This file is indexed.

/usr/include/opencascade/ElCLib.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _ElCLib_HeaderFile
#define _ElCLib_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _gp_Pnt_HeaderFile
#include <gp_Pnt.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _gp_Vec_HeaderFile
#include <gp_Vec.hxx>
#endif
#ifndef _gp_Pnt2d_HeaderFile
#include <gp_Pnt2d.hxx>
#endif
#ifndef _gp_Vec2d_HeaderFile
#include <gp_Vec2d.hxx>
#endif
class gp_Pnt;
class gp_Lin;
class gp_Circ;
class gp_Elips;
class gp_Hypr;
class gp_Parab;
class gp_Vec;
class gp_Lin2d;
class gp_Circ2d;
class gp_Elips2d;
class gp_Hypr2d;
class gp_Parab2d;
class gp_Pnt2d;
class gp_Vec2d;
class gp_Ax1;
class gp_Ax2;
class gp_Ax2d;
class gp_Ax22d;
class gp_Dir;
class gp_Dir2d;


//! Provides functions for basic geometric computations on <br>
//! elementary curves such as conics and lines in 2D and 3D space. <br>
//! This includes: <br>
//! -   calculation of a point or derived vector on a 2D or <br>
//!   3D curve where: <br>
//!   -   the curve is provided by the gp package, or <br>
//!    defined in reference form (as in the gp package), <br>
//!    and <br>
//!   -   the point is defined by a parameter, <br>
//! -   evaluation of the parameter corresponding to a point <br>
//!   on a 2D or 3D curve from gp, <br>
//! -   various elementary computations which allow you to <br>
//! position parameterized values within the period of a curve. <br>
//!  Notes: <br>
//! -   ElCLib stands for Elementary Curves Library. <br>
//! -   If the curves provided by the gp package are not <br>
//!   explicitly parameterized, they still have an implicit <br>
//!   parameterization, analogous to that which they infer <br>
//!   for the equivalent Geom or Geom2d curves. <br>
class ElCLib  {
public:

  void* operator new(size_t,void* anAddress) 
  {
    return anAddress;
  }
  void* operator new(size_t size) 
  {
    return Standard::Allocate(size); 
  }
  void  operator delete(void *anAddress) 
  {
    if (anAddress) Standard::Free((Standard_Address&)anAddress); 
  }

  //! Return a value in   the  range <UFirst, ULast>  by <br>
//!          adding or removing the period <ULast -  UFirst> to <br>
//!          <U>. <br>
  Standard_EXPORT   static  Standard_Real InPeriod(const Standard_Real U,const Standard_Real UFirst,const Standard_Real ULast) ;
  //! Adjust U1 and  U2 in the  parametric range  UFirst <br>
//!          Ulast of a periodic curve, where ULast - <br>
//! UFirst is its period. To do this, this function: <br>
//! -   sets U1 in the range [ UFirst, ULast ] by <br>
//!   adding/removing the period to/from the value U1, then <br>
//! -   sets U2 in the range [ U1, U1 + period ] by <br>
//!   adding/removing the period to/from the value U2. <br>
//!   Precision is used to test the equalities. <br>
  Standard_EXPORT   static  void AdjustPeriodic(const Standard_Real UFirst,const Standard_Real ULast,const Standard_Real Precision,Standard_Real& U1,Standard_Real& U2) ;
  //! For elementary curves (lines, circles and conics) from <br>
//! the gp package, computes the point of parameter U. <br>
//! The result is either: <br>
//! -   a gp_Pnt point for a curve in 3D space, or <br>
//! -   a gp_Pnt2d point for a curve in 2D space. <br>
  Standard_EXPORT   static  gp_Pnt Value(const Standard_Real U,const gp_Lin& L) ;
  
      static  gp_Pnt Value(const Standard_Real U,const gp_Circ& C) ;
  
      static  gp_Pnt Value(const Standard_Real U,const gp_Elips& E) ;
  
      static  gp_Pnt Value(const Standard_Real U,const gp_Hypr& H) ;
  
      static  gp_Pnt Value(const Standard_Real U,const gp_Parab& Prb) ;
  
//! For elementary curves (lines, circles and conics) from the <br>
//! gp package, computes: <br>
//! -   the point P of parameter U, and <br>
//! -   the first derivative vector V1 at this point. <br>
//! The results P and V1 are either: <br>
//! -   a gp_Pnt point and a gp_Vec vector, for a curve in 3D  space, or <br>
//! -   a gp_Pnt2d point and a gp_Vec2d vector, for a curve in 2D space. <br>
  Standard_EXPORT   static  void D1(const Standard_Real U,const gp_Lin& L,gp_Pnt& P,gp_Vec& V1) ;
  
      static  void D1(const Standard_Real U,const gp_Circ& C,gp_Pnt& P,gp_Vec& V1) ;
  
      static  void D1(const Standard_Real U,const gp_Elips& E,gp_Pnt& P,gp_Vec& V1) ;
  
      static  void D1(const Standard_Real U,const gp_Hypr& H,gp_Pnt& P,gp_Vec& V1) ;
  
      static  void D1(const Standard_Real U,const gp_Parab& Prb,gp_Pnt& P,gp_Vec& V1) ;
  //! For elementary curves (circles and conics) from the gp <br>
//! package, computes: <br>
//! - the point P of parameter U, and <br>
//! - the first and second derivative vectors V1 and V2 at this point. <br>
//!   The results, P, V1 and V2, are either: <br>
//! -   a gp_Pnt point and two gp_Vec vectors, for a curve in 3D space, or <br>
//! -   a gp_Pnt2d point and two gp_Vec2d vectors, for a curve in 2D space. <br>
  Standard_EXPORT   static  void D2(const Standard_Real U,const gp_Circ& C,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
  
      static  void D2(const Standard_Real U,const gp_Elips& E,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
  
      static  void D2(const Standard_Real U,const gp_Hypr& H,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
  
      static  void D2(const Standard_Real U,const gp_Parab& Prb,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
  //! For elementary curves (circles, ellipses and hyperbolae) <br>
//! from the gp package, computes: <br>
//! -   the point P of parameter U, and <br>
//! -   the first, second and third derivative vectors V1, V2 <br>
//!   and V3 at this point. <br>
//! The results, P, V1, V2 and V3, are either: <br>
//! -   a gp_Pnt point and three gp_Vec vectors, for a curve in 3D space, or <br>
//! -   a gp_Pnt2d point and three gp_Vec2d vectors, for a curve in 2D space. <br>
  Standard_EXPORT   static  void D3(const Standard_Real U,const gp_Circ& C,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
  
      static  void D3(const Standard_Real U,const gp_Elips& E,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
  
  Standard_EXPORT   static  void D3(const Standard_Real U,const gp_Hypr& H,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
  
//! For elementary curves (lines, circles and conics) from <br>
//! the gp package, computes the vector corresponding to <br>
//! the Nth derivative at the point of parameter U. The result is either: <br>
//! -   a gp_Vec vector for a curve in 3D space, or <br>
//! -   a gp_Vec2d vector for a curve in 2D space. <br>
//!  In the following functions N is the order of derivation <br>
//!  and should be greater than 0 <br>
  Standard_EXPORT   static  gp_Vec DN(const Standard_Real U,const gp_Lin& L,const Standard_Integer N) ;
  
      static  gp_Vec DN(const Standard_Real U,const gp_Circ& C,const Standard_Integer N) ;
  
      static  gp_Vec DN(const Standard_Real U,const gp_Elips& E,const Standard_Integer N) ;
  
      static  gp_Vec DN(const Standard_Real U,const gp_Hypr& H,const Standard_Integer N) ;
  
      static  gp_Vec DN(const Standard_Real U,const gp_Parab& Prb,const Standard_Integer N) ;
  
      static  gp_Pnt2d Value(const Standard_Real U,const gp_Lin2d& L) ;
  
      static  gp_Pnt2d Value(const Standard_Real U,const gp_Circ2d& C) ;
  
      static  gp_Pnt2d Value(const Standard_Real U,const gp_Elips2d& E) ;
  
      static  gp_Pnt2d Value(const Standard_Real U,const gp_Hypr2d& H) ;
  
      static  gp_Pnt2d Value(const Standard_Real U,const gp_Parab2d& Prb) ;
  
      static  void D1(const Standard_Real U,const gp_Lin2d& L,gp_Pnt2d& P,gp_Vec2d& V1) ;
  
      static  void D1(const Standard_Real U,const gp_Circ2d& C,gp_Pnt2d& P,gp_Vec2d& V1) ;
  
      static  void D1(const Standard_Real U,const gp_Elips2d& E,gp_Pnt2d& P,gp_Vec2d& V1) ;
  
      static  void D1(const Standard_Real U,const gp_Hypr2d& H,gp_Pnt2d& P,gp_Vec2d& V1) ;
  
      static  void D1(const Standard_Real U,const gp_Parab2d& Prb,gp_Pnt2d& P,gp_Vec2d& V1) ;
  
      static  void D2(const Standard_Real U,const gp_Circ2d& C,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
  
      static  void D2(const Standard_Real U,const gp_Elips2d& E,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
  
      static  void D2(const Standard_Real U,const gp_Hypr2d& H,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
  
      static  void D2(const Standard_Real U,const gp_Parab2d& Prb,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
  
      static  void D3(const Standard_Real U,const gp_Circ2d& C,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
  
      static  void D3(const Standard_Real U,const gp_Elips2d& E,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
  
//!  In the following functions N is the order of derivation <br>
//!  and should be greater than 0 <br>
      static  void D3(const Standard_Real U,const gp_Hypr2d& H,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
  
      static  gp_Vec2d DN(const Standard_Real U,const gp_Lin2d& L,const Standard_Integer N) ;
  
      static  gp_Vec2d DN(const Standard_Real U,const gp_Circ2d& C,const Standard_Integer N) ;
  
      static  gp_Vec2d DN(const Standard_Real U,const gp_Elips2d& E,const Standard_Integer N) ;
  
      static  gp_Vec2d DN(const Standard_Real U,const gp_Hypr2d& H,const Standard_Integer N) ;
  
      static  gp_Vec2d DN(const Standard_Real U,const gp_Parab2d& Prb,const Standard_Integer N) ;
  //! Curve evaluation <br>
//!  The following basis functions compute the derivatives on <br>
//!  elementary curves defined by their geometric characteristics. <br>
//!  These functions can be called without constructing a conic <br>
//!  from package gp. They are called by the previous functions. <br>
//! Example : <br>
//!  A circle is defined by its position and its radius. <br>
  Standard_EXPORT   static  gp_Pnt LineValue(const Standard_Real U,const gp_Ax1& Pos) ;
  
  Standard_EXPORT   static  gp_Pnt CircleValue(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Radius) ;
  
  Standard_EXPORT   static  gp_Pnt EllipseValue(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius) ;
  
  Standard_EXPORT   static  gp_Pnt HyperbolaValue(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius) ;
  
  Standard_EXPORT   static  gp_Pnt ParabolaValue(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Focal) ;
  
  Standard_EXPORT   static  void LineD1(const Standard_Real U,const gp_Ax1& Pos,gp_Pnt& P,gp_Vec& V1) ;
  
  Standard_EXPORT   static  void CircleD1(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Radius,gp_Pnt& P,gp_Vec& V1) ;
  
  Standard_EXPORT   static  void EllipseD1(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1) ;
  
  Standard_EXPORT   static  void HyperbolaD1(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1) ;
  
  Standard_EXPORT   static  void ParabolaD1(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Focal,gp_Pnt& P,gp_Vec& V1) ;
  
  Standard_EXPORT   static  void CircleD2(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Radius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
  
  Standard_EXPORT   static  void EllipseD2(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
  
  Standard_EXPORT   static  void HyperbolaD2(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
  
  Standard_EXPORT   static  void ParabolaD2(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Focal,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2) ;
  
  Standard_EXPORT   static  void CircleD3(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Radius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
  
  Standard_EXPORT   static  void EllipseD3(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
  
  Standard_EXPORT   static  void HyperbolaD3(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt& P,gp_Vec& V1,gp_Vec& V2,gp_Vec& V3) ;
  
//!  In the following functions N is the order of derivation <br>
//!  and should be greater than 0 <br>
  Standard_EXPORT   static  gp_Vec LineDN(const Standard_Real U,const gp_Ax1& Pos,const Standard_Integer N) ;
  
  Standard_EXPORT   static  gp_Vec CircleDN(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Radius,const Standard_Integer N) ;
  
  Standard_EXPORT   static  gp_Vec EllipseDN(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const Standard_Integer N) ;
  
  Standard_EXPORT   static  gp_Vec HyperbolaDN(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const Standard_Integer N) ;
  
  Standard_EXPORT   static  gp_Vec ParabolaDN(const Standard_Real U,const gp_Ax2& Pos,const Standard_Real Focal,const Standard_Integer N) ;
  
  Standard_EXPORT   static  gp_Pnt2d LineValue(const Standard_Real U,const gp_Ax2d& Pos) ;
  
  Standard_EXPORT   static  gp_Pnt2d CircleValue(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Radius) ;
  
  Standard_EXPORT   static  gp_Pnt2d EllipseValue(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius) ;
  
  Standard_EXPORT   static  gp_Pnt2d HyperbolaValue(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius) ;
  
  Standard_EXPORT   static  gp_Pnt2d ParabolaValue(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Focal) ;
  
  Standard_EXPORT   static  void LineD1(const Standard_Real U,const gp_Ax2d& Pos,gp_Pnt2d& P,gp_Vec2d& V1) ;
  
