This file is indexed.

/usr/include/gmm/gmm_real_part.h is in libgmm-dev 4.0.0-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
// -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 2003-2008 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
// under  the  terms  of the  GNU  Lesser General Public License as published
// by  the  Free Software Foundation;  either version 2.1 of the License,  or
// (at your option) any later version.
// This program  is  distributed  in  the  hope  that it will be useful,  but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
// License for more details.
// You  should  have received a copy of the GNU Lesser General Public License
// along  with  this program;  if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
//
// As a special exception, you  may use  this file  as it is a part of a free
// software  library  without  restriction.  Specifically,  if   other  files
// instantiate  templates  or  use macros or inline functions from this file,
// or  you compile this  file  and  link  it  with other files  to produce an
// executable, this file  does  not  by itself cause the resulting executable
// to be covered  by the GNU Lesser General Public License.  This   exception
// does not  however  invalidate  any  other  reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================

/**@file gmm_real_part.h
   @author  Yves Renard <Yves.Renard@insa-lyon.fr>
   @date September 18, 2003.
   @brief extract the real/imaginary part of vectors/matrices 
*/
#ifndef GMM_REAL_PART_H
#define GMM_REAL_PART_H

#include "gmm_def.h"
#include "gmm_vector.h"

namespace gmm {

  struct linalg_real_part {};
  struct linalg_imag_part {};
  template <typename R, typename PART> struct which_part {};
  
  template <typename C> typename number_traits<C>::magnitude_type 
  real_or_imag_part(C x, linalg_real_part) { return gmm::real(x); }
  template <typename C> typename number_traits<C>::magnitude_type 
  real_or_imag_part(C x, linalg_imag_part) { return gmm::imag(x); }
  template <typename T, typename C, typename OP> C
  complex_from(T x, C y, OP op, linalg_real_part) { return std::complex<T>(op(std::real(y), x), std::imag(y)); }
  template <typename T, typename C, typename OP> C
  complex_from(T x, C y, OP op,linalg_imag_part) { return std::complex<T>(std::real(y), op(std::imag(y), x)); }
  
  template<typename T> struct project2nd {
    T operator()(T , T b) const { return b; }
  };
  
  template<typename T, typename R, typename PART> class ref_elt_vector<T, which_part<R, PART> > {

    R r;
    
    public :

    operator T() const { return real_or_imag_part(std::complex<T>(r), PART()); }
    ref_elt_vector(R r_) : r(r_) {}
    inline ref_elt_vector &operator =(T v)
    { r = complex_from(v, std::complex<T>(r), gmm::project2nd<T>(), PART()); return *this; }
    inline bool operator ==(T v) const { return (r == v); }
    inline bool operator !=(T v) const { return (r != v); }
    inline ref_elt_vector &operator +=(T v)
    { r = complex_from(v, std::complex<T>(r), std::plus<T>(), PART()); return *this; }
    inline ref_elt_vector &operator -=(T v)
      { r = complex_from(v, std::complex<T>(r), std::minus<T>(), PART()); return *this; }
    inline ref_elt_vector &operator /=(T v)
      { r = complex_from(v, std::complex<T>(r), std::divides<T>(), PART()); return *this; }
    inline ref_elt_vector &operator *=(T v)
      { r = complex_from(v, std::complex<T>(r), std::multiplies<T>(), PART()); return *this; }
    inline ref_elt_vector &operator =(const ref_elt_vector &re)
      { *this = T(re); return *this; }
    T operator +()    { return  T(*this);   } // necessary for unknow reason
    T operator -()    { return -T(*this);   } // necessary for unknow reason
    T operator +(T v) { return T(*this)+ v; } // necessary for unknow reason
    T operator -(T v) { return T(*this)- v; } // necessary for unknow reason
    T operator *(T v) { return T(*this)* v; } // necessary for unknow reason
    T operator /(T v) { return T(*this)/ v; } // necessary for unknow reason
  };

  template<typename reference> struct ref_or_value_type {
    template <typename T, typename W>
    static W r(const T &x, linalg_real_part, W) {
      return gmm::real(x);
    }
    template <typename T, typename W>
    static W r(const T &x, linalg_imag_part, W) {
      return gmm::imag(x);
    }
  };
  
  template<typename U, typename R, typename PART> 
  struct ref_or_value_type<ref_elt_vector<U, which_part<R, PART> > > {
    template<typename T , typename W> 
    static const T &r(const T &x, linalg_real_part, W)
    { return x; }
    template<typename T, typename W> 
    static const T &r(const T &x, linalg_imag_part, W) {
      return x; 
    }
    template<typename T , typename W> 
    static T &r(T &x, linalg_real_part, W)
    { return x; }
    template<typename T, typename W> 
    static T &r(T &x, linalg_imag_part, W) {
      return x; 
    }
  };

  
  /* ********************************************************************* */
  /*	Reference to the real part of (complex) vectors            	   */
  /* ********************************************************************* */

  template <typename IT, typename MIT, typename PART>
  struct part_vector_iterator {
    typedef typename std::iterator_traits<IT>::value_type      vtype;
    typedef typename gmm::number_traits<vtype>::magnitude_type value_type;
    typedef value_type                                        *pointer;
    typedef ref_elt_vector<value_type, which_part<typename std::iterator_traits<IT>::reference, PART> > reference;
    typedef typename std::iterator_traits<IT>::difference_type difference_type;
    typedef typename std::iterator_traits<IT>::iterator_category
    iterator_category;

    IT it;
    
    part_vector_iterator(void) {}
    explicit part_vector_iterator(const IT &i) : it(i) {}
    part_vector_iterator(const part_vector_iterator<MIT, MIT, PART> &i) : it(i.it) {}
    

    size_type index(void) const { return it.index(); }
    part_vector_iterator operator ++(int)
    { part_vector_iterator tmp = *this; ++it; return tmp; }
    part_vector_iterator operator --(int) 
    { part_vector_iterator tmp = *this; --it; return tmp; }
    part_vector_iterator &operator ++() { ++it; return *this; }
    part_vector_iterator &operator --() { --it; return *this; }
    part_vector_iterator &operator +=(difference_type i)
      { it += i; return *this; }
    part_vector_iterator &operator -=(difference_type i)
      { it -= i; return *this; }
    part_vector_iterator operator +(difference_type i) const
      { part_vector_iterator itb = *this; return (itb += i); }
    part_vector_iterator operator -(difference_type i) const
      { part_vector_iterator itb = *this; return (itb -= i); }
    difference_type operator -(const part_vector_iterator &i) const
      { return difference_type(it - i.it); }
    
    reference operator  *() const { return reference(*it); }
    reference operator [](size_type ii) const { return reference(it[ii]); }
    
    bool operator ==(const part_vector_iterator &i) const
      { return (i.it == it); }
    bool operator !=(const part_vector_iterator &i) const
      { return (i.it != it); }
    bool operator < (const part_vector_iterator &i) const
      { return (it < i.it); }
  };


  template <typename PT, typename PART> struct part_vector {
    typedef part_vector<PT, PART> this_type;
    typedef typename std::iterator_traits<PT>::value_type V;
    typedef V * CPT;
    typedef typename select_ref<typename linalg_traits<V>::const_iterator,
            typename linalg_traits<V>::iterator, PT>::ref_type iterator;
    typedef typename linalg_traits<this_type>::reference reference;
    typedef typename linalg_traits<this_type>::value_type value_type;
    typedef typename linalg_traits<this_type>::porigin_type porigin_type;

    iterator begin_, end_;
    porigin_type origin;
    size_type size_;

    size_type size(void) const { return size_; }
   
    reference operator[](size_type i) const { 
      return reference(ref_or_value_type<reference>::r(
	     linalg_traits<V>::access(origin, begin_, end_, i),
	     PART(), value_type()));
    }

    part_vector(V &v)
      : begin_(vect_begin(v)),  end_(vect_end(v)),
	origin(linalg_origin(v)), size_(gmm::vect_size(v)) {}
    part_vector(const V &v) 
      : begin_(vect_begin(const_cast<V &>(v))),
       end_(vect_end(const_cast<V &>(v))),
	origin(linalg_origin(const_cast<V &>(v))), size_(gmm::vect_size(v)) {}
    part_vector() {}
    part_vector(const part_vector<CPT, PART> &cr)
      : begin_(cr.begin_),end_(cr.end_),origin(cr.origin), size_(cr.size_) {} 
  };

  template <typename IT, typename MIT, typename ORG, typename PT,
	    typename PART> inline
  void set_to_begin(part_vector_iterator<IT, MIT, PART> &it,
		    ORG o, part_vector<PT, PART> *, linalg_modifiable) {
    typedef part_vector<PT, PART> VECT;
    typedef typename linalg_traits<VECT>::V_reference ref_t;
    set_to_begin(it.it, o, typename linalg_traits<VECT>::pV(), ref_t());
  }
  template <typename IT, typename MIT, typename ORG, typename PT,
	    typename PART> inline
  void set_to_begin(part_vector_iterator<IT, MIT, PART> &it,
		    ORG o, const part_vector<PT, PART> *, linalg_modifiable) {
    typedef part_vector<PT, PART> VECT;
    typedef typename linalg_traits<VECT>::V_reference ref_t;
    set_to_begin(it.it, o, typename linalg_traits<VECT>::pV(), ref_t());
  }
  template <typename IT, typename MIT, typename ORG, typename PT,
	    typename PART> inline
  void set_to_end(part_vector_iterator<IT, MIT, PART> &it,
		    ORG o, part_vector<PT, PART> *, linalg_modifiable) {
    typedef part_vector<PT, PART> VECT;
    typedef typename linalg_traits<VECT>::V_reference ref_t;
    set_to_end(it.it, o, typename linalg_traits<VECT>::pV(), ref_t());
  }
  template <typename IT, typename MIT, typename ORG,
	    typename PT, typename PART> inline
  void set_to_end(part_vector_iterator<IT, MIT, PART> &it,
		  ORG o, const part_vector<PT, PART> *,
		  linalg_modifiable) {
    typedef part_vector<PT, PART> VECT;
    typedef typename linalg_traits<VECT>::V_reference ref_t;
    set_to_end(it.it, o, typename linalg_traits<VECT>::pV(), ref_t());
  }
  
  template <typename PT, typename PART>
  struct linalg_traits<part_vector<PT, PART> > {
    typedef part_vector<PT, PART> this_type;
    typedef this_type * pthis_type;
    typedef PT pV;
    typedef typename std::iterator_traits<PT>::value_type V;
    typedef typename linalg_traits<V>::index_sorted index_sorted;
    typedef typename linalg_traits<V>::is_reference V_reference;
    typedef typename linalg_traits<V>::origin_type origin_type;
    typedef typename select_ref<const origin_type *, origin_type *,
			        PT>::ref_type porigin_type;
    typedef typename which_reference<PT>::is_reference is_reference;
    typedef abstract_vector linalg_type;
    typedef typename linalg_traits<V>::value_type vtype;
    typedef typename number_traits<vtype>::magnitude_type value_type;
    typedef typename select_ref<value_type, ref_elt_vector<value_type,
		     which_part<typename linalg_traits<V>::reference,
				PART> >, PT>::ref_type reference;
    typedef typename select_ref<typename linalg_traits<V>::const_iterator,
	    typename linalg_traits<V>::iterator, PT>::ref_type pre_iterator;
    typedef typename select_ref<abstract_null_type, 
	    part_vector_iterator<pre_iterator, pre_iterator, PART>,
	    PT>::ref_type iterator;
    typedef part_vector_iterator<typename linalg_traits<V>::const_iterator,
				 pre_iterator, PART> const_iterator;
    typedef typename linalg_traits<V>::storage_type storage_type;
    static size_type size(const this_type &v) { return v.size(); }
    static iterator begin(this_type &v) {
      iterator it; it.it = v.begin_;
      if (!is_const_reference(is_reference()) && is_sparse(storage_type()))
	set_to_begin(it, v.origin, pthis_type(), is_reference());
      return it;
    }
    static const_iterator begin(const this_type &v) {
      const_iterator it(v.begin_);
      if (!is_const_reference(is_reference()) && is_sparse(storage_type()))
	{ set_to_begin(it, v.origin, pthis_type(), is_reference()); }
      return it;
    }
    static iterator end(this_type &v) {
      iterator it(v.end_);
      if (!is_const_reference(is_reference()) && is_sparse(storage_type()))
	set_to_end(it, v.origin, pthis_type(), is_reference());
      return it;
    }
    static const_iterator end(const this_type &v) {
      const_iterator it(v.end_);
      if (!is_const_reference(is_reference()) && is_sparse(storage_type()))
	set_to_end(it, v.origin, pthis_type(), is_reference());
      return it;
    }
    static origin_type* origin(this_type &v) { return v.origin; }
    static const origin_type* origin(const this_type &v) { return v.origin; }

    static void clear(origin_type* o, const iterator &begin_,
		      const iterator &end_, abstract_sparse) {
      std::deque<size_type> ind;
      iterator it = begin_;
      for (; it != end_; ++it) ind.push_front(it.index());
      for (; !(ind.empty()); ind.pop_back())
	access(o, begin_, end_, ind.back()) = value_type(0);
    }
    static void clear(origin_type* o, const iterator &begin_,
		      const iterator &end_, abstract_skyline) {
      clear(o, begin_, end_, abstract_sparse());
    }
    static void clear(origin_type* o, const iterator &begin_,
		      const iterator &end_, abstract_dense) {
      for (iterator it = begin_; it != end_; ++it) *it = value_type(0);
    }

   static void clear(origin_type* o, const iterator &begin_,
		      const iterator &end_) 
    { clear(o, begin_, end_, storage_type()); }
    static void do_clear(this_type &v) { clear(v.origin, begin(v), end(v)); }
    static value_type access(const origin_type *o, const const_iterator &it,
			     const const_iterator &ite, size_type i) { 
      return  real_or_imag_part(linalg_traits<V>::access(o, it.it, ite.it,i),
				PART());
    }
    static reference access(origin_type *o, const iterator &it,
			    const iterator &ite, size_type i)
    { return reference(linalg_traits<V>::access(o, it.it, ite.it,i)); }
  };

  template <typename PT, typename PART> std::ostream &operator <<
    (std::ostream &o, const part_vector<PT, PART>& m)
  { gmm::write(o,m); return o; }


  /* ********************************************************************* */
  /*	Reference to the real or imaginary part of (complex) matrices      */
  /* ********************************************************************* */


  template <typename PT, typename PART> struct  part_row_ref {
    
    typedef part_row_ref<PT, PART> this_type;
    typedef typename std::iterator_traits<PT>::value_type M;
    typedef M * CPT;
    typedef typename std::iterator_traits<PT>::reference ref_M;
    typedef typename select_ref<typename linalg_traits<this_type>
            ::const_row_iterator, typename linalg_traits<this_type>
            ::row_iterator, PT>::ref_type iterator;
    typedef typename linalg_traits<this_type>::value_type value_type;
    typedef typename linalg_traits<this_type>::reference reference;
    typedef typename linalg_traits<this_type>::porigin_type porigin_type;

    iterator begin_, end_;
    porigin_type origin;
    size_type nr, nc;

    part_row_ref(ref_M m)
      : begin_(mat_row_begin(m)), end_(mat_row_end(m)),
	origin(linalg_origin(m)), nr(mat_nrows(m)), nc(mat_ncols(m)) {}

    part_row_ref(const part_row_ref<CPT, PART> &cr) :
      begin_(cr.begin_),end_(cr.end_), origin(cr.origin),nr(cr.nr),nc(cr.nc) {}

    reference operator()(size_type i, size_type j) const {
      return reference(ref_or_value_type<reference>::r(
					 linalg_traits<M>::access(begin_+i, j),
					 PART(), value_type()));
    }
  };

  template <typename PT, typename PART>
  struct linalg_traits<part_row_ref<PT, PART> > {
    typedef part_row_ref<PT, PART> this_type;
    typedef typename std::iterator_traits<PT>::value_type M;
    typedef typename linalg_traits<M>::origin_type origin_type;
    typedef typename select_ref<const origin_type *, origin_type *,
			        PT>::ref_type porigin_type;
    typedef typename which_reference<PT>::is_reference is_reference;
    typedef abstract_matrix linalg_type;
    typedef typename linalg_traits<M>::value_type vtype;
    typedef typename number_traits<vtype>::magnitude_type value_type;
    typedef typename linalg_traits<M>::storage_type storage_type;
    typedef abstract_null_type sub_col_type;
    typedef abstract_null_type const_sub_col_type;
    typedef abstract_null_type col_iterator;
    typedef abstract_null_type const_col_iterator;
    typedef typename linalg_traits<M>::const_sub_row_type
            pre_const_sub_row_type;
    typedef typename linalg_traits<M>::sub_row_type pre_sub_row_type;
    typedef part_vector<const pre_const_sub_row_type *, PART>
            const_sub_row_type;
    typedef typename select_ref<abstract_null_type,
	    part_vector<pre_sub_row_type *, PART>, PT>::ref_type sub_row_type;
    typedef typename linalg_traits<M>::const_row_iterator const_row_iterator;
    typedef typename select_ref<abstract_null_type, typename
            linalg_traits<M>::row_iterator, PT>::ref_type row_iterator;
    typedef typename select_ref<
            typename linalg_traits<const_sub_row_type>::reference,
	    typename linalg_traits<sub_row_type>::reference,
				PT>::ref_type reference;
    typedef row_major sub_orientation;
    typedef typename linalg_traits<M>::index_sorted index_sorted;
    static size_type ncols(const this_type &v) { return v.nc; }
    static size_type nrows(const this_type &v) { return v.nr; }
    static const_sub_row_type row(const const_row_iterator &it)
    { return const_sub_row_type(linalg_traits<M>::row(it)); }
    static sub_row_type row(const row_iterator &it)
    { return sub_row_type(linalg_traits<M>::row(it)); }
    static row_iterator row_begin(this_type &m) { return m.begin_; }
    static row_iterator row_end(this_type &m) { return m.end_; }
    static const_row_iterator row_begin(const this_type &m)
    { return m.begin_; }
    static const_row_iterator row_end(const this_type &m) { return m.end_; }
    static origin_type* origin(this_type &v) { return v.origin; }
    static const origin_type* origin(const this_type &v) { return v.origin; }
    static void do_clear(this_type &v);
    static value_type access(const const_row_iterator &itrow, size_type i)
    { return real_or_imag_part(linalg_traits<M>::access(itrow, i), PART()); }
    static reference access(const row_iterator &itrow, size_type i) {
      return reference(ref_or_value_type<reference>::r(
					 linalg_traits<M>::access(itrow, i),
					 PART(), value_type()));
    }
  };
   
  template <typename PT, typename PART> 
  void linalg_traits<part_row_ref<PT, PART> >::do_clear(this_type &v) { 
    row_iterator it = mat_row_begin(v), ite = mat_row_end(v);
    for (; it != ite; ++it) clear(row(it));
  }
  
  template<typename PT, typename PART> std::ostream &operator <<
    (std::ostream &o, const part_row_ref<PT, PART>& m)
  { gmm::write(o,m); return o; }

  template <typename PT, typename PART> struct  part_col_ref {
    
    typedef part_col_ref<PT, PART> this_type;
    typedef typename std::iterator_traits<PT>::value_type M;
    typedef M * CPT;
    typedef typename std::iterator_traits<PT>::reference ref_M;
    typedef typename select_ref<typename linalg_traits<this_type>
            ::const_col_iterator, typename linalg_traits<this_type>
            ::col_iterator, PT>::ref_type iterator;
    typedef typename linalg_traits<this_type>::value_type value_type;
    typedef typename linalg_traits<this_type>::reference reference;
    typedef typename linalg_traits<this_type>::porigin_type porigin_type;

    iterator begin_, end_;
    porigin_type origin;
    size_type nr, nc;

    part_col_ref(ref_M m)
      : begin_(mat_col_begin(m)), end_(mat_col_end(m)),
	origin(linalg_origin(m)), nr(mat_nrows(m)), nc(mat_ncols(m)) {}

    part_col_ref(const part_col_ref<CPT, PART> &cr) :
      begin_(cr.begin_),end_(cr.end_), origin(cr.origin),nr(cr.nr),nc(cr.nc) {}

    reference operator()(size_type i, size_type j) const {
      return reference(ref_or_value_type<reference>::r(
					 linalg_traits<M>::access(begin_+j, i),
					 PART(), value_type()));
    }
  };

  template <typename PT, typename PART>
  struct linalg_traits<part_col_ref<PT, PART> > {
    typedef part_col_ref<PT, PART> this_type;
    typedef typename std::iterator_traits<PT>::value_type M;
    typedef typename linalg_traits<M>::origin_type origin_type;
    typedef typename select_ref<const origin_type *, origin_type *,
			        PT>::ref_type porigin_type;
    typedef typename which_reference<PT>::is_reference is_reference;
    typedef abstract_matrix linalg_type;
    typedef typename linalg_traits<M>::value_type vtype;
    typedef typename number_traits<vtype>::magnitude_type value_type;
    typedef typename linalg_traits<M>::storage_type storage_type;
    typedef abstract_null_type sub_row_type;
    typedef abstract_null_type const_sub_row_type;
    typedef abstract_null_type row_iterator;
    typedef abstract_null_type const_row_iterator;
    typedef typename linalg_traits<M>::const_sub_col_type
            pre_const_sub_col_type;
    typedef typename linalg_traits<M>::sub_col_type pre_sub_col_type;
    typedef part_vector<const pre_const_sub_col_type *, PART>
            const_sub_col_type;
    typedef typename select_ref<abstract_null_type,
	    part_vector<pre_sub_col_type *, PART>, PT>::ref_type sub_col_type;
    typedef typename linalg_traits<M>::const_col_iterator const_col_iterator;
    typedef typename select_ref<abstract_null_type, typename
            linalg_traits<M>::col_iterator, PT>::ref_type col_iterator;
    typedef typename select_ref<
            typename linalg_traits<const_sub_col_type>::reference,
	    typename linalg_traits<sub_col_type>::reference,
				PT>::ref_type reference;
    typedef col_major sub_orientation;
    typedef typename linalg_traits<M>::index_sorted index_sorted;
    static size_type nrows(const this_type &v) { return v.nr; }
    static size_type ncols(const this_type &v) { return v.nc; }
    static const_sub_col_type col(const const_col_iterator &it)
    { return const_sub_col_type(linalg_traits<M>::col(it)); }
    static sub_col_type col(const col_iterator &it)
    { return sub_col_type(linalg_traits<M>::col(it)); }
    static col_iterator col_begin(this_type &m) { return m.begin_; }
    static col_iterator col_end(this_type &m) { return m.end_; }
    static const_col_iterator col_begin(const this_type &m)
    { return m.begin_; }
    static const_col_iterator col_end(const this_type &m) { return m.end_; }
    static origin_type* origin(this_type &v) { return v.origin; }
    static const origin_type* origin(const this_type &v) { return v.origin; }
    static void do_clear(this_type &v);
    static value_type access(const const_col_iterator &itcol, size_type i)
    { return real_or_imag_part(linalg_traits<M>::access(itcol, i), PART()); }
    static reference access(const col_iterator &itcol, size_type i) {
      return reference(ref_or_value_type<reference>::r(
					 linalg_traits<M>::access(itcol, i),
					 PART(), value_type()));
    }
  };
   
  template <typename PT, typename PART> 
  void linalg_traits<part_col_ref<PT, PART> >::do_clear(this_type &v) { 
    col_iterator it = mat_col_begin(v), ite = mat_col_end(v);
    for (; it != ite; ++it) clear(col(it));
  }
  
  template<typename PT, typename PART> std::ostream &operator <<
    (std::ostream &o, const part_col_ref<PT, PART>& m)
  { gmm::write(o,m); return o; }

  




template <typename TYPE, typename PART, typename PT>
  struct part_return_ {
    typedef abstract_null_type return_type;
  };
  template <typename PT, typename PART>
  struct part_return_<row_major, PART, PT> {
    typedef typename std::iterator_traits<PT>::value_type L;
    typedef typename select_return<part_row_ref<const L *, PART>,
		     part_row_ref< L *, PART>, PT>::return_type return_type;
  };
  template <typename PT, typename PART>
  struct part_return_<col_major, PART, PT> {
    typedef typename std::iterator_traits<PT>::value_type L;
    typedef typename select_return<part_col_ref<const L *, PART>,
		     part_col_ref<L *, PART>, PT>::return_type return_type;
  };

  template <typename PT, typename PART, typename LT> struct part_return__{
    typedef abstract_null_type return_type;
  };

  template <typename PT, typename PART>
  struct part_return__<PT, PART, abstract_matrix> {
    typedef typename std::iterator_traits<PT>::value_type L;
    typedef typename part_return_<typename principal_orientation_type<
      typename linalg_traits<L>::sub_orientation>::potype, PART,
      PT>::return_type return_type;
  };

  template <typename PT, typename PART>
  struct part_return__<PT, PART, abstract_vector> {
    typedef typename std::iterator_traits<PT>::value_type L;
    typedef typename select_return<part_vector<const L *, PART>,
      part_vector<L *, PART>, PT>::return_type return_type;
  };

  template <typename PT, typename PART> struct part_return {
    typedef typename std::iterator_traits<PT>::value_type L;
    typedef typename part_return__<PT, PART,
      typename linalg_traits<L>::linalg_type>::return_type return_type;
  };

  template <typename L> inline 
  typename part_return<const L *, linalg_real_part>::return_type
  real_part(const L &l) {
    return typename part_return<const L *, linalg_real_part>::return_type
      (linalg_cast(const_cast<L &>(l)));
  }

  template <typename L> inline 
  typename part_return<L *, linalg_real_part>::return_type
  real_part(L &l) {
    return typename part_return<L *, linalg_real_part>::return_type(linalg_cast(l));
  }

  template <typename L> inline 
  typename part_return<const L *, linalg_imag_part>::return_type
  imag_part(const L &l) {
    return typename part_return<const L *, linalg_imag_part>::return_type
      (linalg_cast(const_cast<L &>(l)));
  }

  template <typename L> inline 
  typename part_return<L *, linalg_imag_part>::return_type
  imag_part(L &l) {
    return typename part_return<L *, linalg_imag_part>::return_type(linalg_cast(l));
  }



}

#endif //  GMM_REAL_PART_H