This file is indexed.

/usr/include/opencascade/gp_Ax1.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _gp_Ax1_HeaderFile
#define _gp_Ax1_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _gp_Pnt_HeaderFile
#include <gp_Pnt.hxx>
#endif
#ifndef _gp_Dir_HeaderFile
#include <gp_Dir.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class gp_Pnt;
class gp_Dir;
class gp_Ax2;
class gp_Trsf;
class gp_Vec;


Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Ax1);

//! Describes an axis in 3D space. <br>
//! An axis is defined by: <br>
//! -   its origin (also referred to as its "Location point"), and <br>
//! -   its unit vector (referred to as its "Direction" or "main   Direction"). <br>
//! An axis is used: <br>
//! -   to describe 3D geometric entities (for example, the <br>
//! axis of a revolution entity). It serves the same purpose <br>
//! as the STEP function "axis placement one axis", or <br>
//! -   to define geometric transformations (axis of <br>
//!   symmetry, axis of rotation, and so on). <br>
//! For example, this entity can be used to locate a geometric entity <br>
//!  or to define a symmetry axis. <br>
class gp_Ax1  {

public:
  void* operator new(size_t,void* anAddress) 
  {
    return anAddress;
  }
  void* operator new(size_t size) 
  {
    return Standard::Allocate(size); 
  }
  void  operator delete(void *anAddress) 
  {
    if (anAddress) Standard::Free((Standard_Address&)anAddress); 
  }

  //! Creates an axis object representing Z axis of <br>
//!            the reference co-ordinate system. <br>
      gp_Ax1();
  
//!  P is the location point and V is the direction of <me>. <br>
      gp_Ax1(const gp_Pnt& P,const gp_Dir& V);
  //! Assigns V as the "Direction"  of this axis. <br>
        void SetDirection(const gp_Dir& V) ;
  //! Assigns  P as the origin of this axis. <br>
        void SetLocation(const gp_Pnt& P) ;
  //! Returns the direction of <me>. <br>
       const gp_Dir& Direction() const;
  //! Returns the location point of <me>. <br>
       const gp_Pnt& Location() const;
  
//!  Returns True if  : <br>
//!  . the angle between <me> and <Other> is lower or equal <br>
//!    to <AngularTolerance> and <br>
//!  . the distance between <me>.Location() and <Other> is lower <br>
//!    or equal to <LinearTolerance> and <br>
//!  . the distance between <Other>.Location() and <me> is lower <br>
//!    or equal to LinearTolerance. <br>
  Standard_EXPORT     Standard_Boolean IsCoaxial(const gp_Ax1& Other,const Standard_Real AngularTolerance,const Standard_Real LinearTolerance) const;
  
//!  Returns True if the direction of the <me> and <Other> <br>
//!  are normal to each other. <br>
//! That is, if the angle between the two axes is equal to Pi/2. <br>
//! Note: the tolerance criterion is given by AngularTolerance.. <br>
        Standard_Boolean IsNormal(const gp_Ax1& Other,const Standard_Real AngularTolerance) const;
  
//!  Returns True if the direction of <me> and <Other> are <br>
//!  parallel with opposite orientation. That is, if the angle <br>
//! between the two axes is equal to Pi. <br>
//! Note: the tolerance criterion is given by AngularTolerance. <br>
        Standard_Boolean IsOpposite(const gp_Ax1& Other,const Standard_Real AngularTolerance) const;
  
//!  Returns True if the direction of <me> and <Other> are <br>
//!  parallel with same orientation or opposite orientation. That <br>
//! is, if the angle between the two axes is equal to 0 or Pi. <br>
//! Note: the tolerance criterion is given by <br>
//! AngularTolerance. <br>
        Standard_Boolean IsParallel(const gp_Ax1& Other,const Standard_Real AngularTolerance) const;
  
//!  Computes the angular value, in radians, between <me>.Direction() and <br>
//!  <Other>.Direction(). Returns the angle between 0 and 2*PI <br>
//!  radians. <br>
        Standard_Real Angle(const gp_Ax1& Other) const;
  //!  Reverses the unit vector of this axis. <br>
//! and  assigns the result to this axis. <br>
        void Reverse() ;
  //! Reverses the unit vector of this axis and creates a new one. <br>
        gp_Ax1 Reversed() const;
  
