/usr/include/opencascade/PLib_JacobiPolynomial.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _PLib_JacobiPolynomial_HeaderFile
#define _PLib_JacobiPolynomial_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_DefineHandle_HeaderFile
#include <Standard_DefineHandle.hxx>
#endif
#ifndef _Handle_PLib_JacobiPolynomial_HeaderFile
#include <Handle_PLib_JacobiPolynomial.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Handle_TColStd_HArray1OfReal_HeaderFile
#include <Handle_TColStd_HArray1OfReal.hxx>
#endif
#ifndef _PLib_Base_HeaderFile
#include <PLib_Base.hxx>
#endif
#ifndef _GeomAbs_Shape_HeaderFile
#include <GeomAbs_Shape.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
class TColStd_HArray1OfReal;
class Standard_ConstructionError;
class TColStd_Array1OfReal;
class TColStd_Array2OfReal;
//! This class provides method to work with Jacobi Polynomials <br>
//! relativly to an order of constraint <br>
//! q = myWorkDegree-2*(myNivConstr+1) <br>
//! Jk(t) for k=0,q compose the Jacobi Polynomial base relativly to the weigth W(t) <br>
//! iorder is the integer value for the constraints: <br>
//! iorder = 0 <=> ConstraintOrder = GeomAbs_C0 <br>
//! iorder = 1 <=> ConstraintOrder = GeomAbs_C1 <br>
//! iorder = 2 <=> ConstraintOrder = GeomAbs_C2 <br>
//! P(t) = R(t) + W(t) * Q(t) Where W(t) = (1-t**2)**(2*iordre+2) <br>
//! the coefficients JacCoeff represents P(t) JacCoeff are stored as follow: <br>
//! <br>
//! c0(1) c0(2) .... c0(Dimension) <br>
//! c1(1) c1(2) .... c1(Dimension) <br>
//! <br>
//! <br>
//! <br>
//! cDegree(1) cDegree(2) .... cDegree(Dimension) <br>
//! <br>
//! The coefficients <br>
//! c0(1) c0(2) .... c0(Dimension) <br>
//! c2*ordre+1(1) ... c2*ordre+1(dimension) <br>
//! <br>
//! represents the part of the polynomial in the <br>
//! canonical base: R(t) <br>
//! R(t) = c0 + c1 t + ...+ c2*iordre+1 t**2*iordre+1 <br>
//! The following coefficients represents the part of the <br>
//! polynomial in the Jacobi base ie Q(t) <br>
//! Q(t) = c2*iordre+2 J0(t) + ...+ cDegree JDegree-2*iordre-2 <br>
class PLib_JacobiPolynomial : public PLib_Base {
public:
//! Initialize the polynomial class <br>
//! Degree has to be <= 30 <br>
//! ConstraintOrder has to be GeomAbs_C0 <br>
//! GeomAbs_C1 <br>
//! GeomAbs_C2 <br>
Standard_EXPORT PLib_JacobiPolynomial(const Standard_Integer WorkDegree,const GeomAbs_Shape ConstraintOrder);
//! returns the Jacobi Points for Gauss integration ie <br>
//! the positive values of the Legendre roots by increasing values <br>
//! NbGaussPoints is the number of points choosen for the integral <br>
//! computation. <br>
//! TabPoints (0,NbGaussPoints/2) <br>
//! TabPoints (0) is loaded only for the odd values of NbGaussPoints <br>
//! The possible values for NbGaussPoints are : 8, 10, <br>
//! 15, 20, 25, 30, 35, 40, 50, 61 <br>
//! NbGaussPoints must be greater than Degree <br>
Standard_EXPORT void Points(const Standard_Integer NbGaussPoints,TColStd_Array1OfReal& TabPoints) const;
//! returns the Jacobi weigths for Gauss integration only for <br>
//! the positive values of the Legendre roots in the order they <br>
//! are given by the method Points <br>
//! NbGaussPoints is the number of points choosen for the integral <br>
//! computation. <br>
//! TabWeights (0,NbGaussPoints/2,0,Degree) <br>
//! TabWeights (0,.) are only loaded for the odd values of NbGaussPoints <br>
//! The possible values for NbGaussPoints are : 8 , 10 , 15 ,20 ,25 , 30, <br>
//! 35 , 40 , 50 , 61 NbGaussPoints must be greater than Degree <br>
Standard_EXPORT void Weights(const Standard_Integer NbGaussPoints,TColStd_Array2OfReal& TabWeights) const;
//! this method loads for k=0,q the maximum value of <br>
//! abs ( W(t)*Jk(t) )for t bellonging to [-1,1] <br>
//! This values are loaded is the array TabMax(0,myWorkDegree-2*(myNivConst+1)) <br>
//! MaxValue ( me ; TabMaxPointer : in out Real ); <br>
Standard_EXPORT void MaxValue(TColStd_Array1OfReal& TabMax) const;
//! This method computes the maximum error on the polynomial <br>
//! W(t) Q(t) obtained by missing the coefficients of JacCoeff from <br>
//! NewDegree +1 to Degree <br>
Standard_EXPORT Standard_Real MaxError(const Standard_Integer Dimension,Standard_Real& JacCoeff,const Standard_Integer NewDegree) const;
//! Compute NewDegree <= MaxDegree so that MaxError is lower <br>
//! than Tol. <br>
//! MaxError can be greater than Tol if it is not possible <br>
//! to find a NewDegree <= MaxDegree. <br>
//! In this case NewDegree = MaxDegree <br>
//! <br>
Standard_EXPORT void ReduceDegree(const Standard_Integer Dimension,const Standard_Integer MaxDegree,const Standard_Real Tol,Standard_Real& JacCoeff,Standard_Integer& NewDegree,Standard_Real& MaxError) const;
Standard_EXPORT Standard_Real AverageError(const Standard_Integer Dimension,Standard_Real& JacCoeff,const Standard_Integer NewDegree) const;
//! Convert the polynomial P(t) = R(t) + W(t) Q(t) in the canonical base. <br>
//! <br>
Standard_EXPORT void ToCoefficients(const Standard_Integer Dimension,const Standard_Integer Degree,const TColStd_Array1OfReal& JacCoeff,TColStd_Array1OfReal& Coefficients) const;
//! Compute the values of the basis functions in u <br>
//! <br>
Standard_EXPORT void D0(const Standard_Real U,TColStd_Array1OfReal& BasisValue) ;
//! Compute the values and the derivatives values of <br>
//! the basis functions in u <br>
Standard_EXPORT void D1(const Standard_Real U,TColStd_Array1OfReal& BasisValue,TColStd_Array1OfReal& BasisD1) ;
//! Compute the values and the derivatives values of <br>
//! the basis functions in u <br>
Standard_EXPORT void D2(const Standard_Real U,TColStd_Array1OfReal& BasisValue,TColStd_Array1OfReal& BasisD1,TColStd_Array1OfReal& BasisD2) ;
//! Compute the values and the derivatives values of <br>
//! the basis functions in u <br>
Standard_EXPORT void D3(const Standard_Real U,TColStd_Array1OfReal& BasisValue,TColStd_Array1OfReal& BasisD1,TColStd_Array1OfReal& BasisD2,TColStd_Array1OfReal& BasisD3) ;
//! returns WorkDegree <br>
Standard_Integer WorkDegree() const;
//! returns NivConstr <br>
Standard_Integer NivConstr() const;
DEFINE_STANDARD_RTTI(PLib_JacobiPolynomial)
protected:
private:
//! Compute the values and the derivatives values of <br>
//! the basis functions in u <br>
Standard_EXPORT void D0123(const Standard_Integer NDerive,const Standard_Real U,TColStd_Array1OfReal& BasisValue,TColStd_Array1OfReal& BasisD1,TColStd_Array1OfReal& BasisD2,TColStd_Array1OfReal& BasisD3) ;
Standard_Integer myWorkDegree;
Standard_Integer myNivConstr;
Standard_Integer myDegree;
Handle_TColStd_HArray1OfReal myTNorm;
Handle_TColStd_HArray1OfReal myCofA;
Handle_TColStd_HArray1OfReal myCofB;
Handle_TColStd_HArray1OfReal myDenom;
};
#include <PLib_JacobiPolynomial.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|