it, ite, i); }
};
template <typename PT>
std::ostream &operator << (std::ostream &o, const simple_vector_ref<PT>& v)
{ gmm::write(o,v); return o; }
/* ********************************************************************* */
/* */
/* Traits for S.T.L. object */
/* */
/* ********************************************************************* */
template <typename T, typename alloc>
struct linalg_traits<std::vector<T, alloc> > {
typedef std::vector<T, alloc> this_type;
typedef this_type origin_type;
typedef linalg_false is_reference;
typedef abstract_vector linalg_type;
typedef T value_type;
typedef T& reference;
typedef typename this_type::iterator iterator;
typedef typename this_type::const_iterator const_iterator;
typedef abstract_dense storage_type;
typedef linalg_true index_sorted;
static size_type size(const this_type &v) { return v.size(); }
static iterator begin(this_type &v) { return v.begin(); }
static const_iterator begin(const this_type &v) { return v.begin(); }
static iterator end(this_type &v) { return v.end(); }
static const_iterator end(const this_type &v) { return v.end(); }
static origin_type* origin(this_type &v) { return &v; }
static const origin_type* origin(const this_type &v) { return &v; }
static void clear(origin_type*, const iterator &it, const iterator &ite)
{ std::fill(it, ite, value_type(0)); }
static void do_clear(this_type &v) { std::fill(v.begin(), v.end(), T(0)); }
static value_type access(const origin_type *, const const_iterator &it,
const const_iterator &, size_type i)
{ return it[i]; }
static reference access(origin_type *, const iterator &it,
const iterator &, size_type i)
{ return it[i]; }
static void resize(this_type &v, size_type n) { v.resize(n); }
};
}
namespace std {
template <typename T> ostream &operator <<
(std::ostream &o, const vector<T>& m) { gmm::write(o,m); return o; }
}
namespace gmm {
template <typename T>
inline size_type nnz(const std::vector<T>& l) { return l.size(); }
/* ********************************************************************* */
/* */
/* Traits for ref objects */
/* */
/* ********************************************************************* */
template <typename IT, typename V>
struct tab_ref_with_origin : public gmm::tab_ref<IT> {
typedef tab_ref_with_origin<IT, V> this_type;
// next line replaced by the 4 following lines in order to please aCC
//typedef typename linalg_traits<this_type>::porigin_type porigin_type;
typedef typename linalg_traits<V>::origin_type origin_type;
typedef typename std::iterator_traits<IT>::pointer PT;
typedef typename select_ref<const origin_type *, origin_type *,
PT>::ref_type porigin_type;
porigin_type origin;
tab_ref_with_origin(void) {}
template <class PT> tab_ref_with_origin(const IT &b, const IT &e, PT p)
: gmm::tab_ref<IT>(b,e), origin(porigin_type(p)) {}
tab_ref_with_origin(const IT &b, const IT &e, porigin_type p)
: gmm::tab_ref<IT>(b,e), origin(p) {}
tab_ref_with_origin(const V &v, const sub_interval &si)
: gmm::tab_ref<IT>(vect_begin(const_cast<V&>(v))+si.min,
vect_begin(const_cast<V&>(v))+si.max),
origin(linalg_origin(const_cast<V&>(v))) {}
tab_ref_with_origin(V &v, const sub_interval &si)
: gmm::tab_ref<IT>(vect_begin(const_cast<V&>(v))+si.min,
vect_begin(const_cast<V&>(v))+si.max),
origin(linalg_origin(const_cast<V&>(v))) {}
};
template <typename IT, typename V>
struct linalg_traits<tab_ref_with_origin<IT, V> > {
typedef typename std::iterator_traits<IT>::pointer PT;
typedef typename linalg_traits<V>::origin_type origin_type;
typedef tab_ref_with_origin<IT, V> this_type;
typedef typename which_reference<PT>::is_reference is_reference;
typedef abstract_vector linalg_type;
typedef typename select_ref<const origin_type *, origin_type *,
PT>::ref_type porigin_type;
typedef typename std::iterator_traits<IT>::value_type value_type;
typedef typename std::iterator_traits<IT>::reference reference;
typedef typename this_type::iterator iterator;
typedef typename this_type::iterator const_iterator;
typedef abstract_dense storage_type;
typedef linalg_true index_sorted;
static size_type size(const this_type &v) { return v.size(); }
static iterator begin(this_type &v) { return v.begin(); }
static const_iterator begin(const this_type &v) { return v.begin(); }
static iterator end(this_type &v) { return v.end(); }
static const_iterator end(const this_type &v) { return v.end(); }
static origin_type* origin(this_type &v) { return v.origin; }