//!  Performs the symmetrical transformation of an axis <br>
//!  placement with respect to the point P which is the <br>
//!  center of the symmetry and assigns the result to this axis. <br>
  Standard_EXPORT     void Mirror(const gp_Pnt& P) ;
  //! Performs the symmetrical transformation of an axis <br>
//!  placement with respect to the point P which is the <br>
//!  center of the symmetry and creates a new axis. <br>
  Standard_EXPORT     gp_Ax1 Mirrored(const gp_Pnt& P) const;
  
//!  Performs the symmetrical transformation of an axis <br>
//!  placement with respect to an axis placement which <br>
//!  is the axis of the symmetry and assigns the result to this axis. <br>
  Standard_EXPORT     void Mirror(const gp_Ax1& A1) ;
  
//!  Performs the symmetrical transformation of an axis <br>
//!  placement with respect to an axis placement which <br>
//!  is the axis of the symmetry and creates a new axis. <br>
  Standard_EXPORT     gp_Ax1 Mirrored(const gp_Ax1& A1) const;
  
//!  Performs the symmetrical transformation of an axis <br>
//!  placement with respect to a plane. The axis placement <br>
//!  <A2> locates the plane of the symmetry : <br>
//!  (Location, XDirection, YDirection) and assigns the result to this axis. <br>
  Standard_EXPORT     void Mirror(const gp_Ax2& A2) ;
  
//!  Performs the symmetrical transformation of an axis <br>
//!  placement with respect to a plane. The axis placement <br>
//!  <A2> locates the plane of the symmetry : <br>
//!  (Location, XDirection, YDirection) and creates a new axis. <br>
  Standard_EXPORT     gp_Ax1 Mirrored(const gp_Ax2& A2) const;
  //! Rotates this axis at an angle Ang (in radians) about the axis A1 <br>
//! and assigns the result to this axis. <br>
        void Rotate(const gp_Ax1& A1,const Standard_Real Ang) ;
  //! Rotates this axis at an angle Ang (in radians) about the axis A1 <br>
//! and creates a new one. <br>
        gp_Ax1 Rotated(const gp_Ax1& A1,const Standard_Real Ang) const;
  
//! Applies a scaling transformation to this axis with: <br>
//! -   scale factor S, and <br>
//! -   center P and assigns the result to this axis. <br>
        void Scale(const gp_Pnt& P,const Standard_Real S) ;
  
//! Applies a scaling transformation to this axis with: <br>
//! -   scale factor S, and <br>
//! -   center P and creates a new axis. <br>
        gp_Ax1 Scaled(const gp_Pnt& P,const Standard_Real S) const;
  //! Applies the transformation T to this axis. <br>
//! and assigns the result to this axis. <br>
        void Transform(const gp_Trsf& T) ;
  
//! Applies the transformation T to this axis and creates a new one. <br>
//!  Translates an axis plaxement in the direction of the vector <br>
//!  <V>. The magnitude of the translation is the vector's magnitude. <br>
        gp_Ax1 Transformed(const gp_Trsf& T) const;
  
//! Translates this axis by the vector V, <br>
//! and assigns the result to this axis. <br>
        void Translate(const gp_Vec& V) ;
  
//! Translates this axis by the vector V, <br>
//! and creates a new one. <br>
        gp_Ax1 Translated(const gp_Vec& V) const;
  
//! Translates this axis by: <br>
//! the vector (P1, P2) defined from point P1 to point P2. <br>
//! and assigns the result to this axis. <br>
        void Translate(const gp_Pnt& P1,const gp_Pnt& P2) ;
  
//! Translates this axis by: <br>
//! the vector (P1, P2) defined from point P1 to point P2. <br>
//! and creates a new one. <br>
        gp_Ax1 Translated(const gp_Pnt& P1,const gp_Pnt& P2) const;
    const gp_Pnt& _CSFDB_Getgp_Ax1loc() const { return loc; }
    const gp_Dir& _CSFDB_Getgp_Ax1vdir() const { return vdir; }



protected:




private: 


gp_Pnt loc;
gp_Dir vdir;


};


#include <gp_Ax1.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif