This file is indexed.

/usr/include/opencascade/gp_Mat.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _gp_Mat_HeaderFile
#define _gp_Mat_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class Standard_OutOfRange;
class gp_XYZ;
class gp_Trsf;
class gp_GTrsf;


Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Mat);


//! Describes a three column, three row matrix. This sort of <br>
//! object is used in various vectorial or matrix computations. <br>
class gp_Mat  {

public:
  void* operator new(size_t,void* anAddress) 
  {
    return anAddress;
  }
  void* operator new(size_t size) 
  {
    return Standard::Allocate(size); 
  }
  void  operator delete(void *anAddress) 
  {
    if (anAddress) Standard::Free((Standard_Address&)anAddress); 
  }

  //! creates  a matrix with null coefficients. <br>
      gp_Mat();
  
      gp_Mat(const Standard_Real a11,const Standard_Real a12,const Standard_Real a13,const Standard_Real a21,const Standard_Real a22,const Standard_Real a23,const Standard_Real a31,const Standard_Real a32,const Standard_Real a33);
  //! Creates a matrix. <br>
//!  Col1, Col2, Col3 are the 3 columns of the matrix. <br>
  Standard_EXPORT   gp_Mat(const gp_XYZ& Col1,const gp_XYZ& Col2,const gp_XYZ& Col3);
  //! Assigns the three coordinates of Value to the column of index <br>
//!   Col of this matrix. <br>
//! Raises OutOfRange if Col < 1 or Col > 3. <br>
  Standard_EXPORT     void SetCol(const Standard_Integer Col,const gp_XYZ& Value) ;
  //! Assigns the number triples Col1, Col2, Col3 to the three <br>
//!   columns of this matrix. <br>
  Standard_EXPORT     void SetCols(const gp_XYZ& Col1,const gp_XYZ& Col2,const gp_XYZ& Col3) ;
  
//!  Modifies the matrix  M so that applying it to any number <br>
//! triple (X, Y, Z) produces the same result as the cross <br>
//! product of Ref and the number triple (X, Y, Z): <br>
//! i.e.: M * {X,Y,Z}t = Ref.Cross({X, Y ,Z}) <br>
//!  this matrix is anti symmetric. To apply this matrix to the <br>
//!  triplet  {XYZ} is the same as to do the cross product between the <br>
//!  triplet Ref and the triplet {XYZ}. <br>
//! Note: this matrix is anti-symmetric. <br>
  Standard_EXPORT     void SetCross(const gp_XYZ& Ref) ;
  
//!  Modifies the main diagonal of the matrix. <br>
//!  <me>.Value (1, 1) = X1 <br>
//!  <me>.Value (2, 2) = X2 <br>
//!  <me>.Value (3, 3) = X3 <br>
//!  The other coefficients of the matrix are not modified. <br>
        void SetDiagonal(const Standard_Real X1,const Standard_Real X2,const Standard_Real X3) ;
  
//!  Modifies this matrix so that applying it to any number <br>
//! triple (X, Y, Z) produces the same result as the scalar <br>
//! product of Ref and the number triple (X, Y, Z): <br>
//! this * (X,Y,Z) = Ref.(X,Y,Z) <br>
//! Note: this matrix is symmetric. <br>
  Standard_EXPORT     void SetDot(const gp_XYZ& Ref) ;
  //! Modifies this matrix so that it represents the Identity matrix. <br>
        void SetIdentity() ;
  
//!  Modifies this matrix so that it represents a rotation. Ang is the angular value in <br>
//!  radians and the XYZ axis gives the direction of the <br>
//!  rotation. <br>
//!  Raises ConstructionError if XYZ.Modulus() <= Resolution() <br>
  Standard_EXPORT     void SetRotation(const gp_XYZ& Axis,const Standard_Real Ang) ;
  //! Assigns the three coordinates of Value to the row of index <br>
//!   Row of this matrix. Raises OutOfRange if Row < 1 or Row > 3. <br>
  Standard_EXPORT     void SetRow(const Standard_Integer Row,const gp_XYZ& Value) ;
  //! Assigns the number triples Row1, Row2, Row3 to the three <br>
//!   rows of this matrix. <br>
  Standard_EXPORT     void SetRows(const gp_XYZ& Row1,const gp_XYZ& Row2,const gp_XYZ& Row3) ;
  
