This file is indexed.

/usr/include/jama/jama_lu.h is in libjama-dev 1.2.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#ifndef JAMA_LU_H
#define JAMA_LU_H

#include <tnt/tnt.h>
#include <algorithm>
//for min(), max() below

using namespace TNT;
using namespace std;

namespace JAMA
{

   /** LU Decomposition.
   <P>
   For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
   unit lower triangular matrix L, an n-by-n upper triangular matrix U,
   and a permutation vector piv of length m so that A(piv,:) = L*U.
   If m < n, then L is m-by-m and U is m-by-n.
   <P>
   The LU decompostion with pivoting always exists, even if the matrix is
   singular, so the constructor will never fail.  The primary use of the
   LU decomposition is in the solution of square systems of simultaneous
   linear equations.  This will fail if isNonsingular() returns false.
   */
template <class Real>
class LU
{



   /* Array for internal storage of decomposition.  */
   Array2D<Real>  LU_;
   int m, n, pivsign; 
   Array1D<int> piv;


   Array2D<Real> permute_copy(const Array2D<Real> &A, 
   			const Array1D<int> &piv, int j0, int j1)
	{
		int piv_length = piv.dim();

		Array2D<Real> X(piv_length, j1-j0+1);


         for (int i = 0; i < piv_length; i++) 
            for (int j = j0; j <= j1; j++) 
               X[i][j-j0] = A[piv[i]][j];

		return X;
	}

   Array1D<Real> permute_copy(const Array1D<Real> &A, 
   		const Array1D<int> &piv)
	{
		int piv_length = piv.dim();
		if (piv_length != A.dim())
			return Array1D<Real>();

		Array1D<Real> x(piv_length);


         for (int i = 0; i < piv_length; i++) 
               x[i] = A[piv[i]];

		return x;
	}


	public :

   /** LU Decomposition
   @param  A   Rectangular matrix
   @return     LU Decomposition object to access L, U and piv.
   */

    LU (const Array2D<Real> &A) : LU_(A.copy()), m(A.dim1()), n(A.dim2()), 
		piv(A.dim1())
	
	{

   // Use a "left-looking", dot-product, Crout/Doolittle algorithm.


      for (int i = 0; i < m; i++) {
         piv[i] = i;
      }
      pivsign = 1;
      Real *LUrowi = 0;;
      Array1D<Real> LUcolj(m);

      // Outer loop.

      for (int j = 0; j < n; j++) {

         // Make a copy of the j-th column to localize references.

         for (int i = 0; i < m; i++) {
            LUcolj[i] = LU_[i][j];
         }

         // Apply previous transformations.

         for (int i = 0; i < m; i++) {
            LUrowi = LU_[i];

            // Most of the time is spent in the following dot product.

            int kmax = std::min(i,j);
            double s = 0.0;
            for (int k = 0; k < kmax; k++) {
               s += LUrowi[k]*LUcolj[k];
            }

            LUrowi[j] = LUcolj[i] -= s;
         }
   
         // Find pivot and exchange if necessary.

         int p = j;
         for (int i = j+1; i < m; i++) {
            if (abs(LUcolj[i]) > abs(LUcolj[p])) {
               p = i;
            }
         }
         if (p != j) {
		    int k=0;
            for (k = 0; k < n; k++) {
               double t = LU_[p][k]; 
			   LU_[p][k] = LU_[j][k]; 
			   LU_[j][k] = t;
            }
            k = piv[p]; 
			piv[p] = piv[j]; 
			piv[j] = k;
            pivsign = -pivsign;
         }

         // Compute multipliers.
         
         if ((j < m) && (LU_[j][j] != 0.0)) {
            for (int i = j+1; i < m; i++) {
               LU_[i][j] /= LU_[j][j];
            }
         }
      }
   }


   /** Is the matrix nonsingular?
   @return     1 (true)  if upper triangular factor U (and hence A) 
   				is nonsingular, 0 otherwise.
   */

   int isNonsingular () {
      for (int j = 0; j < n; j++) {
         if (LU_[j][j] == 0)
            return 0;
      }
      return 1;
   }

   /** Return lower triangular factor
   @return     L
   */

   Array2D<Real> getL () {
      Array2D<Real> L_(m,n);
      for (int i = 0; i < m; i++) {
         for (int j = 0; j < n; j++) {
            if (i > j) {
               L_[i][j] = LU_[i][j];
            } else if (i == j) {
               L_[i][j] = 1.0;
            } else {
               L_[i][j] = 0.0;
            }
         }
      }
      return L_;
   }

   /** Return upper triangular factor
   @return     U portion of LU factorization.
   */

   Array2D<Real> getU () {
   	  Array2D<Real> U_(n,n);
      for (int i = 0; i < n; i++) {
         for (int j = 0; j < n; j++) {
            if (i <= j) {
               U_[i][j] = LU_[i][j];
            } else {
               U_[i][j] = 0.0;
            }
         }
      }
      return U_;
   }

   /** Return pivot permutation vector
   @return     piv
   */

   Array1D<int> getPivot () {
      return piv;
   }


   /** Compute determinant using LU factors.
   @return     determinant of A, or 0 if A is not square.
   */

   Real det () {
      if (m != n) {
         return Real(0);
      }
      Real d = Real(pivsign);
      for (int j = 0; j < n; j++) {
         d *= LU_[j][j];
      }
      return d;
   }

   /** Solve A*X = B
   @param  B   A Matrix with as many rows as A and any number of columns.
   @return     X so that L*U*X = B(piv,:), if B is nonconformant, returns
   					0x0 (null) array.
   */

   Array2D<Real> solve (const Array2D<Real> &B) 
   {

	  /* Dimensions: A is mxn, X is nxk, B is mxk */
      
      if (B.dim1() != m) {
	  	return Array2D<Real>(0,0);
      }
      if (!isNonsingular()) {
        return Array2D<Real>(0,0);
      }

      // Copy right hand side with pivoting
      int nx = B.dim2();


	  Array2D<Real> X = permute_copy(B, piv, 0, nx-1);

      // Solve L*Y = B(piv,:)
      for (int k = 0; k < n; k++) {
         for (int i = k+1; i < n; i++) {
            for (int j = 0; j < nx; j++) {
               X[i][j] -= X[k][j]*LU_[i][k];
            }
         }
      }
      // Solve U*X = Y;
      for (int k = n-1; k >= 0; k--) {
         for (int j = 0; j < nx; j++) {
            X[k][j] /= LU_[k][k];
         }
         for (int i = 0; i < k; i++) {
            for (int j = 0; j < nx; j++) {
               X[i][j] -= X[k][j]*LU_[i][k];
            }
         }
      }
      return X;
   }


   /** Solve A*x = b, where x and b are vectors of length equal	
   		to the number of rows in A.

   @param  b   a vector (Array1D> of length equal to the first dimension
   						of A.
   @return x a vector (Array1D> so that L*U*x = b(piv), if B is nonconformant,
   					returns 0x0 (null) array.
   */

   Array1D<Real> solve (const Array1D<Real> &b) 
   {

	  /* Dimensions: A is mxn, X is nxk, B is mxk */
      
      if (b.dim1() != m) {
	  	return Array1D<Real>();
      }
      if (!isNonsingular()) {
        return Array1D<Real>();
      }


	  Array1D<Real> x = permute_copy(b, piv);

      // Solve L*Y = B(piv)
      for (int k = 0; k < n; k++) {
         for (int i = k+1; i < n; i++) {
               x[i] -= x[k]*LU_[i][k];
            }
         }
      
	  // Solve U*X = Y;
      for (int k = n-1; k >= 0; k--) {
            x[k] /= LU_[k][k];
      		for (int i = 0; i < k; i++) 
            	x[i] -= x[k]*LU_[i][k];
      }
     

      return x;
   }

}; /* class LU */

} /* namespace JAMA */

#endif
/* JAMA_LU_H */