/usr/include/opencascade/ElCLib.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _ElCLib_HeaderFile
#define _ElCLib_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _gp_Pnt_HeaderFile
#include <gp_Pnt.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _gp_Vec_HeaderFile
#include <gp_Vec.hxx>
#endif
#ifndef _gp_Pnt2d_HeaderFile
#include <gp_Pnt2d.hxx>
#endif
#ifndef _gp_Vec2d_HeaderFile
#include <gp_Vec2d.hxx>
#endif
class gp_Pnt;
class gp_Lin;
class gp_Circ;
class gp_Elips;
class gp_Hypr;
class gp_Parab;
class gp_Vec;
class gp_Lin2d;
class gp_Circ2d;
class gp_Elips2d;
class gp_Hypr2d;
class gp_Parab2d;
class gp_Pnt2d;
class gp_Vec2d;
class gp_Ax1;
class gp_Ax2;
class gp_Ax2d;
class gp_Ax22d;
class gp_Dir;
class gp_Dir2d;
//! Provides functions for basic geometric computations on <br>
//! elementary curves such as conics and lines in 2D and 3D space. <br>
//! This includes: <br>
//! - calculation of a point or derived vector on a 2D or <br>
//! 3D curve where: <br>
//! - the curve is provided by the gp package, or <br>
//! defined in reference form (as in the gp package), <br>
//! and <br>
//! - the point is defined by a parameter, <br>
//! - evaluation of the parameter corresponding to a point <br>
//! on a 2D or 3D curve from gp, <br>
//! - various elementary computations which allow you to <br>
//! position parameterized values within the period of a curve. <br>
//! Notes: <br>
//! - ElCLib stands for Elementary Curves Library. <br>
//! - If the curves provided by the gp package are not <br>
//! explicitly parameterized, they still have an implicit <br>
//! parameterization, analogous to that which they infer <br>
//! for the equivalent Geom or Geom2d curves. <br>
class ElCLib {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Return a value in the range <UFirst, ULast> by <br>
//! adding or removing the period <ULast - UFirst> to <br>
//! <U>. <br>
Standard_EXPORT static Standard_Real InPeriod(const Standard_Real U,const Standard_Real UFirst,const Standard_Real ULast) ;
//! Adjust U1 and U2 in the parametric range UFirst <br>
//! Ulast of a periodic curve, where ULast - <br>
//! UFirst is its period. To do this, this function: <br>
//! - sets U1 in the range [ UFirst, ULast ] by <br>
//! adding/removing the period to/from the value U1, then <br>
//! - sets U2 in the range [ U1, U1 + period ] by <br>
//! adding/removing the period to/from the value U2. <br>
//! Precision is used to test the equalities. <br>
Standard_EXPORT static void AdjustPeriodic(const Standard_Real UFirst,const Standard_Real ULast,const Standard_Real Precision,Standard_Real& U1,Standard_Real& U2) ;
//! For elementary curves (lines, circles and conics) from <br>
//! the gp package, computes the point of parameter U. <br>
//! The result is either: <br>
//! - a gp_Pnt point for a curve in 3D space, or <br>
//! - a gp_Pnt2d point for a curve in 2D space. <br>
Standard_EXPORT static gp_Pnt Value(const Standard_Real U,const gp_Lin& L) ;
static gp_Pnt Value(const Standard_Real U,const gp_Circ& C) ;
static gp_Pnt Value(const Standard_Real U,const gp_Elips& E) ;
static gp_Pnt Value(const Standard_Real U,const gp_Hypr& H) ;
static gp_Pnt Value(const Standard_Real U,const gp_Parab& Prb) ;
//! For elementary curves (lines, circles and conics) from the <br>
//! gp package, computes: <br>
//! - the point P of parameter U, and <br>
//! - the first derivative vector V1 at this point. <br>
//! The results P and V1 are either: <br>
//! - a gp_Pnt point and a gp_Vec vector, for a curve in 3D space, or <br>
//! - a gp_Pnt2d point and a gp_Vec2d vector, for a curve in 2D space. <br>
Standard_EXPORT static void D1(const Standard_Real U,const gp_Lin& L,gp_Pnt& P,gp_Vec& V1) ;
static void D1(const Standard_Real U,const gp_Circ& C,gp_Pnt& P,gp_Vec& V1) ;
static void D1(const Standard_Real U,const gp_Elips& E,gp_Pnt& P,gp_Vec& V1) ;
static void D1(const Standard_Real U,const gp_Hypr& H,gp_Pnt& P,gp_Vec& V1) ;
static void D1(const Standard_Real U,const gp_Parab& Prb,gp_Pnt& P,gp_Vec& V1) ;
//! For elementary curves (circles and conics) from the gp <br>
//! package, computes: <br>
//! - the point P of parameter U, and <br>
//! - the first and second derivative vectors V1 and V2 at this point. <br>
//! The results, P, V1 and V2, are either: <br>
//! - a gp_Pnt point and two gp_Vec vectors, for a curve in 3D space, or <br>
//! - a gp_Pnt2d point and two gp_Vec2d vectors, for a curve in 2D space. <br>
Standard_EXPORT static void D2(const Standard_Real U,const gp_Circ& C,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
static void D2(const Standard_Real U,const gp_Elips& E,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
static void D2(const Standard_Real U,const gp_Hypr& H,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
static void D2(const Standard_Real U,const gp_Parab& Prb,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
//! For elementary curves (circles, ellipses and hyperbolae) <br>
//! from the gp package, computes: <br>
//! - the point P of parameter U, and <br>
//! - the first, second and third derivative vectors V1, V2 <br>
//! and V3 at this point. <br>
//! The results, P, V1, V2 and V3, are either: <br>
//! - a gp_Pnt point and three gp_Vec vectors, for a curve in 3D space, or <br>
//! - a gp_Pnt2d point and three gp_Vec2d vectors, for a curve in 2D space. <br>
Standard_EXPORT static void D3(const Standard_Real U,const gp_Circ& C,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
static void D3(const Standard_Real U,const gp_Elips& E,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
Standard_EXPORT static void D3(const Standard_Real U,const gp_Hypr& H,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
//! For elementary curves (lines, circles and conics) from <br>
//! the gp package, computes the vector corresponding to <br>
//! the Nth derivative at the point of parameter U. The result is either: <br>
//! - a gp_Vec vector for a curve in 3D space, or <br>
//! - a gp_Vec2d vector for a curve in 2D space. <br>
//! In the following functions N is the order of derivation <br>
//! and should be greater than 0 <br>
Standard_EXPORT static gp_Vec DN(const Standard_Real U,const gp_Lin& L,const Standard_Integer N) ;
static gp_Vec DN(const Standard_Real U,const gp_Circ& C,const Standard_Integer N) ;
static gp_Vec DN(const Standard_Real U,const gp_Elips& E,const Standard_Integer N) ;
static gp_Vec DN(const Standard_Real U,const gp_Hypr& H,const Standard_Integer N) ;
static gp_Vec DN(const Standard_Real U,const gp_Parab& Prb,const Standard_Integer N) ;
static gp_Pnt2d Value(const Standard_Real U,const gp_Lin2d& L) ;
static gp_Pnt2d Value(const Standard_Real U,const gp_Circ2d& C) ;
static gp_Pnt2d Value(const Standard_Real U,const gp_Elips2d& E) ;
static gp_Pnt2d Value(const Standard_Real U,const gp_Hypr2d& H) ;
static gp_Pnt2d Value(const Standard_Real U,const gp_Parab2d& Prb) ;
static void D1(const Standard_Real U,const gp_Lin2d& L,gp_Pnt2d& P,gp_Vec2d& V1) ;
static void D1(const Standard_Real U,const gp_Circ2d& C,gp_Pnt2d& P,gp_Vec2d& V1) ;
static void D1(const Standard_Real U,const gp_Elips2d& E,gp_Pnt2d& P,gp_Vec2d& V1) ;
static void D1(const Standard_Real U,const gp_Hypr2d& H,gp_Pnt2d& P,gp_Vec2d& V1) ;
static void D1(const Standard_Real U,const gp_Parab2d& Prb,gp_Pnt2d& P,gp_Vec2d& V1) ;
static void D2(const Standard_Real U,const gp_Circ2d& C,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
static void D2(const Standard_Real U,const gp_Elips2d& E,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
static void D2(const Standard_Real U,const gp_Hypr2d& H,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
static void D2(const Standard_Real U,const gp_Parab2d& Prb,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
static void D3(const Standard_Real U,const gp_Circ2d& C,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
static void D3(const Standard_Real U,const gp_Elips2d& E,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
//! In the following functions N is the order of derivation <br>
//! and should be greater than 0 <br>
static void D3(const Standard_Real U,const gp_Hypr2d& H,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
static gp_Vec2d DN(const Standard_Real U,const gp_Lin2d& L,const Standard_Integer N) ;
static gp_Vec2d DN(const Standard_Real U,const gp_Circ2d& C,const Standard_Integer N) ;
static gp_Vec2d DN(const Standard_Real U,const gp_Elips2d& E,const Standard_Integer N) ;
static gp_Vec2d DN(const Standard_Real U,const gp_Hypr2d& H,const Standard_Integer N) ;
static gp_Vec2d DN(const Standard_Real U,const gp_Parab2d& Prb,const Standard_Integer N) ;
//! Curve evaluation <br>
//! The following basis functions compute the derivatives on <br>
//! elementary curves defined by their geometric characteristics. <br>
//! These functions can be called without constructing a conic <br>
//! from package gp. They are called by the previous functions. <br>
//! Example : <br>
//! A circle is defined by its position and its radius. <br>
Standard_EXPORT static gp_Pnt LineValue(const Standard_Real U,const gp_Ax1& Pos) ;
Standard_EXPORT static gp_Pnt CircleValue(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Radius) ;
Standard_EXPORT static gp_Pnt EllipseValue(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius) ;
Standard_EXPORT static gp_Pnt HyperbolaValue(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius) ;
Standard_EXPORT static gp_Pnt ParabolaValue(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Focal) ;
Standard_EXPORT static void LineD1(const Standard_Real U,const gp_Ax1& Pos,gp_Pnt& P,gp_Vec& V1) ;
Standard_EXPORT static void CircleD1(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Radius,gp_Pnt& P,gp_Vec& V1) ;
Standard_EXPORT static void EllipseD1(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1) ;
Standard_EXPORT static void HyperbolaD1(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1) ;
Standard_EXPORT static void ParabolaD1(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Focal,gp_Pnt& P,gp_Vec& V1) ;
Standard_EXPORT static void CircleD2(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Radius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
Standard_EXPORT static void EllipseD2(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
Standard_EXPORT static void HyperbolaD2(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
Standard_EXPORT static void ParabolaD2(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Focal,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
Standard_EXPORT static void CircleD3(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Radius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
Standard_EXPORT static void EllipseD3(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
Standard_EXPORT static void HyperbolaD3(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
//! In the following functions N is the order of derivation <br>
//! and should be greater than 0 <br>
Standard_EXPORT static gp_Vec LineDN(const Standard_Real U,const gp_Ax1& Pos,const Standard_Integer N) ;
Standard_EXPORT static gp_Vec CircleDN(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Radius,const Standard_Integer N) ;
Standard_EXPORT static gp_Vec EllipseDN(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const Standard_Integer N) ;
Standard_EXPORT static gp_Vec HyperbolaDN(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const Standard_Integer N) ;
Standard_EXPORT static gp_Vec ParabolaDN(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Focal,const Standard_Integer N) ;
Standard_EXPORT static gp_Pnt2d LineValue(const Standard_Real U,const gp_Ax2d& Pos) ;
Standard_EXPORT static gp_Pnt2d CircleValue(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Radius) ;
Standard_EXPORT static gp_Pnt2d EllipseValue(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius) ;