//!  Modifies the the matrix so that it represents <br>
//! a scaling transformation, where S is the scale factor. : <br>
//!           | S    0.0  0.0 | <br>
//!   <me> =  | 0.0   S   0.0 | <br>
//!           | 0.0  0.0   S  | <br>
        void SetScale(const Standard_Real S) ;
  //! Assigns <Value> to the coefficient of row Row, column Col of   this matrix. <br>
//! Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3 <br>
        void SetValue(const Standard_Integer Row,const Standard_Integer Col,const Standard_Real Value) ;
  //! Returns the column of Col index. <br>
//!   Raises OutOfRange if Col < 1 or Col > 3 <br>
  Standard_EXPORT     gp_XYZ Column(const Standard_Integer Col) const;
  //! Computes the determinant of the matrix. <br>
        Standard_Real Determinant() const;
  //! Returns the main diagonal of the matrix. <br>
  Standard_EXPORT     gp_XYZ Diagonal() const;
  //! returns the row of Row index. <br>
//!  Raises OutOfRange if Row < 1 or Row > 3 <br>
  Standard_EXPORT     gp_XYZ Row(const Standard_Integer Row) const;
  //! Returns the coefficient of range (Row, Col) <br>
//!  Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3 <br>
       const Standard_Real& Value(const Standard_Integer Row,const Standard_Integer Col) const;
     const Standard_Real& operator()(const Standard_Integer Row,const Standard_Integer Col) const
{
  return Value(Row,Col);
}
  //! Returns the coefficient of range (Row, Col) <br>
//!  Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3 <br>
        Standard_Real& ChangeValue(const Standard_Integer Row,const Standard_Integer Col) ;
      Standard_Real& operator()(const Standard_Integer Row,const Standard_Integer Col) 
{
  return ChangeValue(Row,Col);
}
  
//!  The Gauss LU decomposition is used to invert the matrix <br>
//!  (see Math package) so the matrix is considered as singular if <br>
//!  the largest pivot found is lower or equal to Resolution from gp. <br>
        Standard_Boolean IsSingular() const;
  
        void Add(const gp_Mat& Other) ;
      void operator +=(const gp_Mat& Other) 
{
  Add(Other);
}
  //! Computes the sum of this matrix and <br>
//!  the matrix Other for each coefficient of the matrix : <br>
//!  <me>.Coef(i,j) + <Other>.Coef(i,j) <br>
        gp_Mat Added(const gp_Mat& Other) const;
      gp_Mat operator +(const gp_Mat& Other) const
{
  return Added(Other);
}
  
        void Divide(const Standard_Real Scalar) ;
      void operator /=(const Standard_Real Scalar) 
{
  Divide(Scalar);
}
  //! Divides all the coefficients of the matrix by Scalar <br>
        gp_Mat Divided(const Standard_Real Scalar) const;
      gp_Mat operator /(const Standard_Real Scalar) const
{
  return Divided(Scalar);
}
  
  Standard_EXPORT     void Invert() ;
  
//!  Inverses the matrix and raises if the matrix is singular. <br>
//! -   Invert assigns the result to this matrix, while <br>
//! -   Inverted creates a new one. <br>
//! Warning <br>
//! The Gauss LU decomposition is used to invert the matrix. <br>
//! Consequently, the matrix is considered as singular if the <br>
//! largest pivot found is less than or equal to gp::Resolution(). <br>
//! Exceptions <br>
//! Standard_ConstructionError if this matrix is singular, <br>
//! and therefore cannot be inverted. <br>
  Standard_EXPORT     gp_Mat Inverted() const;
  
//!  Computes  the product of two matrices <me> * <Other> <br>
        gp_Mat Multiplied(const gp_Mat& Other) const;
      gp_Mat operator *(const gp_Mat& Other) const
{
  return Multiplied(Other);
}
  //! Computes the product of two matrices <me> = <Other> * <me>. <br>
        void Multiply(const gp_Mat& Other) ;
      void operator *=(const gp_Mat& Other) 
{
  Multiply(Other);
}
  
        void PreMultiply(const gp_Mat& Other) ;
  
        gp_Mat Multiplied(const Standard_Real Scalar) const;
      gp_Mat operator *(const Standard_Real Scalar) const
{
  return Multiplied(Scalar);
}
  
//!  Multiplies all the coefficients of the matrix by Scalar <br>
        void Multiply(const Standard_Real Scalar) ;
      void operator *=(const Standard_Real Scalar) 
{
  Multiply(Scalar);
}
  
  Standard_EXPORT     void Power(const Standard_Integer N) ;
  
//!  Computes <me> = <me> * <me> * .......* <me>,   N time. <br>
//!  if N = 0 <me> = Identity <br>
//!  if N < 0 <me> = <me>.Invert() *...........* <me>.Invert(). <br>
//!  If N < 0 an exception will be raised if the matrix is not <br>
//!  inversible <br>
        gp_Mat Powered(const Standard_Integer N) const;
  
        void Subtract(const gp_Mat& Other) ;
      void operator -=(const gp_Mat& Other) 
{
  Subtract(Other);
}
  
//!  cOmputes for each coefficient of the matrix : <br>
//!  <me>.Coef(i,j) - <Other>.Coef(i,j) <br>
        gp_Mat Subtracted(const gp_Mat& Other) const;
      gp_Mat operator -(const gp_Mat& Other) const
{
  return Subtracted(Other);
}
  
        void Transpose() ;
  
//!  Transposes the matrix. A(j, i) -> A (i, j) <br>
        gp_Mat Transposed() const;
    Standard_Real& _CSFDB_Getgp_Matmatrix(const Standard_Integer i1,const Standard_Integer i2) { return matrix[i1][i2]; }

friend class gp_XYZ;
friend class gp_Trsf;
friend class gp_GTrsf;


protected:




private: 


Standard_Real matrix[3][3];


};


#include <gp_Mat.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif