/usr/include/opencascade/gp_Ax1.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _gp_Ax1_HeaderFile
#define _gp_Ax1_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _gp_Pnt_HeaderFile
#include <gp_Pnt.hxx>
#endif
#ifndef _gp_Dir_HeaderFile
#include <gp_Dir.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class gp_Pnt;
class gp_Dir;
class gp_Ax2;
class gp_Trsf;
class gp_Vec;
Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Ax1);
//! Describes an axis in 3D space. <br>
//! An axis is defined by: <br>
//! - its origin (also referred to as its "Location point"), and <br>
//! - its unit vector (referred to as its "Direction" or "main Direction"). <br>
//! An axis is used: <br>
//! - to describe 3D geometric entities (for example, the <br>
//! axis of a revolution entity). It serves the same purpose <br>
//! as the STEP function "axis placement one axis", or <br>
//! - to define geometric transformations (axis of <br>
//! symmetry, axis of rotation, and so on). <br>
//! For example, this entity can be used to locate a geometric entity <br>
//! or to define a symmetry axis. <br>
class gp_Ax1 {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Creates an axis object representing Z axis of <br>
//! the reference co-ordinate system. <br>
gp_Ax1();
//! P is the location point and V is the direction of <me>. <br>
gp_Ax1(const gp_Pnt& P,const gp_Dir& V);
//! Assigns V as the "Direction" of this axis. <br>
void SetDirection(const gp_Dir& V) ;
//! Assigns P as the origin of this axis. <br>
void SetLocation(const gp_Pnt& P) ;
//! Returns the direction of <me>. <br>
const gp_Dir& Direction() const;
//! Returns the location point of <me>. <br>
const gp_Pnt& Location() const;
//! Returns True if : <br>
//! . the angle between <me> and <Other> is lower or equal <br>
//! to <AngularTolerance> and <br>
//! . the distance between <me>.Location() and <Other> is lower <br>
//! or equal to <LinearTolerance> and <br>
//! . the distance between <Other>.Location() and <me> is lower <br>
//! or equal to LinearTolerance. <br>
Standard_EXPORT Standard_Boolean IsCoaxial(const gp_Ax1& Other,const Standard_Real AngularTolerance,const Standard_Real LinearTolerance) const;
//! Returns True if the direction of the <me> and <Other> <br>
//! are normal to each other. <br>
//! That is, if the angle between the two axes is equal to Pi/2. <br>
//! Note: the tolerance criterion is given by AngularTolerance.. <br>
Standard_Boolean IsNormal(const gp_Ax1& Other,const Standard_Real AngularTolerance) const;
//! Returns True if the direction of <me> and <Other> are <br>
//! parallel with opposite orientation. That is, if the angle <br>
//! between the two axes is equal to Pi. <br>
//! Note: the tolerance criterion is given by AngularTolerance. <br>
Standard_Boolean IsOpposite(const gp_Ax1& Other,const Standard_Real AngularTolerance) const;
//! Returns True if the direction of <me> and <Other> are <br>
//! parallel with same orientation or opposite orientation. That <br>
//! is, if the angle between the two axes is equal to 0 or Pi. <br>
//! Note: the tolerance criterion is given by <br>
//! AngularTolerance. <br>
Standard_Boolean IsParallel(const gp_Ax1& Other,const Standard_Real AngularTolerance) const;
//! Computes the angular value, in radians, between <me>.Direction() and <br>
//! <Other>.Direction(). Returns the angle between 0 and 2*PI <br>
//! radians. <br>
Standard_Real Angle(const gp_Ax1& Other) const;
//! Reverses the unit vector of this axis. <br>
//! and assigns the result to this axis. <br>
void Reverse() ;
//! Reverses the unit vector of this axis and creates a new one. <br>
gp_Ax1 Reversed() const;
//! Performs the symmetrical transformation of an axis <br>
//! placement with respect to the point P which is the <br>
//! center of the symmetry and assigns the result to this axis. <br>
Standard_EXPORT void Mirror(const gp_Pnt& P) ;
//! Performs the symmetrical transformation of an axis <br>
//! placement with respect to the point P which is the <br>
//! center of the symmetry and creates a new axis. <br>
Standard_EXPORT gp_Ax1 Mirrored(const gp_Pnt& P) const;
//! Performs the symmetrical transformation of an axis <br>
//! placement with respect to an axis placement which <br>
//! is the axis of the symmetry and assigns the result to this axis. <br>
Standard_EXPORT void Mirror(const gp_Ax1& A1) ;
//! Performs the symmetrical transformation of an axis <br>
//! placement with respect to an axis placement which <br>
//! is the axis of the symmetry and creates a new axis. <br>
Standard_EXPORT gp_Ax1 Mirrored(const gp_Ax1& A1) const;
//! Performs the symmetrical transformation of an axis <br>
//! placement with respect to a plane. The axis placement <br>
//! <A2> locates the plane of the symmetry : <br>
//! (Location, XDirection, YDirection) and assigns the result to this axis. <br>
Standard_EXPORT void Mirror(const gp_Ax2& A2) ;
//! Performs the symmetrical transformation of an axis <br>
//! placement with respect to a plane. The axis placement <br>
//! <A2> locates the plane of the symmetry : <br>
//! (Location, XDirection, YDirection) and creates a new axis. <br>
Standard_EXPORT gp_Ax1 Mirrored(const gp_Ax2& A2) const;
//! Rotates this axis at an angle Ang (in radians) about the axis A1 <br>
//! and assigns the result to this axis. <br>
void Rotate(const gp_Ax1& A1,const Standard_Real Ang) ;
//! Rotates this axis at an angle Ang (in radians) about the axis A1 <br>
//! and creates a new one. <br>
gp_Ax1 Rotated(const gp_Ax1& A1,const Standard_Real Ang) const;
//! Applies a scaling transformation to this axis with: <br>
//! - scale factor S, and <br>
//! - center P and assigns the result to this axis. <br>
void Scale(const gp_Pnt& P,const Standard_Real S) ;
//! Applies a scaling transformation to this axis with: <br>
//! - scale factor S, and <br>
//! - center P and creates a new axis. <br>
gp_Ax1 Scaled(const gp_Pnt& P,const Standard_Real S) const;
//! Applies the transformation T to this axis. <br>
//! and assigns the result to this axis. <br>
void Transform(const gp_Trsf& T) ;
//! Applies the transformation T to this axis and creates a new one. <br>
//! Translates an axis plaxement in the direction of the vector <br>
//! <V>. The magnitude of the translation is the vector's magnitude. <br>
gp_Ax1 Transformed(const gp_Trsf& T) const;
//! Translates this axis by the vector V, <br>
//! and assigns the result to this axis. <br>
void Translate(const gp_Vec& V) ;
//! Translates this axis by the vector V, <br>
//! and creates a new one. <br>
gp_Ax1 Translated(const gp_Vec& V) const;
//! Translates this axis by: <br>
//! the vector (P1, P2) defined from point P1 to point P2. <br>
//! and assigns the result to this axis. <br>
void Translate(const gp_Pnt& P1,const gp_Pnt& P2) ;
//! Translates this axis by: <br>
//! the vector (P1, P2) defined from point P1 to point P2. <br>
//! and creates a new one. <br>
gp_Ax1 Translated(const gp_Pnt& P1,const gp_Pnt& P2) const;
const gp_Pnt& _CSFDB_Getgp_Ax1loc() const { return loc; }
const gp_Dir& _CSFDB_Getgp_Ax1vdir() const { return vdir; }
protected:
private:
gp_Pnt loc;
gp_Dir vdir;
};
#include <gp_Ax1.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|