/usr/include/jama/jama_lu.h is in libjama-dev 1.2.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | #ifndef JAMA_LU_H
#define JAMA_LU_H
#include <tnt/tnt.h>
#include <algorithm>
//for min(), max() below
using namespace TNT;
using namespace std;
namespace JAMA
{
/** LU Decomposition.
<P>
For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
unit lower triangular matrix L, an n-by-n upper triangular matrix U,
and a permutation vector piv of length m so that A(piv,:) = L*U.
If m < n, then L is m-by-m and U is m-by-n.
<P>
The LU decompostion with pivoting always exists, even if the matrix is
singular, so the constructor will never fail. The primary use of the
LU decomposition is in the solution of square systems of simultaneous
linear equations. This will fail if isNonsingular() returns false.
*/
template <class Real>
class LU
{
/* Array for internal storage of decomposition. */
Array2D<Real> LU_;
int m, n, pivsign;
Array1D<int> piv;
Array2D<Real> permute_copy(const Array2D<Real> &A,
const Array1D<int> &piv, int j0, int j1)
{
int piv_length = piv.dim();
Array2D<Real> X(piv_length, j1-j0+1);
for (int i = 0; i < piv_length; i++)
for (int j = j0; j <= j1; j++)
X[i][j-j0] = A[piv[i]][j];
return X;
}
Array1D<Real> permute_copy(const Array1D<Real> &A,
const Array1D<int> &piv)
{
int piv_length = piv.dim();
if (piv_length != A.dim())
return Array1D<Real>();
Array1D<Real> x(piv_length);
for (int i = 0; i < piv_length; i++)
x[i] = A[piv[i]];
return x;
}
public :
/** LU Decomposition
@param A Rectangular matrix
@return LU Decomposition object to access L, U and piv.
*/
LU (const Array2D<Real> &A) : LU_(A.copy()), m(A.dim1()), n(A.dim2()),
piv(A.dim1())
{
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
for (int i = 0; i < m; i++) {
piv[i] = i;
}
pivsign = 1;
Real *LUrowi = 0;;
Array1D<Real> LUcolj(m);
// Outer loop.
for (int j = 0; j < n; j++) {
// Make a copy of the j-th column to localize references.
for (int i = 0; i < m; i++) {
LUcolj[i] = LU_[i][j];
}
// Apply previous transformations.
for (int i = 0; i < m; i++) {
LUrowi = LU_[i];
// Most of the time is spent in the following dot product.
int kmax = std::min(i,j);
double s = 0.0;
for (int k = 0; k < kmax; k++) {
s += LUrowi[k]*LUcolj[k];
}
LUrowi[j] = LUcolj[i] -= s;
}
// Find pivot and exchange if necessary.
int p = j;
for (int i = j+1; i < m; i++) {
if (abs(LUcolj[i]) > abs(LUcolj[p])) {
p = i;
}
}
if (p != j) {
int k=0;
for (k = 0; k < n; k++) {
double t = LU_[p][k];
LU_[p][k] = LU_[j][k];
LU_[j][k] = t;
}
k = piv[p];
piv[p] = piv[j];
piv[j] = k;
pivsign = -pivsign;
}
// Compute multipliers.
if ((j < m) && (LU_[j][j] != 0.0)) {
for (int i = j+1; i < m; i++) {
LU_[i][j] /= LU_[j][j];
}
}
}
}
/** Is the matrix nonsingular?
@return 1 (true) if upper triangular factor U (and hence A)
is nonsingular, 0 otherwise.
*/
int isNonsingular () {
for (int j = 0; j < n; j++) {
if (LU_[j][j] == 0)
return 0;
}
return 1;
}
/** Return lower triangular factor
@return L
*/
Array2D<Real> getL () {
Array2D<Real> L_(m,n);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i > j) {
L_[i][j] = LU_[i][j];
} else if (i == j) {
L_[i][j] = 1.0;
} else {
L_[i][j] = 0.0;
}
}
}
return L_;
}
/** Return upper triangular factor
@return U portion of LU factorization.
*/
Array2D<Real> getU () {
Array2D<Real> U_(n,n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i <= j) {
U_[i][j] = LU_[i][j];
} else {
U_[i][j] = 0.0;
}
}
}
return U_;
}
/** Return pivot permutation vector
@return piv
*/
Array1D<int> getPivot () {
return piv;
}
/** Compute determinant using LU factors.
@return determinant of A, or 0 if A is not square.
*/
Real det () {
if (m != n) {
return Real(0);
}
Real d = Real(pivsign);
for (int j = 0; j < n; j++) {
d *= LU_[j][j];
}
return d;
}
/** Solve A*X = B
@param B A Matrix with as many rows as A and any number of columns.
@return X so that L*U*X = B(piv,:), if B is nonconformant, returns
0x0 (null) array.
*/
Array2D<Real> solve (const Array2D<Real> &B)
{
/* Dimensions: A is mxn, X is nxk, B is mxk */
if (B.dim1() != m) {
return Array2D<Real>(0,0);
}
if (!isNonsingular()) {
return Array2D<Real>(0,0);
}
// Copy right hand side with pivoting
int nx = B.dim2();
Array2D<Real> X = permute_copy(B, piv, 0, nx-1);
// Solve L*Y = B(piv,:)
for (int k = 0; k < n; k++) {
for (int i = k+1; i < n; i++) {
for (int j = 0; j < nx; j++) {
X[i][j] -= X[k][j]*LU_[i][k];
}
}
}
// Solve U*X = Y;
for (int k = n-1; k >= 0; k--) {
for (int j = 0; j < nx; j++) {
X[k][j] /= LU_[k][k];
}
for (int i = 0; i < k; i++) {
for (int j = 0; j < nx; j++) {
X[i][j] -= X[k][j]*LU_[i][k];
}
}
}
return X;
}
/** Solve A*x = b, where x and b are vectors of length equal
to the number of rows in A.
@param b a vector (Array1D> of length equal to the first dimension
of A.
@return x a vector (Array1D> so that L*U*x = b(piv), if B is nonconformant,
returns 0x0 (null) array.
*/
Array1D<Real> solve (const Array1D<Real> &b)
{
/* Dimensions: A is mxn, X is nxk, B is mxk */
if (b.dim1() != m) {
return Array1D<Real>();
}
if (!isNonsingular()) {
return Array1D<Real>();
}
Array1D<Real> x = permute_copy(b, piv);
// Solve L*Y = B(piv)
for (int k = 0; k < n; k++) {
for (int i = k+1; i < n; i++) {
x[i] -= x[k]*LU_[i][k];
}
}
// Solve U*X = Y;
for (int k = n-1; k >= 0; k--) {
x[k] /= LU_[k][k];
for (int i = 0; i < k; i++)
x[i] -= x[k]*LU_[i][k];
}
return x;
}
}; /* class LU */
} /* namespace JAMA */
#endif
/* JAMA_LU_H */
|