static const origin_type* origin(const this_type &v) { return v.origin; }
static void clear(origin_type*, const iterator &it, const iterator &ite)
{ std::fill(it, ite, value_type(0)); }
static inline void do_clear(this_type &v)
{ std::fill(v.begin(), v.end(), value_type(0)); }
static value_type access(const origin_type *, const const_iterator &it,
const const_iterator &, size_type i)
{ return it[i]; }
static reference access(origin_type *, const iterator &it,
const iterator &, size_type i)
{ return it[i]; }
};
template <typename IT, typename V> std::ostream &operator <<
(std::ostream &o, const tab_ref_with_origin<IT, V>& m)
{ gmm::write(o,m); return o; }
template <typename IT, typename V>
struct tab_ref_reg_spaced_with_origin : public gmm::tab_ref_reg_spaced<IT> {
typedef tab_ref_reg_spaced_with_origin<IT, V> this_type;
typedef typename linalg_traits<this_type>::porigin_type porigin_type;
porigin_type origin;
tab_ref_reg_spaced_with_origin(void) {}
tab_ref_reg_spaced_with_origin(const IT &b, size_type n, size_type s,
const porigin_type p)
: gmm::tab_ref_reg_spaced<IT>(b,n,s), origin(p) {}
tab_ref_reg_spaced_with_origin(const V &v, const sub_slice &si)
: gmm::tab_ref_reg_spaced<IT>(vect_begin(const_cast<V&>(v)) + si.min,
si.N, (si.max - si.min)/si.N),
origin(linalg_origin(const_cast<V&>(v))) {}
tab_ref_reg_spaced_with_origin(V &v, const sub_slice &si)
: gmm::tab_ref_reg_spaced<IT>(vect_begin(const_cast<V&>(v)) + si.min,
si.N, (si.max - si.min)/si.N),
origin(linalg_origin(const_cast<V&>(v))) {}
};
template <typename IT, typename V>
struct linalg_traits<tab_ref_reg_spaced_with_origin<IT, V> > {
typedef typename std::iterator_traits<IT>::pointer PT;
typedef tab_ref_reg_spaced_with_origin<IT, V> this_type;
typedef typename linalg_traits<V>::origin_type origin_type;
typedef typename select_ref<const origin_type *, origin_type *,
PT>::ref_type porigin_type;
typedef typename which_reference<PT>::is_reference is_reference;
typedef abstract_vector linalg_type;
typedef typename std::iterator_traits<IT>::value_type value_type;
typedef typename std::iterator_traits<IT>::reference reference;
typedef typename this_type::iterator iterator;
typedef typename this_type::iterator const_iterator;
typedef abstract_dense storage_type;
typedef linalg_true index_sorted;
static size_type size(const this_type &v) { return v.size(); }
static iterator begin(this_type &v) { return v.begin(); }
static const_iterator begin(const this_type &v) { return v.begin(); }
static iterator end(this_type &v) { return v.end(); }
static const_iterator end(const this_type &v) { return v.end(); }
static origin_type* origin(this_type &v) { return v.origin; }
static const origin_type* origin(const this_type &v) { return v.origin; }
static void clear(origin_type*, const iterator &it, const iterator &ite)
{ std::fill(it, ite, value_type(0)); }
static void do_clear(this_type &v)
{ std::fill(v.begin(), v.end(), value_type(0)); }
static value_type access(const origin_type *, const const_iterator &it,
const const_iterator &, size_type i)
{ return it[i]; }
static reference access(origin_type *, const iterator &it,
const iterator &, size_type i)
{ return it[i]; }
};
template <typename IT, typename V> std::ostream &operator <<
(std::ostream &o, const tab_ref_reg_spaced_with_origin<IT, V>& m)
{ gmm::write(o,m); return o; }
template <typename IT, typename ITINDEX, typename V>
struct tab_ref_index_ref_with_origin
: public gmm::tab_ref_index_ref<IT, ITINDEX> {
typedef tab_ref_index_ref_with_origin<IT, ITINDEX, V> this_type;
typedef typename linalg_traits<this_type>::porigin_type porigin_type;
porigin_type origin;
tab_ref_index_ref_with_origin(void) {}
tab_ref_index_ref_with_origin(const IT &b, const ITINDEX &bi,
const ITINDEX &ei, porigin_type p)
: gmm::tab_ref_index_ref<IT, ITINDEX>(b, bi, ei), origin(p) {}
tab_ref_index_ref_with_origin(const V &v, const sub_index &si)
: gmm::tab_ref_index_ref<IT, ITINDEX>(vect_begin(const_cast<V&>(v)),
si.begin(), si.end()),
origin(linalg_origin(const_cast<V&>(v))) {}
tab_ref_index_ref_with_origin(V &v, const sub_index &si)
: gmm::tab_ref_index_ref<IT, ITINDEX>(vect_begin(const_cast<V&>(v)),
si.begin(), si.end()),
origin(linalg_origin(const_cast<V&>(v))) {}
};
template <typename IT, typename ITINDEX, typename V>
struct linalg_traits<tab_ref_index_ref_with_origin<IT, ITINDEX, V> > {
typedef typename std::iterator_traits<IT>::pointer PT;
typedef tab_ref_index_ref_with_origin<IT, ITINDEX, V> this_type;
typedef typename linalg_traits<V>::origin_type origin_type;
typedef typename select_ref<const origin_type *, origin_type *,
PT>::ref_type porigin_type;
typedef typename which_reference<PT>::is_reference is_reference;
typedef abstract_vector linalg_type;
typedef typename std::iterator_traits<IT>::value_type value_type;
typedef typename std::iterator_traits<IT>::reference reference;
typedef typename this_type::iterator iterator;
typedef typename this_type::iterator const_iterator;
typedef abstract_dense storage_type;
typedef linalg_true index_sorted;
static size_type size(const this_type &v) { return v.size(); }
static iterator begin(this_type &v) { return v.begin(); }
static const_iterator begin(const this_type &v) { return v.begin(); }
static iterator end(this_type &v) { return v.end(); }
static const_iterator end(const this_type &v) { return v.end(); }
static origin_type* origin(this_type &v) { return v.origin; }
static const origin_type* origin(const this_type &v) { return v.origin; }
static void clear(origin_type*, const iterator &it, const iterator &ite)
{ std::fill(it, ite, value_type(0)); }
static void do_clear(this_type &v)
{ std::fill(v.begin(), v.end(), value_type(0)); }
static value_type access(const origin_type *, const const_iterator &it,
const const_iterator &, size_type i)
{ return it[i]; }
static reference access(origin_type *, const iterator &it,
const iterator &, size_type i)
{ return it[i]; }
};
template <typename IT, typename ITINDEX, typename V>
std::ostream &operator <<
(std::ostream &o, const tab_ref_index_ref_with_origin<IT, ITINDEX, V>& m)
{ gmm::write(o,m); return o; }
template<typename ITER, typename MIT, typename PT>
struct dense_compressed_iterator {
typedef ITER value_type;
typedef ITER *pointer;
typedef ITER &reference;
typedef ptrdiff_t difference_type;
typedef std::random_access_iterator_tag iterator_category;
typedef size_t size_type;
typedef dense_compressed_iterator<ITER, MIT, PT> iterator;
typedef typename std::iterator_traits<PT>::value_type *MPT;
ITER it;
size_type N, nrows, ncols, i;
PT origin;
iterator operator ++(int) { iterator tmp = *this; i++; return tmp; }
iterator operator --(int) { iterator tmp = *this; i--; return tmp; }
iterator &operator ++() { ++i; return *this; }
iterator &operator --() { --i; return *this; }
iterator &operator +=(difference_type ii) { i += ii; return *this; }
iterator &operator -=(difference_type ii) { i -= ii; return *this; }
iterator operator +(difference_type ii) const
{ iterator itt = *this; return (itt += ii); }
iterator operator -(difference_type ii) const
{ iterator itt = *this; return (itt -= ii); }
difference_type operator -(const iterator &ii) const
{ return (N ? (it - ii.it) / N : 0) + i - ii.i; }
ITER operator *() const { return it+i*N; }
ITER operator [](int ii) const { return it + (i+ii) * N; }
bool operator ==(const iterator &ii) const
{ return (*this - ii) == difference_type(0); }
bool operator !=(const iterator &ii) const { return !(ii == *this); }
bool operator < (const iterator &ii) const
{ return (*this - ii) < difference_type(0); }
dense_compressed_iterator(void) {}
dense_compressed_iterator(const dense_compressed_iterator<MIT,MIT,MPT> &ii)
: it(ii.it), N(ii.N), nrows(ii.nrows), ncols(ii.ncols), i(ii.i),
origin(ii.origin) {}
dense_compressed_iterator(const ITER &iter, size_type n, size_type r,
size_type c, size_type ii, PT o)
: it(iter), N(n), nrows(r), ncols(c), i(ii), origin(o) { }
};
/* ******************************************************************** */
/* Read only reference on a compressed sparse vector */
/* ******************************************************************** */
template <typename PT1, typename PT2, int shift = 0>
struct cs_vector_ref_iterator {
PT1 pr;
PT2 ir;
typedef typename std::iterator_traits<PT1>::value_type value_type;
typedef PT1 pointer;
typedef typename std::iterator_traits<PT1>::reference reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
typedef cs_vector_ref_iterator<PT1, PT2, shift> iterator;
cs_vector_ref_iterator(void) {}
cs_vector_ref_iterator(PT1 p1, PT2 p2) : pr(p1), ir(p2) {}
inline size_type index(void) const { return (*ir) - shift; }
iterator &operator ++() { ++pr; ++ir; return *this; }
iterator operator ++(int) { iterator tmp = *this; ++(*this); return tmp; }
iterator &operator --() { --pr; --ir; return *this; }
iterator operator --(int) { iterator tmp = *this; --(*this); return tmp; }
reference operator *() const { return *pr; }
pointer operator ->() const { return pr; }
bool operator ==(const iterator &i) const { return (i.pr==pr);}
bool operator !=(const iterator &i) const { return (i.pr!=pr);}
};
template <typename PT1, typename PT2, int shift = 0> struct cs_vector_ref {
PT1 pr;
PT2 ir;
size_type n, size_;
typedef cs_vector_ref<PT1, PT2, shift> this_type;
typedef typename std::iterator_traits<PT1>::value_type value_type;
typedef typename linalg_traits<this_type>::const_iterator const_iterator;
cs_vector_ref(PT1 pt1, PT2 pt2, size_type nnz, size_type ns)
: pr(pt1), ir(pt2), n(nnz), size_(ns) {}
cs_vector_ref(void) {}
size_type size(void) const { return size_; }
const_iterator begin(void) const { return const_iterator(pr, ir); }
const_iterator end(void) const { return const_iterator(pr+n, ir+n); }
value_type operator[](size_type i) const
{ return linalg_traits<this_type>::access(pr, begin(), end(),i); }
};
template <typename PT1, typename PT2, int shift>
struct linalg_traits<cs_vector_ref<PT1, PT2, shift> > {
typedef cs_vector_ref<PT1, PT2, shift> this_type;
typedef linalg_const is_reference;
typedef abstract_vector linalg_type;
typedef typename std::iterator_traits<PT1>::value_type value_type;
typedef value_type origin_type;
typedef typename std::iterator_traits<PT1>::value_type reference;
typedef cs_vector_ref_iterator<typename const_pointer<PT1>::pointer,
typename const_pointer<PT2>::pointer, shift> const_iterator;
typedef abstract_null_type iterator;
typedef abstract_sparse storage_type;
typedef linalg_true index_sorted;
static size_type size(const this_type &v) { return v.size(); }
static iterator begin(this_type &v) { return v.begin(); }
static const_iterator begin(const this_type &v) { return v.begin(); }
static iterator end(this_type &v) { return v.end(); }
static const_iterator end(const this_type &v) { return v.end(); }
static const origin_type* origin(const this_type &v) { return v.pr; }
static value_type access(const origin_type *, const const_iterator &b,
const const_iterator &e, size_type i) {
if (b.ir == e.ir) return value_type(0);
PT2 p = std::lower_bound(b.ir, e.ir, i+shift);
return (*p == i+shift && p != e.ir) ? b.pr[p-b.ir] : value_type(0);
}
};
template <typename PT1, typename PT2, int shift>
std::ostream &operator <<
(std::ostream &o, const cs_vector_ref<PT1, PT2, shift>& m)
{ gmm::write(o,m); return o; }
template <typename PT1, typename PT2, int shift>
inline size_type nnz(const cs_vector_ref<PT1, PT2, shift>& l) { return l.n; }
/* ******************************************************************** */
/* Read only reference on a compressed sparse column matrix */
/* ******************************************************************** */
template <typename PT1, typename PT2, typename PT3, int shift = 0>
struct sparse_compressed_iterator {
typedef typename std::iterator_traits<PT1>::value_type value_type;
typedef const value_type *pointer;
typedef const value_type &reference;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef std::random_access_iterator_tag iterator_category;
typedef sparse_compressed_iterator<PT1, PT2, PT3, shift> iterator;
PT1 pr;
PT2 ir;
PT3 jc;
size_type n;
const value_type *origin;
iterator operator ++(int) { iterator tmp = *this; jc++; return tmp; }
iterator operator --(int) { iterator tmp = *this; jc--; return tmp; }
iterator &operator ++() { jc++; return *this; }
iterator &operator --() { jc--; return *this; }
iterator &operator +=(difference_type i) { jc += i; return *this; }
iterator &operator -=(difference_type i) { jc -= i; return *this; }
iterator operator +(difference_type i) const
{ iterator itt = *this; return (itt += i); }
iterator operator -(difference_type i) const
{ iterator itt = *this; return (itt -= i); }
difference_type operator -(const iterator &i) const { return jc - i.jc; }
reference operator *() const { return pr + *jc - shift; }
reference operator [](int ii) { return pr + *(jc+ii) - shift; }
bool operator ==(const iterator &i) const { return (jc == i.jc); }
bool operator !=(const iterator &i) const { return !(i == *this); }
bool operator < (const iterator &i) const { return (jc < i.jc); }
sparse_compressed_iterator(void) {}
sparse_compressed_iterator(PT1 p1, PT2 p2, PT3 p3, size_type nn,
const value_type *o)
: pr(p1), ir(p2), jc(p3), n(nn), origin(o) { }
};
template <typename PT1, typename PT2, typename PT3, int shift = 0>
struct csc_matrix_ref {
PT1 pr; // values.
PT2 ir; // row indexes.
PT3 jc; // column repartition on pr and ir.
size_type nc, nr;
typedef typename std::iterator_traits<PT1>::value_type value_type;
csc_matrix_ref(PT1 pt1, PT2 pt2, PT3 pt3, size_type nrr, size_type ncc)
: pr(pt1), ir(pt2), jc(pt3), nc(ncc), nr(nrr) {}
csc_matrix_ref(void) {}
size_type nrows(void) const { return nr; }
size_type ncols(void) const { return nc; }
value_type operator()(size_type i, size_type j) const
{ return mat_col(*this, j)[i]; }
};
template <typename PT1, typename PT2, typename PT3, int shift>
struct linalg_traits<csc_matrix_ref<PT1, PT2, PT3, shift> > {
typedef csc_matrix_ref<PT1, PT2, PT3, shift> this_type;
typedef linalg_const is_reference;
typedef abstract_matrix linalg_type;
typedef typename std::iterator_traits<PT1>::value_type value_type;
typedef typename std::iterator_traits<PT1>::value_type reference;
typedef value_type origin_type;
typedef abstract_sparse storage_type;
typedef abstract_null_type sub_row_type;
typedef abstract_null_type const_sub_row_type;
typedef abstract_null_type row_iterator;
typedef abstract_null_type const_row_iterator;
typedef abstract_null_type sub_col_type;
typedef cs_vector_ref<typename const_pointer<PT1>::pointer,
typename const_pointer<PT2>::pointer, shift> const_sub_col_type;
typedef sparse_compressed_iterator<typename const_pointer<PT1>::pointer,
typename const_pointer<PT2>::pointer,
typename const_pointer<PT3>::pointer,
shift> const_col_iterator;
typedef abstract_null_type col_iterator;
typedef col_major sub_orientation;
typedef linalg_true index_sorted;
static size_type nrows(const this_type &m) { return m.nrows(); }
static size_type ncols(const this_type &m) { return m.ncols(); }
static const_col_iterator col_begin(const this_type &m)
{ return const_col_iterator(m.pr, m.ir, m.jc, m.nr, m.pr); }
static const_col_iterator col_end(const this_type &m)
{ return const_col_iterator(m.pr, m.ir, m.jc + m.nc, m.nr, m.pr); }
static const_sub_col_type col(const const_col_iterator &it) {
return const_sub_col_type(it.pr + *(it.jc) - shift,
it.ir + *(it.jc) - shift, *(it.jc + 1) - *(it.jc), it.n);
}
static const origin_type* origin(const this_type &m) { return m.pr; }
static value_type access(const const_col_iterator &itcol, size_type j)
{ return col(itcol)[j]; }
};
template <typename PT1, typename PT2, typename PT3, int shift>
std::ostream &operator <<
(std::ostream &o, const csc_matrix_ref<PT1, PT2, PT3, shift>& m)
{ gmm::write(o,m); return o; }
/* ******************************************************************** */
/* Read only reference on a compressed sparse row matrix */
/* ******************************************************************** */
template <typename PT1, typename PT2, typename PT3, int shift = 0>
struct csr_matrix_ref {
PT1 pr; // values.
PT2 ir; // column indexes.
PT3 jc; // row repartition on pr and ir.
size_type nc, nr;
typedef typename std::iterator_traits<PT1>::value_type value_type;
csr_matrix_ref(PT1 pt1, PT2 pt2, PT3 pt3, size_type nrr, size_type ncc)
: pr(pt1), ir(pt2), jc(pt3), nc(ncc), nr(nrr) {}
csr_matrix_ref(void) {}
size_type nrows(void) const { return nr; }
size_type ncols(void) const { return nc; }
value_type operator()(size_type i, size_type j) const
{ return mat_row(*this, i)[j]; }
};
template <typename PT1, typename PT2, typename PT3, int shift>
struct linalg_traits<csr_matrix_ref<PT1, PT2, PT3, shift> > {
typedef csr_matrix_ref<PT1, PT2, PT3, shift> this_type;
typedef linalg_const is_reference;
typedef abstract_matrix linalg_type;
typedef typename std::iterator_traits<PT1>::value_type value_type;
typedef typename std::iterator_traits<PT1>::value_type reference;
typedef value_type origin_type;
typedef abstract_sparse storage_type;
typedef abstract_null_type sub_col_type;
typedef abstract_null_type const_sub_col_type;
typedef abstract_null_type col_iterator;
typedef abstract_null_type const_col_iterator;
typedef abstract_null_type sub_row_type;
typedef cs_vector_ref<typename const_pointer<PT1>::pointer,
typename const_pointer<PT2>::pointer, shift>
const_sub_row_type;
typedef sparse_compressed_iterator<typename const_pointer<PT1>::pointer,
typename const_pointer<PT2>::pointer,
typename const_pointer<PT3>::pointer,
shift> const_row_iterator;
typedef abstract_null_type row_iterator;
typedef row_major sub_orientation;
typedef linalg_true index_sorted;
static size_type nrows(const this_type &m) { return m.nrows(); }
static size_type ncols(const this_type &m) { return m.ncols(); }
static const_row_iterator row_begin(const this_type &m)
{ return const_row_iterator(m.pr, m.ir, m.jc, m.nc, m.pr); }
static const_row_iterator row_end(const this_type &m)
{ return const_row_iterator(m.pr, m.ir, m.jc + m.nr, m.nc, m.pr); }
static const_sub_row_type row(const const_row_iterator &it) {
return const_sub_row_type(it.pr + *(it.jc) - shift,
it.ir + *(it.jc) - shift, *(it.jc + 1) - *(it.jc), it.n);
}
static const origin_type* origin(const this_type &m) { return m.pr; }
static value_type access(const const_row_iterator &itrow, size_type j)
{ return row(itrow)[j]; }
};
template <typename PT1, typename PT2, typename PT3, int shift>
std::ostream &operator <<
(std::ostream &o, const csr_matrix_ref<PT1, PT2, PT3, shift>& m)
{ gmm::write(o,m); return o; }
/* ********************************************************************* */
/* */
/* Simple interface for C arrays */
/* */
/* ********************************************************************* */
template <class PT> struct array1D_reference {
typedef typename std::iterator_traits<PT>::value_type value_type;
PT begin, end;
const value_type &operator[](size_type i) const { return *(begin+i); }
value_type &operator[](size_type i) { return *(begin+i); }
array1D_reference(PT begin_, size_type s) : begin(begin_), end(begin_+s) {}
};
template <typename PT>
struct linalg_traits<array1D_reference<PT> > {
typedef array1D_reference<PT> this_type;
typedef this_type origin_type;
typedef typename which_reference<PT>::is_reference is_reference;
typedef abstract_vector linalg_type;
typedef typename std::iterator_traits<PT>::value_type value_type;
typedef typename std::iterator_traits<PT>::reference reference;
typedef PT iterator;
typedef PT const_iterator;
typedef abstract_dense storage_type;
typedef linalg_true index_sorted;
static size_type size(const this_type &v) { return v.end - v.begin; }
static iterator begin(this_type &v) { return v.begin; }
static const_iterator begin(const this_type &v) { return v.begin; }
static iterator end(this_type &v) { return v.end; }
static const_iterator end(const this_type &v) { return v.end; }
static origin_type* origin(this_type &v) { return &v; }
static const origin_type* origin(const this_type &v) { return &v; }
static void clear(origin_type*, const iterator &it, const iterator &ite)
{ std::fill(it, ite, value_type(0)); }
static void do_clear(this_type &v)
{ std::fill(v.begin, v.end, value_type(0)); }
static value_type access(const origin_type *, const const_iterator &it,
const const_iterator &, size_type i)
{ return it[i]; }
static reference access(origin_type *, const iterator &it,
const iterator &, size_type i)
{ return it[i]; }
static void resize(this_type &, size_type )
{ GMM_ASSERT1(false, "Not resizable vector"); }
};
template<typename PT> std::ostream &operator <<
(std::ostream &o, const array1D_reference<PT>& v)
{ gmm::write(o,v); return o; }
template <class PT> struct array2D_col_reference {
typedef typename std::iterator_traits<PT>::value_type T;
typedef typename std::iterator_traits<PT>::reference reference;
typedef typename const_reference<reference>::reference const_reference;
typedef PT iterator;
typedef typename const_pointer<PT>::pointer const_iterator;
PT begin_;
size_type nbl, nbc;
inline const_reference operator ()(size_type l, size_type c) const {
GMM_ASSERT2(l < nbl && c < nbc, "out of range");
return *(begin_ + c*nbl+l);
}
inline reference operator ()(size_type l, size_type c) {
GMM_ASSERT2(l < nbl && c < nbc, "out of range");
return *(begin_ + c*nbl+l);
}
void resize(size_type, size_type);
void reshape(size_type m, size_type n) {
GMM_ASSERT2(n*m == nbl*nbc, "dimensions mismatch");
nbl = m; nbc = n;
}
void fill(T a, T b = T(0)) {
std::fill(begin_, end+nbc*nbl, b);
iterator p = begin_, e = end+nbc*nbl;
while (p < e) { *p = a; p += nbl+1; }
}
inline size_type nrows(void) const { return nbl; }
inline size_type ncols(void) const { return nbc; }
iterator begin(void) { return begin_; }
const_iterator begin(void) const { return begin_; }
iterator end(void) { return begin_+nbl*nbc; }
const_iterator end(void) const { return begin_+nbl*nbc; }
array2D_col_reference(PT begin__, size_type nrows_, size_type ncols_)
: begin_(begin__), nbl(nrows_), nbc(ncols_) {}
};
template <typename PT> struct linalg_traits<array2D_col_reference<PT> > {
typedef array2D_col_reference<PT> this_type;
typedef this_type origin_type;
typedef typename which_reference<PT>::is_reference is_reference;
typedef abstract_matrix linalg_type;
typedef typename std::iterator_traits<PT>::value_type value_type;
typedef typename std::iterator_traits<PT>::reference reference;
typedef abstract_dense storage_type;
typedef tab_ref_reg_spaced_with_origin<typename this_type::iterator,
this_type> sub_row_type;
typedef tab_ref_reg_spaced_with_origin<typename this_type::const_iterator,
this_type> const_sub_row_type;
typedef dense_compressed_iterator<typename this_type::iterator,
typename this_type::iterator,
this_type *> row_iterator;
typedef dense_compressed_iterator<typename this_type::const_iterator,
typename this_type::iterator,
const this_type *> const_row_iterator;
typedef tab_ref_with_origin<typename this_type::iterator,
this_type> sub_col_type;
typedef tab_ref_with_origin<typename this_type::const_iterator,
this_type> const_sub_col_type;
typedef dense_compressed_iterator<typename this_type::iterator,
typename this_type::iterator,
this_type *> col_iterator;
typedef dense_compressed_iterator<typename this_type::const_iterator,
typename this_type::iterator,
const this_type *> const_col_iterator;
typedef col_and_row sub_orientation;
typedef linalg_true index_sorted;
static size_type nrows(const this_type &m) { return m.nrows(); }
static size_type ncols(const this_type &m) { return m.ncols(); }
static const_sub_row_type row(const const_row_iterator &it)
{ return const_sub_row_type(*it, it.nrows, it.ncols, it.origin); }
static const_sub_col_type col(const const_col_iterator &it)
{ return const_sub_col_type(*it, *it + it.nrows, it.origin); }
static sub_row_type row(const row_iterator &it)
{ return sub_row_type(*it, it.nrows, it.ncols, it.origin); }
static sub_col_type col(const col_iterator &it)
{ return sub_col_type(*it, *it + it.nrows, it.origin); }
static row_iterator row_begin(this_type &m)
{ return row_iterator(m.begin(), 1, m.nrows(), m.ncols(), 0, &m); }
static row_iterator row_end(this_type &m)
{ return row_iterator(m.begin(), 1, m.nrows(), m.ncols(), m.nrows(), &m); }
static const_row_iterator row_begin(const this_type &m)
{ return const_row_iterator(m.begin(), 1, m.nrows(), m.ncols(), 0, &m); }
static const_row_iterator row_end(const this_type &m) {
return const_row_iterator(m.begin(), 1, m.nrows(),
m.ncols(), m.nrows(), &m);
}
static col_iterator col_begin(this_type &m)
{ return col_iterator(m.begin(), m.nrows(), m.nrows(), m.ncols(), 0, &m); }
static col_iterator col_end(this_type &m) {
return col_iterator(m.begin(), m.nrows(), m.nrows(), m.ncols(),
m.ncols(), &m);
}
static const_col_iterator col_begin(const this_type &m) {
return const_col_iterator(m.begin(), m.nrows(), m.nrows(),
m.ncols(), 0, &m);
}
static const_col_iterator col_end(const this_type &m) {
return const_col_iterator(m.begin(), m.nrows(),m.nrows(),m.ncols(),
m.ncols(), &m);
}
static origin_type* origin(this_type &m) { return &m; }
static const origin_type* origin(const this_type &m) { return &m; }
static void do_clear(this_type &m) { m.fill(value_type(0)); }
static value_type access(const const_col_iterator &itcol, size_type j)
{ return (*itcol)[j]; }
static reference access(const col_iterator &itcol, size_type j)
{ return (*itcol)[j]; }
static void resize(this_type &v, size_type m, size_type n)
{ v.resize(m,n); }
static void reshape(this_type &v, size_type m, size_type n)
{ v.reshape(m, n); }
};
template<typename PT> std::ostream &operator <<
(std::ostream &o, const array2D_col_reference<PT>& m)
{ gmm::write(o,m); return o; }
template <class PT> struct array2D_row_reference {
typedef typename std::iterator_traits<PT>::value_type T;
typedef typename std::iterator_traits<PT>::reference reference;
typedef typename const_reference<reference>::reference const_reference;
typedef PT iterator;
typedef typename const_pointer<PT>::pointer const_iterator;
PT begin_;
size_type nbl, nbc;
inline const_reference operator ()(size_type l, size_type c) const {
GMM_ASSERT2(l < nbl && c < nbc, "out of range");
return *(begin_ + l*nbc+c);
}
inline reference operator ()(size_type l, size_type c) {
GMM_ASSERT2(l < nbl && c < nbc, "out of range");
return *(begin_ + l*nbc+c);
}
void resize(size_type, size_type);
void reshape(size_type m, size_type n) {
GMM_ASSERT2(n*m == nbl*nbc, "dimensions mismatch");
nbl = m; nbc = n;
}
void fill(T a, T b = T(0)) {
std::fill(begin_, end+nbc*nbl, b);
iterator p = begin_, e = end+nbc*nbl;
while (p < e) { *p = a; p += nbc+1; }
}
inline size_type nrows(void) const { return nbl; }
inline size_type ncols(void) const { return nbc; }
iterator begin(void) { return begin_; }
const_iterator begin(void) const { return begin_; }
iterator end(void) { return begin_+nbl*nbc; }
const_iterator end(void) const { return begin_+nbl*nbc; }
array2D_row_reference(PT begin__, size_type nrows_, size_type ncols_)
: begin_(begin__), nbl(nrows_), nbc(ncols_) {}
};
template <typename PT> struct linalg_traits<array2D_row_reference<PT> > {
typedef array2D_row_reference<PT> this_type;
typedef this_type origin_type;
typedef typename which_reference<PT>::is_reference is_reference;
typedef abstract_matrix linalg_type;
typedef typename std::iterator_traits<PT>::value_type value_type;
typedef typename std::iterator_traits<PT>::reference reference;
typedef abstract_dense storage_type;
typedef tab_ref_reg_spaced_with_origin<typename this_type::iterator,
this_type> sub_col_type;
typedef tab_ref_reg_spaced_with_origin<typename this_type::const_iterator,
this_type> const_sub_col_type;
typedef dense_compressed_iterator<typename this_type::iterator,
typename this_type::iterator,
this_type *> col_iterator;
typedef dense_compressed_iterator<typename this_type::const_iterator,
typename this_type::iterator,
const this_type *> const_col_iterator;
typedef tab_ref_with_origin<typename this_type::iterator,
this_type> sub_row_type;
typedef tab_ref_with_origin<typename this_type::const_iterator,
this_type> const_sub_row_type;
typedef dense_compressed_iterator<typename this_type::iterator,
typename this_type::iterator,
this_type *> row_iterator;
typedef dense_compressed_iterator<typename this_type::const_iterator,
typename this_type::iterator,
const this_type *> const_row_iterator;
typedef col_and_row sub_orientation;
typedef linalg_true index_sorted;
static size_type ncols(const this_type &m) { return m.ncols(); }
static size_type nrows(const this_type &m) { return m.nrows(); }
static const_sub_col_type col(const const_col_iterator &it)
{ return const_sub_col_type(*it, it.ncols, it.nrows, it.origin); }
static const_sub_row_type row(const const_row_iterator &it)
{ return const_sub_row_type(*it, *it + it.ncols, it.origin); }
static sub_col_type col(const col_iterator &it)
{ return sub_col_type(*it, *it, it.ncols, it.nrows, it.origin); }
static sub_row_type row(const row_iterator &it)
{ return sub_row_type(*it, *it + it.ncols, it.origin); }
static col_iterator col_begin(this_type &m)
{ return col_iterator(m.begin(), 1, m.ncols(), m.nrows(), 0, &m); }
static col_iterator col_end(this_type &m)
{ return col_iterator(m.begin(), 1, m.ncols(), m.nrows(), m.ncols(), &m); }
static const_col_iterator col_begin(const this_type &m)
{ return const_col_iterator(m.begin(), 1, m.ncols(), m.nrows(), 0, &m); }
static const_col_iterator col_end(const this_type &m) {
return const_col_iterator(m.begin(), 1, m.ncols(),
m.nrows(), m.ncols(), &m);
}
static row_iterator row_begin(this_type &m)
{ return row_iterator(m.begin(), m.ncols(), m.ncols(), m.nrows(), 0, &m); }
static row_iterator row_end(this_type &m) {
return row_iterator(m.begin(), m.ncols(), m.ncols(), m.nrows(),
m.nrows(), &m);
}
static const_row_iterator row_begin(const this_type &m) {
return const_row_iterator(m.begin(), m.ncols(), m.ncols(), m.nrows(),
0, &m);
}
static const_row_iterator row_end(const this_type &m) {
return const_row_iterator(m.begin(), m.ncols(), m.ncols(), m.nrows(),
m.nrows(), &m);
}
static origin_type* origin(this_type &m) { return &m; }
static const origin_type* origin(const this_type &m) { return &m; }
static void do_clear(this_type &m) { m.fill(value_type(0)); }
static value_type access(const const_row_iterator &itrow, size_type j)
{ return (*itrow)[j]; }
static reference access(const row_iterator &itrow, size_type j)
{ return (*itrow)[j]; }
static void resize(this_type &v, size_type m, size_type n)
{ v.resize(m,n); }
static void reshape(this_type &v, size_type m, size_type n)
{ v.reshape(m, n); }
};
template<typename PT> std::ostream &operator <<
(std::ostream &o, const array2D_row_reference<PT>& m)
{ gmm::write(o,m); return o; }
}
#endif // GMM_INTERFACE_H__
|