/usr/include/gmm/gmm_precond_ilut.h is in libgmm-dev 4.0.0-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | // -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 1997-2008 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++ is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
// License for more details.
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
//
// As a special exception, you may use this file as it is a part of a free
// software library without restriction. Specifically, if other files
// instantiate templates or use macros or inline functions from this file,
// or you compile this file and link it with other files to produce an
// executable, this file does not by itself cause the resulting executable
// to be covered by the GNU Lesser General Public License. This exception
// does not however invalidate any other reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================
#ifndef GMM_PRECOND_ILUT_H
#define GMM_PRECOND_ILUT_H
/**@file gmm_precond_ilut.h
@author Andrew Lumsdaine <lums@osl.iu.edu>, Lie-Quan Lee <llee@osl.iu.edu>
@date June 5, 2003.
@brief ILUT: Incomplete LU with threshold and K fill-in Preconditioner.
*/
/*
Performane comparing for SSOR, ILU and ILUT based on sherman 5 matrix
in Harwell-Boeing collection on Sun Ultra 30 UPA/PCI (UltraSPARC-II 296MHz)
Preconditioner & Factorization time & Number of Iteration \\ \hline
SSOR & 0.010577 & 41 \\
ILU & 0.019336 & 32 \\
ILUT with 0 fill-in and threshold of 1.0e-6 & 0.343612 & 23 \\
ILUT with 5 fill-in and threshold of 1.0e-6 & 0.343612 & 18 \\ \hline
*/
#include "gmm_precond.h"
namespace gmm {
template<typename T> struct elt_rsvector_value_less_ {
inline bool operator()(const elt_rsvector_<T>& a,
const elt_rsvector_<T>& b) const
{ return (gmm::abs(a.e) > gmm::abs(b.e)); }
};
/** Incomplete LU with threshold and K fill-in Preconditioner.
The algorithm of ILUT(A, 0, 1.0e-6) is slower than ILU(A). If No
fill-in is arrowed, you can use ILU instead of ILUT.
Notes: The idea under a concrete Preconditioner such as ilut is to
create a Preconditioner object to use in iterative methods.
*/
template <typename Matrix>
class ilut_precond {
public :
typedef typename linalg_traits<Matrix>::value_type value_type;
typedef wsvector<value_type> _wsvector;
typedef rsvector<value_type> _rsvector;
typedef row_matrix<_rsvector> LU_Matrix;
bool invert;
LU_Matrix L, U;
protected:
size_type K;
double eps;
template<typename M> void do_ilut(const M&, row_major);
void do_ilut(const Matrix&, col_major);
public:
void build_with(const Matrix& A) {
invert = false;
gmm::resize(L, mat_nrows(A), mat_ncols(A));
gmm::resize(U, mat_nrows(A), mat_ncols(A));
do_ilut(A, typename principal_orientation_type<typename
linalg_traits<Matrix>::sub_orientation>::potype());
}
ilut_precond(const Matrix& A, int k_, double eps_)
: L(mat_nrows(A), mat_ncols(A)), U(mat_nrows(A), mat_ncols(A)),
K(k_), eps(eps_) { build_with(A); }
ilut_precond(size_type k_, double eps_) : K(k_), eps(eps_) {}
ilut_precond(void) { K = 10; eps = 1E-7; }
size_type memsize() const {
return sizeof(*this) + (nnz(U)+nnz(L))*sizeof(value_type);
}
};
template<typename Matrix> template<typename M>
void ilut_precond<Matrix>::do_ilut(const M& A, row_major) {
typedef value_type T;
typedef typename number_traits<T>::magnitude_type R;
size_type n = mat_nrows(A);
if (n == 0) return;
std::vector<T> indiag(n);
_wsvector w(mat_ncols(A));
_rsvector ww(mat_ncols(A)), wL(mat_ncols(A)), wU(mat_ncols(A));
T tmp;
gmm::clear(U); gmm::clear(L);
R prec = default_tol(R());
R max_pivot = gmm::abs(A(0,0)) * prec;
for (size_type i = 0; i < n; ++i) {
gmm::copy(mat_const_row(A, i), w);
double norm_row = gmm::vect_norm2(w);
typename _wsvector::iterator wkold = w.end();
for (typename _wsvector::iterator wk = w.begin();
wk != w.end() && wk->first < i; ) {
size_type k = wk->first;
tmp = (wk->second) * indiag[k];
if (gmm::abs(tmp) < eps * norm_row) w.erase(k);
else { wk->second += tmp; gmm::add(scaled(mat_row(U, k), -tmp), w); }
if (wkold == w.end()) wk = w.begin(); else { wk = wkold; ++wk; }
if (wk != w.end() && wk->first == k)
{ if (wkold == w.end()) wkold = w.begin(); else ++wkold; ++wk; }
}
tmp = w[i];
if (gmm::abs(tmp) <= max_pivot) {
GMM_WARNING2("pivot " << i << " too small. try with ilutp ?");
w[i] = tmp = T(1);
}
max_pivot = std::max(max_pivot, std::min(gmm::abs(tmp) * prec, R(1)));
indiag[i] = T(1) / tmp;
gmm::clean(w, eps * norm_row);
gmm::copy(w, ww);
std::sort(ww.begin(), ww.end(), elt_rsvector_value_less_<T>());
typename _rsvector::const_iterator wit = ww.begin(), wite = ww.end();
size_type nnl = 0, nnu = 0;
wL.base_resize(K); wU.base_resize(K+1);
typename _rsvector::iterator witL = wL.begin(), witU = wU.begin();
for (; wit != wite; ++wit)
if (wit->c < i) { if (nnl < K) { *witL++ = *wit; ++nnl; } }
else { if (nnu < K || wit->c == i) { *witU++ = *wit; ++nnu; } }
wL.base_resize(nnl); wU.base_resize(nnu);
std::sort(wL.begin(), wL.end());
std::sort(wU.begin(), wU.end());
gmm::copy(wL, L.row(i));
gmm::copy(wU, U.row(i));
}
}
template<typename Matrix>
void ilut_precond<Matrix>::do_ilut(const Matrix& A, col_major) {
do_ilut(gmm::transposed(A), row_major());
invert = true;
}
template <typename Matrix, typename V1, typename V2> inline
void mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
gmm::copy(v1, v2);
if (P.invert) {
gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
}
else {
gmm::lower_tri_solve(P.L, v2, true);
gmm::upper_tri_solve(P.U, v2, false);
}
}
template <typename Matrix, typename V1, typename V2> inline
void transposed_mult(const ilut_precond<Matrix>& P,const V1 &v1,V2 &v2) {
gmm::copy(v1, v2);
if (P.invert) {
gmm::lower_tri_solve(P.L, v2, true);
gmm::upper_tri_solve(P.U, v2, false);
}
else {
gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
}
}
template <typename Matrix, typename V1, typename V2> inline
void left_mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
copy(v1, v2);
if (P.invert) gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
else gmm::lower_tri_solve(P.L, v2, true);
}
template <typename Matrix, typename V1, typename V2> inline
void right_mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
copy(v1, v2);
if (P.invert) gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
else gmm::upper_tri_solve(P.U, v2, false);
}
template <typename Matrix, typename V1, typename V2> inline
void transposed_left_mult(const ilut_precond<Matrix>& P, const V1 &v1,
V2 &v2) {
copy(v1, v2);
if (P.invert) gmm::upper_tri_solve(P.U, v2, false);
else gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
}
template <typename Matrix, typename V1, typename V2> inline
void transposed_right_mult(const ilut_precond<Matrix>& P, const V1 &v1,
V2 &v2) {
copy(v1, v2);
if (P.invert) gmm::lower_tri_solve(P.L, v2, true);
else gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
}
}
#endif
|