This file is indexed.

/usr/include/gmm/gmm_precond_ilut.h is in libgmm-dev 4.0.0-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 1997-2008 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
// under  the  terms  of the  GNU  Lesser General Public License as published
// by  the  Free Software Foundation;  either version 2.1 of the License,  or
// (at your option) any later version.
// This program  is  distributed  in  the  hope  that it will be useful,  but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
// License for more details.
// You  should  have received a copy of the GNU Lesser General Public License
// along  with  this program;  if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
//
// As a special exception, you  may use  this file  as it is a part of a free
// software  library  without  restriction.  Specifically,  if   other  files
// instantiate  templates  or  use macros or inline functions from this file,
// or  you compile this  file  and  link  it  with other files  to produce an
// executable, this file  does  not  by itself cause the resulting executable
// to be covered  by the GNU Lesser General Public License.  This   exception
// does not  however  invalidate  any  other  reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================
#ifndef GMM_PRECOND_ILUT_H
#define GMM_PRECOND_ILUT_H

/**@file gmm_precond_ilut.h
   @author  Andrew Lumsdaine <lums@osl.iu.edu>, Lie-Quan Lee <llee@osl.iu.edu>
   @date June 5, 2003.
   @brief ILUT:  Incomplete LU with threshold and K fill-in Preconditioner.
*/

/*
  Performane comparing for SSOR, ILU and ILUT based on sherman 5 matrix 
  in Harwell-Boeing collection on Sun Ultra 30 UPA/PCI (UltraSPARC-II 296MHz)
  Preconditioner & Factorization time  &  Number of Iteration \\ \hline
  SSOR        &   0.010577  & 41 \\
  ILU         &   0.019336  & 32 \\
  ILUT with 0 fill-in and threshold of 1.0e-6 & 0.343612 &  23 \\
  ILUT with 5 fill-in and threshold of 1.0e-6 & 0.343612 &  18 \\ \hline
*/

#include "gmm_precond.h"

namespace gmm {

  template<typename T> struct elt_rsvector_value_less_ {
    inline bool operator()(const elt_rsvector_<T>& a, 
			   const elt_rsvector_<T>& b) const
    { return (gmm::abs(a.e) > gmm::abs(b.e)); }
  };

  /** Incomplete LU with threshold and K fill-in Preconditioner.

  The algorithm of ILUT(A, 0, 1.0e-6) is slower than ILU(A). If No
  fill-in is arrowed, you can use ILU instead of ILUT.

  Notes: The idea under a concrete Preconditioner such as ilut is to
  create a Preconditioner object to use in iterative methods.
  */
  template <typename Matrix>
  class ilut_precond  {
  public :
    typedef typename linalg_traits<Matrix>::value_type value_type;
    typedef wsvector<value_type> _wsvector;
    typedef rsvector<value_type> _rsvector;
    typedef row_matrix<_rsvector> LU_Matrix;

    bool invert;
    LU_Matrix L, U;

  protected:
    size_type K;
    double eps;    

    template<typename M> void do_ilut(const M&, row_major);
    void do_ilut(const Matrix&, col_major);

  public:
    void build_with(const Matrix& A) {
      invert = false;
      gmm::resize(L, mat_nrows(A), mat_ncols(A));
      gmm::resize(U, mat_nrows(A), mat_ncols(A));
      do_ilut(A, typename principal_orientation_type<typename
	      linalg_traits<Matrix>::sub_orientation>::potype());
    }
    ilut_precond(const Matrix& A, int k_, double eps_) 
      : L(mat_nrows(A), mat_ncols(A)), U(mat_nrows(A), mat_ncols(A)),
	K(k_), eps(eps_) { build_with(A); }
    ilut_precond(size_type k_, double eps_) :  K(k_), eps(eps_) {}
    ilut_precond(void) { K = 10; eps = 1E-7; }
    size_type memsize() const { 
      return sizeof(*this) + (nnz(U)+nnz(L))*sizeof(value_type);
    }
  };

  template<typename Matrix> template<typename M> 
  void ilut_precond<Matrix>::do_ilut(const M& A, row_major) {
    typedef value_type T;
    typedef typename number_traits<T>::magnitude_type R;
    
    size_type n = mat_nrows(A);
    if (n == 0) return;
    std::vector<T> indiag(n);
    _wsvector w(mat_ncols(A));
    _rsvector ww(mat_ncols(A)), wL(mat_ncols(A)), wU(mat_ncols(A));
    T tmp;
    gmm::clear(U); gmm::clear(L);
    R prec = default_tol(R()); 
    R max_pivot = gmm::abs(A(0,0)) * prec;

    for (size_type i = 0; i < n; ++i) {
      gmm::copy(mat_const_row(A, i), w);
      double norm_row = gmm::vect_norm2(w);

      typename _wsvector::iterator wkold = w.end();
      for (typename _wsvector::iterator wk = w.begin();
	   wk != w.end() && wk->first < i; ) {
	size_type k = wk->first;
	tmp = (wk->second) * indiag[k];
	if (gmm::abs(tmp) < eps * norm_row) w.erase(k);
	else { wk->second += tmp; gmm::add(scaled(mat_row(U, k), -tmp), w); }
	if (wkold == w.end()) wk = w.begin(); else { wk = wkold; ++wk; }
	if (wk != w.end() && wk->first == k)
	  { if (wkold == w.end()) wkold = w.begin(); else ++wkold; ++wk; }
      }
      tmp = w[i];

      if (gmm::abs(tmp) <= max_pivot) {
	GMM_WARNING2("pivot " << i << " too small. try with ilutp ?");
	w[i] = tmp = T(1);
      }

      max_pivot = std::max(max_pivot, std::min(gmm::abs(tmp) * prec, R(1)));
      indiag[i] = T(1) / tmp;
      gmm::clean(w, eps * norm_row);
      gmm::copy(w, ww);
      std::sort(ww.begin(), ww.end(), elt_rsvector_value_less_<T>());
      typename _rsvector::const_iterator wit = ww.begin(), wite = ww.end();

      size_type nnl = 0, nnu = 0;    
      wL.base_resize(K); wU.base_resize(K+1);
      typename _rsvector::iterator witL = wL.begin(), witU = wU.begin();
      for (; wit != wite; ++wit) 
	if (wit->c < i) { if (nnl < K) { *witL++ = *wit; ++nnl; } }
	else { if (nnu < K  || wit->c == i) { *witU++ = *wit; ++nnu; } }
      wL.base_resize(nnl); wU.base_resize(nnu);
      std::sort(wL.begin(), wL.end());
      std::sort(wU.begin(), wU.end());
      gmm::copy(wL, L.row(i));
      gmm::copy(wU, U.row(i));
    }

  }

  template<typename Matrix> 
  void ilut_precond<Matrix>::do_ilut(const Matrix& A, col_major) {
    do_ilut(gmm::transposed(A), row_major());
    invert = true;
  }

  template <typename Matrix, typename V1, typename V2> inline
  void mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
    gmm::copy(v1, v2);
    if (P.invert) {
      gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
      gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
    }
    else {
      gmm::lower_tri_solve(P.L, v2, true);
      gmm::upper_tri_solve(P.U, v2, false);
    }
  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_mult(const ilut_precond<Matrix>& P,const V1 &v1,V2 &v2) {
    gmm::copy(v1, v2);
    if (P.invert) {
      gmm::lower_tri_solve(P.L, v2, true);
      gmm::upper_tri_solve(P.U, v2, false);
    }
    else {
      gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
      gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
    }
  }

  template <typename Matrix, typename V1, typename V2> inline
  void left_mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
    copy(v1, v2);
    if (P.invert) gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
    else gmm::lower_tri_solve(P.L, v2, true);
  }

  template <typename Matrix, typename V1, typename V2> inline
  void right_mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
    copy(v1, v2);
    if (P.invert) gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
    else gmm::upper_tri_solve(P.U, v2, false);
  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_left_mult(const ilut_precond<Matrix>& P, const V1 &v1,
			    V2 &v2) {
    copy(v1, v2);
    if (P.invert) gmm::upper_tri_solve(P.U, v2, false);
    else gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_right_mult(const ilut_precond<Matrix>& P, const V1 &v1,
			     V2 &v2) {
    copy(v1, v2);
    if (P.invert) gmm::lower_tri_solve(P.L, v2, true);
    else gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
  }

}

#endif