/usr/include/opencascade/gp_Quaternion.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _gp_Quaternion_HeaderFile
#define _gp_Quaternion_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _gp_EulerSequence_HeaderFile
#include <gp_EulerSequence.hxx>
#endif
#ifndef _gp_Vec_HeaderFile
#include <gp_Vec.hxx>
#endif
class gp_Vec;
class gp_Mat;
//! Represents operation of rotation in 3d space as queternion <br>
//! and implements operations with rotations basing on <br>
//! quaternion mathematics. <br>
class gp_Quaternion {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Creates an identity quaternion <br>
gp_Quaternion();
//! Creates quaternion directly from component values <br>
Standard_EXPORT gp_Quaternion(const Standard_Real x,const Standard_Real y,const Standard_Real z,const Standard_Real w);
//! Creates copy of another quaternion <br>
Standard_EXPORT gp_Quaternion(const gp_Quaternion& theToCopy);
//! Creates quaternion representing shortest-arc rotation <br>
//! operator producing vector theVecTo from vector theVecFrom. <br>
Standard_EXPORT gp_Quaternion(const gp_Vec& theVecFrom,const gp_Vec& theVecTo);
//! Creates quaternion representing shortest-arc rotation <br>
//! operator producing vector theVecTo from vector theVecFrom. <br>
//! Additional vector theHelpCrossVec defines preferred direction for <br>
//! rotation and is used when theVecTo and theVecFrom are directed <br>
//! oppositely. <br>
Standard_EXPORT gp_Quaternion(const gp_Vec& theVecFrom,const gp_Vec& theVecTo,const gp_Vec& theHelpCrossVec);
//! Creates quaternion representing rotation on angle <br>
//! theAngle around vector theAxis <br>
Standard_EXPORT gp_Quaternion(const gp_Vec& theAxis,const Standard_Real theAngle);
//! Creates quaternion from rotation matrix 3*3 <br>
//! (which should be orthonormal skew-symmetric matrix) <br>
Standard_EXPORT gp_Quaternion(const gp_Mat& theMat);
//! Simple equal test without precision <br>
Standard_EXPORT Standard_Boolean IsEqual(const gp_Quaternion& theOther) const;
//! Sets quaternion to shortest-arc rotation producing <br>
//! vector theVecTo from vector theVecFrom. <br>
//! If vectors theVecFrom and theVecTo are opposite then rotation <br>
//! axis is computed as theVecFrom ^ (1,0,0) or theVecFrom ^ (0,0,1). <br>
Standard_EXPORT void SetRotation(const gp_Vec& theVecFrom,const gp_Vec& theVecTo) ;
//! Sets quaternion to shortest-arc rotation producing <br>
//! vector theVecTo from vector theVecFrom. <br>
//! If vectors theVecFrom and theVecTo are opposite then rotation <br>
//! axis is computed as theVecFrom ^ theHelpCrossVec. <br>
Standard_EXPORT void SetRotation(const gp_Vec& theVecFrom,const gp_Vec& theVecTo,const gp_Vec& theHelpCrossVec) ;
//! Create a unit quaternion from Axis+Angle representation <br>
Standard_EXPORT void SetVectorAndAngle(const gp_Vec& theAxis,const Standard_Real theAngle) ;
//! Convert a quaternion to Axis+Angle representation, <br>
//! preserve the axis direction and angle from -PI to +PI <br>
Standard_EXPORT void GetVectorAndAngle(gp_Vec& theAxis,Standard_Real& theAngle) const;
//! Create a unit quaternion by rotation matrix <br>
//! matrix must contain only rotation (not scale or shear) <br>
//! <br>
//! For numerical stability we find first the greatest component of quaternion <br>
//! and than search others from this one <br>
Standard_EXPORT void SetMatrix(const gp_Mat& theMat) ;
//! Returns rotation operation as 3*3 matrix <br>
Standard_EXPORT gp_Mat GetMatrix() const;
//! Create a unit quaternion representing rotation defined <br>
//! by generalized Euler angles <br>
Standard_EXPORT void SetEulerAngles(const gp_EulerSequence theOrder,const Standard_Real theAlpha,const Standard_Real theBeta,const Standard_Real theGamma) ;
//! Returns Euler angles describing current rotation <br>
Standard_EXPORT void GetEulerAngles(const gp_EulerSequence theOrder,Standard_Real& theAlpha,Standard_Real& theBeta,Standard_Real& theGamma) const;
Standard_EXPORT void Set(const Standard_Real x,const Standard_Real y,const Standard_Real z,const Standard_Real w) ;
Standard_EXPORT void Set(const gp_Quaternion& theQuaternion) ;
Standard_EXPORT Standard_Real X() const;
Standard_EXPORT Standard_Real Y() const;
Standard_EXPORT Standard_Real Z() const;
Standard_EXPORT Standard_Real W() const;
//! Make identity quaternion (zero-rotation) <br>
Standard_EXPORT void SetIdent() ;
//! Reverse direction of rotation (conjugate quaternion) <br>
Standard_EXPORT void Reverse() ;
//! Return rotation with reversed direction (conjugated quaternion) <br>
Standard_EXPORT gp_Quaternion Reversed() const;
//! Inverts quaternion (both rotation direction and norm) <br>
Standard_EXPORT void Invert() ;
//! Return inversed quaternion q^-1 <br>
Standard_EXPORT gp_Quaternion Inverted() const;
//! Returns square norm of quaternion <br>
Standard_EXPORT Standard_Real SquareNorm() const;
//! Returns norm of quaternion <br>
Standard_EXPORT Standard_Real Norm() const;
//! Scale all components by quaternion by theScale; note that <br>
//! rotation is not changed by this operation (except 0-scaling) <br>
Standard_EXPORT void Scale(const Standard_Real theScale) ;
void operator *=(const Standard_Real theScale)
{
Scale(theScale);
}
//! Returns scaled quaternion <br>
Standard_EXPORT gp_Quaternion Scaled(const Standard_Real theScale) const;
gp_Quaternion operator *(const Standard_Real theScale) const
{
return Scaled(theScale);
}
//! Stabilize quaternion length within 1 - 1/4. <br>
//! This operation is a lot faster than normalization <br>
//! and preserve length goes to 0 or infinity <br>
Standard_EXPORT void StabilizeLength() ;
//! Scale quaternion that its norm goes to 1. <br>
//! The appearing of 0 magnitude or near is a error, <br>
//! so we can be sure that can divide by magnitude <br>
Standard_EXPORT void Normalize() ;
//! Returns quaternion scaled so that its norm goes to 1. <br>
Standard_EXPORT gp_Quaternion Normalized() const;
//! Returns quaternion with all components negated. <br>
//! Note that this operation does not affect neither <br>
//! rotation operator defined by quaternion nor its norm. <br>
Standard_EXPORT gp_Quaternion Negated() const;
gp_Quaternion operator -() const
{
return Negated();
}
//! Makes sum of quaternion components; result is "rotations mix" <br>
Standard_EXPORT gp_Quaternion Added(const gp_Quaternion& theOther) const;
gp_Quaternion operator +(const gp_Quaternion& theOther) const
{
return Added(theOther);
}
//! Makes difference of quaternion components; result is "rotations mix" <br>
Standard_EXPORT gp_Quaternion Subtracted(const gp_Quaternion& theOther) const;
gp_Quaternion operator -(const gp_Quaternion& theOther) const
{
return Subtracted(theOther);
}
//! Multiply function - work the same as Matrices multiplying. <br>
//! qq' = (cross(v,v') + wv' + w'v, ww' - dot(v,v')) <br>
//! Result is rotation combination: q' than q (here q=this, q'=theQ). <br>
//! Notices than: <br>
//! qq' != q'q; <br>
//! qq^-1 = q; <br>
Standard_EXPORT gp_Quaternion Multiplied(const gp_Quaternion& theOther) const;
gp_Quaternion operator *(const gp_Quaternion& theOther) const
{
return Multiplied(theOther);
}
//! Adds componnets of other quaternion; result is "rotations mix" <br>
Standard_EXPORT void Add(const gp_Quaternion& theOther) ;
void operator +=(const gp_Quaternion& theOther)
{
Add(theOther);
}
//! Subtracts componnets of other quaternion; result is "rotations mix" <br>
Standard_EXPORT void Subtract(const gp_Quaternion& theOther) ;
void operator -=(const gp_Quaternion& theOther)
{
Subtract(theOther);
}
//! Adds rotation by multiplication <br>
Standard_EXPORT void Multiply(const gp_Quaternion& theOther) ;
void operator *=(const gp_Quaternion& theOther)
{
Multiply(theOther);
}
//! Computes inner product / scalar product / Dot <br>
Standard_EXPORT Standard_Real Dot(const gp_Quaternion& theOther) const;
//! Return rotation angle from -PI to PI <br>
Standard_EXPORT Standard_Real GetRotationAngle() const;
//! Rotates vector by quaternion as rotation operator <br>
Standard_EXPORT gp_Vec Multiply(const gp_Vec& theVec) const;
gp_Vec operator *(const gp_Vec& theVec) const
{
return Multiply(theVec);
}
protected:
private:
Standard_Real x;
Standard_Real y;
Standard_Real z;
Standard_Real w;
};
#include <gp_Quaternion.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|