Standard_EXPORT static gp_Pnt2d HyperbolaValue(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius) ;
Standard_EXPORT static gp_Pnt2d ParabolaValue(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Focal) ;
Standard_EXPORT static void LineD1(const Standard_Real U,const gp_Ax2d& Pos,gp_Pnt2d& P,gp_Vec2d& V1) ;
Standard_EXPORT static void CircleD1(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Radius,gp_Pnt2d& P,gp_Vec2d& V1) ;
Standard_EXPORT static void EllipseD1(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1) ;
Standard_EXPORT static void HyperbolaD1(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1) ;
Standard_EXPORT static void ParabolaD1(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Focal,gp_Pnt2d& P,gp_Vec2d& V1) ;
Standard_EXPORT static void CircleD2(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Radius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
Standard_EXPORT static void EllipseD2(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
Standard_EXPORT static void HyperbolaD2(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
Standard_EXPORT static void ParabolaD2(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Focal,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
Standard_EXPORT static void CircleD3(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Radius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
Standard_EXPORT static void EllipseD3(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
//! In the following functions N is the order of derivation <br>
//! and should be greater than 0 <br>
Standard_EXPORT static void HyperbolaD3(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
Standard_EXPORT static gp_Vec2d LineDN(const Standard_Real U,const gp_Ax2d& Pos,const Standard_Integer N) ;
Standard_EXPORT static gp_Vec2d CircleDN(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Radius,const Standard_Integer N) ;
Standard_EXPORT static gp_Vec2d EllipseDN(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const Standard_Integer N) ;
Standard_EXPORT static gp_Vec2d HyperbolaDN(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const Standard_Integer N) ;
//! The following functions compute the parametric value corresponding <br>
//! to a given point on a elementary curve. The point should be on the <br>
//! curve. <br>
Standard_EXPORT static gp_Vec2d ParabolaDN(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Focal,const Standard_Integer N) ;
//! Computes the parameter value of the point P on the given curve. <br>
//! Note: In its local coordinate system, the parametric <br>
//! equation of the curve is given by the following: <br>
//! - for the line L: P(U) = Po + U*Vo <br>
//! where Po is the origin and Vo the unit vector of its positioning axis. <br>
//! - for the circle C: X(U) = Radius*Cos(U), Y(U) = Radius*Sin(U) <br>
//! - for the ellipse E: X(U) = MajorRadius*Cos(U). Y(U) = MinorRadius*Sin(U) <br>
//! - for the hyperbola H: X(U) = MajorRadius*Ch(U), Y(U) = MinorRadius*Sh(U) <br>
//! - for the parabola Prb: <br>
//! X(U) = U**2 / (2*p) <br>
//! Y(U) = U <br>
//! where p is the distance between the focus and the directrix. <br>
//! Warning <br>
//! The point P must be on the curve. These functions are <br>
//! not protected, however, and if point P is not on the <br>
//! curve, an exception may be raised. <br>
Standard_EXPORT static Standard_Real Parameter(const gp_Lin& L,const gp_Pnt& P) ;
//! parametrization <br>
//! P (U) = L.Location() + U * L.Direction() <br>
static Standard_Real Parameter(const gp_Lin2d& L,const gp_Pnt2d& P) ;
static Standard_Real Parameter(const gp_Circ& C,const gp_Pnt& P) ;
//! parametrization <br>
//! In the local coordinate system of the circle <br>
//! X (U) = Radius * Cos (U) <br>
//! Y (U) = Radius * Sin (U) <br>
static Standard_Real Parameter(const gp_Circ2d& C,const gp_Pnt2d& P) ;
static Standard_Real Parameter(const gp_Elips& E,const gp_Pnt& P) ;
//! parametrization <br>
//! In the local coordinate system of the Ellipse <br>
//! X (U) = MajorRadius * Cos (U) <br>
//! Y (U) = MinorRadius * Sin (U) <br>
static Standard_Real Parameter(const gp_Elips2d& E,const gp_Pnt2d& P) ;
static Standard_Real Parameter(const gp_Hypr& H,const gp_Pnt& P) ;
//! parametrization <br>
//! In the local coordinate system of the Hyperbola <br>
//! X (U) = MajorRadius * Ch (U) <br>
//! Y (U) = MinorRadius * Sh (U) <br>
static Standard_Real Parameter(const gp_Hypr2d& H,const gp_Pnt2d& P) ;
static Standard_Real Parameter(const gp_Parab& Prb,const gp_Pnt& P) ;
//! parametrization <br>
//! In the local coordinate system of the parabola <br>
//! Y**2 = (2*P) * X where P is the distance between the focus <br>
//! and the directrix. <br>
static Standard_Real Parameter(const gp_Parab2d& Prb,const gp_Pnt2d& P) ;
Standard_EXPORT static Standard_Real LineParameter(const gp_Ax1& Pos,const gp_Pnt& P) ;
//! parametrization <br>
//! P (U) = L.Location() + U * L.Direction() <br>
Standard_EXPORT static Standard_Real LineParameter(const gp_Ax2d& Pos,const gp_Pnt2d& P) ;
Standard_EXPORT static Standard_Real CircleParameter(const gp_Ax2& Pos,const gp_Pnt& P) ;
//! Pos is the Axis of the Circle <br>//! parametrization <br>
//! In the local coordinate system of the circle <br>
//! X (U) = Radius * Cos (U) <br>
//! Y (U) = Radius * Sin (U) <br>
Standard_EXPORT static Standard_Real CircleParameter(const gp_Ax22d& Pos,const gp_Pnt2d& P) ;
Standard_EXPORT static Standard_Real EllipseParameter(const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const gp_Pnt& P) ;
//! Pos is the Axis of the Ellipse <br>//! parametrization <br>
//! In the local coordinate system of the Ellipse <br>
//! X (U) = MajorRadius * Cos (U) <br>
//! Y (U) = MinorRadius * Sin (U) <br>
Standard_EXPORT static Standard_Real EllipseParameter(const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const gp_Pnt2d& P) ;
Standard_EXPORT static Standard_Real HyperbolaParameter(const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const gp_Pnt& P) ;
//! Pos is the Axis of the Hyperbola <br>//! parametrization <br>
//! In the local coordinate system of the Hyperbola <br>
//! X (U) = MajorRadius * Ch (U) <br>
//! Y (U) = MinorRadius * Sh (U) <br>
Standard_EXPORT static Standard_Real HyperbolaParameter(const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const gp_Pnt2d& P) ;
Standard_EXPORT static Standard_Real ParabolaParameter(const gp_Ax2& Pos,const gp_Pnt& P) ;
//! Pos is the mirror axis of the parabola <br>//! parametrization <br>
//! In the local coordinate system of the parabola <br>
//! Y**2 = (2*P) * X where P is the distance between the focus <br>
//! and the directrix. <br>//! The following functions build a 3d curve from a <br>
//! 2d curve at a given position defined with an Ax2. <br>
Standard_EXPORT static Standard_Real ParabolaParameter(const gp_Ax22d& Pos,const gp_Pnt2d& P) ;
Standard_EXPORT static gp_Pnt To3d(const gp_Ax2& Pos,const gp_Pnt2d& P) ;
Standard_EXPORT static gp_Vec To3d(const gp_Ax2& Pos,const gp_Vec2d& V) ;
Standard_EXPORT static gp_Dir To3d(const gp_Ax2& Pos,const gp_Dir2d& V) ;
Standard_EXPORT static gp_Ax1 To3d(const gp_Ax2& Pos,const gp_Ax2d& A) ;
Standard_EXPORT static gp_Ax2 To3d(const gp_Ax2& Pos,const gp_Ax22d& A) ;
Standard_EXPORT static gp_Lin To3d(const gp_Ax2& Pos,const gp_Lin2d& L) ;
Standard_EXPORT static gp_Circ To3d(const gp_Ax2& Pos,const gp_Circ2d& C) ;
Standard_EXPORT static gp_Elips To3d(const gp_Ax2& Pos,const gp_Elips2d& E) ;
Standard_EXPORT static gp_Hypr To3d(const gp_Ax2& Pos,const gp_Hypr2d& H) ;
//! These functions build a 3D geometric entity from a 2D geometric entity. <br>
//! The "X Axis" and the "Y Axis" of the global coordinate <br>
//! system (i.e. 2D space) are lined up respectively with the <br>
//! "X Axis" and "Y Axis" of the 3D coordinate system, Pos. <br>
Standard_EXPORT static gp_Parab To3d(const gp_Ax2& Pos,const gp_Parab2d& Prb) ;
protected:
private:
};
#include <ElCLib.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|