  Standard_EXPORT   static  void CircleD1(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Radius,gp_Pnt2d& P,gp_Vec2d& V1) ;
  
  Standard_EXPORT   static  void EllipseD1(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1) ;
  
  Standard_EXPORT   static  void HyperbolaD1(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1) ;
  
  Standard_EXPORT   static  void ParabolaD1(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Focal,gp_Pnt2d& P,gp_Vec2d& V1) ;
  
  Standard_EXPORT   static  void CircleD2(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Radius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
  
  Standard_EXPORT   static  void EllipseD2(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
  
  Standard_EXPORT   static  void HyperbolaD2(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
  
  Standard_EXPORT   static  void ParabolaD2(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Focal,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) ;
  
  Standard_EXPORT   static  void CircleD3(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Radius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
  
  Standard_EXPORT   static  void EllipseD3(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
  
//!  In the following functions N is the order of derivation <br>
//!  and should be greater than 0 <br>
  Standard_EXPORT   static  void HyperbolaD3(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) ;
  
  Standard_EXPORT   static  gp_Vec2d LineDN(const Standard_Real U,const gp_Ax2d& Pos,const Standard_Integer N) ;
  
  Standard_EXPORT   static  gp_Vec2d CircleDN(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Radius,const Standard_Integer N) ;
  
  Standard_EXPORT   static  gp_Vec2d EllipseDN(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const Standard_Integer N) ;
  
  Standard_EXPORT   static  gp_Vec2d HyperbolaDN(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const Standard_Integer N) ;
  
//!  The following functions compute the parametric value corresponding <br>
//!  to a given point on a elementary curve. The point should be on the <br>
//!  curve. <br>
  Standard_EXPORT   static  gp_Vec2d ParabolaDN(const Standard_Real U,const gp_Ax22d& Pos,const Standard_Real Focal,const Standard_Integer N) ;
  
//! Computes the parameter value of the point P on the given curve. <br>
//! Note: In its local coordinate system, the parametric <br>
//! equation of the curve is given by the following: <br>
//! -   for the line L: P(U) = Po + U*Vo <br>
//! where Po is the origin and Vo the unit vector of its positioning axis. <br>
//! -   for the circle C: X(U) = Radius*Cos(U), Y(U) = Radius*Sin(U) <br>
//! -   for the ellipse E: X(U) = MajorRadius*Cos(U). Y(U) = MinorRadius*Sin(U) <br>
//! -   for the hyperbola H: X(U) = MajorRadius*Ch(U), Y(U) = MinorRadius*Sh(U) <br>
//! -   for the parabola Prb: <br>
//! X(U) = U**2 / (2*p) <br>
//! Y(U) = U <br>
//! where p is the distance between the focus and the directrix. <br>
//! Warning <br>
//! The point P must be on the curve. These functions are <br>
//! not protected, however, and if point P is not on the <br>
//! curve, an exception may be raised. <br>
  Standard_EXPORT   static  Standard_Real Parameter(const gp_Lin& L,const gp_Pnt& P) ;
  //! parametrization <br>
//!  P (U) = L.Location() + U * L.Direction() <br>
      static  Standard_Real Parameter(const gp_Lin2d& L,const gp_Pnt2d& P) ;
  
      static  Standard_Real Parameter(const gp_Circ& C,const gp_Pnt& P) ;
  //! parametrization <br>
//!  In the local coordinate system of the circle <br>
//!  X (U) = Radius * Cos (U) <br>
//!  Y (U) = Radius * Sin (U) <br>
      static  Standard_Real Parameter(const gp_Circ2d& C,const gp_Pnt2d& P) ;
  
      static  Standard_Real Parameter(const gp_Elips& E,const gp_Pnt& P) ;
  //! parametrization <br>
//!  In the local coordinate system of the Ellipse <br>
//!  X (U) = MajorRadius * Cos (U) <br>
//!  Y (U) = MinorRadius * Sin (U) <br>
      static  Standard_Real Parameter(const gp_Elips2d& E,const gp_Pnt2d& P) ;
  
      static  Standard_Real Parameter(const gp_Hypr& H,const gp_Pnt& P) ;
  //! parametrization <br>
//!  In the local coordinate system of the Hyperbola <br>
//!  X (U) = MajorRadius * Ch (U) <br>
//!  Y (U) = MinorRadius * Sh (U) <br>
      static  Standard_Real Parameter(const gp_Hypr2d& H,const gp_Pnt2d& P) ;
  
      static  Standard_Real Parameter(const gp_Parab& Prb,const gp_Pnt& P) ;
  //! parametrization <br>
//!  In the local coordinate system of the parabola <br>
//!  Y**2 = (2*P) * X where P is the distance between the focus <br>
//!  and the directrix. <br>
      static  Standard_Real Parameter(const gp_Parab2d& Prb,const gp_Pnt2d& P) ;
  
  Standard_EXPORT   static  Standard_Real LineParameter(const gp_Ax1& Pos,const gp_Pnt& P) ;
  //! parametrization <br>
//!  P (U) = L.Location() + U * L.Direction() <br>
  Standard_EXPORT   static  Standard_Real LineParameter(const gp_Ax2d& Pos,const gp_Pnt2d& P) ;
  
  Standard_EXPORT   static  Standard_Real CircleParameter(const gp_Ax2& Pos,const gp_Pnt& P) ;
  //! Pos is the Axis of the Circle <br>//! parametrization <br>
//!  In the local coordinate system of the circle <br>
//!  X (U) = Radius * Cos (U) <br>
//!  Y (U) = Radius * Sin (U) <br>
  Standard_EXPORT   static  Standard_Real CircleParameter(const gp_Ax22d& Pos,const gp_Pnt2d& P) ;
  
  Standard_EXPORT   static  Standard_Real EllipseParameter(const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const gp_Pnt& P) ;
  //! Pos is the Axis of the Ellipse <br>//! parametrization <br>
//!  In the local coordinate system of the Ellipse <br>
//!  X (U) = MajorRadius * Cos (U) <br>
//!  Y (U) = MinorRadius * Sin (U) <br>
  Standard_EXPORT   static  Standard_Real EllipseParameter(const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const gp_Pnt2d& P) ;
  
  Standard_EXPORT   static  Standard_Real HyperbolaParameter(const gp_Ax2& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const gp_Pnt& P) ;
  //! Pos is the Axis of the Hyperbola <br>//! parametrization <br>
//!  In the local coordinate system of the Hyperbola <br>
//!  X (U) = MajorRadius * Ch (U) <br>
//!  Y (U) = MinorRadius * Sh (U) <br>
  Standard_EXPORT   static  Standard_Real HyperbolaParameter(const gp_Ax22d& Pos,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const gp_Pnt2d& P) ;
  
  Standard_EXPORT   static  Standard_Real ParabolaParameter(const gp_Ax2& Pos,const gp_Pnt& P) ;
  //! Pos is the mirror axis of the parabola <br>//! parametrization <br>
//!  In the local coordinate system of the parabola <br>
//!  Y**2 = (2*P) * X where P is the distance between the focus <br>
//!  and the directrix. <br>//!  The following functions build  a 3d curve from a <br>
//!            2d curve at a given position defined with an Ax2. <br>
  Standard_EXPORT   static  Standard_Real ParabolaParameter(const gp_Ax22d& Pos,const gp_Pnt2d& P) ;
  
  Standard_EXPORT   static  gp_Pnt To3d(const gp_Ax2& Pos,const gp_Pnt2d& P) ;
  
  Standard_EXPORT   static  gp_Vec To3d(const gp_Ax2& Pos,const gp_Vec2d& V) ;
  
  Standard_EXPORT   static  gp_Dir To3d(const gp_Ax2& Pos,const gp_Dir2d& V) ;
  
  Standard_EXPORT   static  gp_Ax1 To3d(const gp_Ax2& Pos,const gp_Ax2d& A) ;
  
  Standard_EXPORT   static  gp_Ax2 To3d(const gp_Ax2& Pos,const gp_Ax22d& A) ;
  
  Standard_EXPORT   static  gp_Lin To3d(const gp_Ax2& Pos,const gp_Lin2d& L) ;
  
  Standard_EXPORT   static  gp_Circ To3d(const gp_Ax2& Pos,const gp_Circ2d& C) ;
  
  Standard_EXPORT   static  gp_Elips To3d(const gp_Ax2& Pos,const gp_Elips2d& E) ;
  
  Standard_EXPORT   static  gp_Hypr To3d(const gp_Ax2& Pos,const gp_Hypr2d& H) ;
  
//! These functions build a 3D geometric entity from a 2D geometric entity. <br>
//! The "X Axis" and the "Y Axis" of the global coordinate <br>
//! system (i.e. 2D space) are lined up respectively with the <br>
//! "X Axis" and "Y Axis" of the 3D coordinate system, Pos. <br>
  Standard_EXPORT   static  gp_Parab To3d(const gp_Ax2& Pos,const gp_Parab2d& Prb) ;





protected:





private:





};


#include <ElCLib.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif