/usr/include/opencascade/gp_Trsf.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _gp_Trsf_HeaderFile
#define _gp_Trsf_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _gp_TrsfForm_HeaderFile
#include <gp_TrsfForm.hxx>
#endif
#ifndef _gp_Mat_HeaderFile
#include <gp_Mat.hxx>
#endif
#ifndef _gp_XYZ_HeaderFile
#include <gp_XYZ.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class Standard_OutOfRange;
class gp_GTrsf;
class gp_Trsf2d;
class gp_Pnt;
class gp_Ax1;
class gp_Ax2;
class gp_Quaternion;
class gp_Ax3;
class gp_Vec;
class gp_XYZ;
class gp_Mat;
Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Trsf);
//! Defines a non-persistent transformation in 3D space. <br>
//! The following transformations are implemented : <br>
//! . Translation, Rotation, Scale <br>
//! . Symmetry with respect to a point, a line, a plane. <br>
//! Complex transformations can be obtained by combining the <br>
//! previous elementary transformations using the method <br>
//! Multiply. <br>
//! The transformations can be represented as follow : <br>
//! <br>
//! V1 V2 V3 T XYZ XYZ <br>
//! | a11 a12 a13 a14 | | x | | x'| <br>
//! | a21 a22 a23 a24 | | y | | y'| <br>
//! | a31 a32 a33 a34 | | z | = | z'| <br>
//! | 0 0 0 1 | | 1 | | 1 | <br>
class gp_Trsf {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Returns the identity transformation. <br>
gp_Trsf();
//! Creates a 3D transformation from the 2D transformation T. <br>
//! The resulting transformation has a homogeneous <br>
//! vectorial part, V3, and a translation part, T3, built from T: <br>
//! a11 a12 <br>
//! 0 a13 <br>
//! V3 = a21 a22 0 T3 <br>
//! = a23 <br>
//! 0 0 1. <br>
//! 0 <br>
//! It also has the same scale factor as T. This <br>
//! guarantees (by projection) that the transformation <br>
//! which would be performed by T in a plane (2D space) <br>
//! is performed by the resulting transformation in the xOy <br>
//! plane of the 3D space, (i.e. in the plane defined by the <br>
//! origin (0., 0., 0.) and the vectors DX (1., 0., 0.), and DY <br>
//! (0., 1., 0.)). The scale factor is applied to the entire space. <br>
gp_Trsf(const gp_Trsf2d& T);
//! Makes the transformation into a symmetrical transformation. <br>
//! P is the center of the symmetry. <br>
void SetMirror(const gp_Pnt& P) ;
//! Makes the transformation into a symmetrical transformation. <br>
//! A1 is the center of the axial symmetry. <br>
Standard_EXPORT void SetMirror(const gp_Ax1& A1) ;
//! Makes the transformation into a symmetrical transformation. <br>
//! A2 is the center of the planar symmetry <br>
//! and defines the plane of symmetry by its origin, "X <br>
//! Direction" and "Y Direction". <br>
Standard_EXPORT void SetMirror(const gp_Ax2& A2) ;
//! Changes the transformation into a rotation. <br>
//! A1 is the rotation axis and Ang is the angular value of the <br>
//! rotation in radians. <br>
Standard_EXPORT void SetRotation(const gp_Ax1& A1,const Standard_Real Ang) ;
//! Changes the transformation into a rotation defined by quaternion. <br>
//! Note that rotation is performed around origin, i.e. <br>
//! no translation is involved. <br>
Standard_EXPORT void SetRotation(const gp_Quaternion& R) ;
//! Changes the transformation into a scale. <br>
//! P is the center of the scale and S is the scaling value. <br>
//! Raises ConstructionError If <S> is null. <br>
Standard_EXPORT void SetScale(const gp_Pnt& P,const Standard_Real S) ;
//! Modifies this transformation so that it transforms the <br>
//! coordinate system defined by FromSystem1 into the <br>
//! one defined by ToSystem2. After this modification, this <br>
//! transformation transforms: <br>
//! - the origin of FromSystem1 into the origin of ToSystem2, <br>
//! - the "X Direction" of FromSystem1 into the "X <br>
//! Direction" of ToSystem2, <br>
//! - the "Y Direction" of FromSystem1 into the "Y <br>
//! Direction" of ToSystem2, and <br>
//! - the "main Direction" of FromSystem1 into the "main <br>
//! Direction" of ToSystem2. <br>
//! Warning <br>
//! When you know the coordinates of a point in one <br>
//! coordinate system and you want to express these <br>
//! coordinates in another one, do not use the <br>
//! transformation resulting from this function. Use the <br>
//! transformation that results from SetTransformation instead. <br>
//! SetDisplacement and SetTransformation create <br>
//! related transformations: the vectorial part of one is the <br>
//! inverse of the vectorial part of the other. <br>
Standard_EXPORT void SetDisplacement(const gp_Ax3& FromSystem1,const gp_Ax3& ToSystem2) ;
//! Modifies this transformation so that it transforms the <br>
//! coordinates of any point, (x, y, z), relative to a source <br>
//! coordinate system into the coordinates (x', y', z') which <br>
//! are relative to a target coordinate system, but which <br>
//! represent the same point <br>
//! The transformation is from the coordinate <br>
//! system "FromSystem1" to the coordinate system "ToSystem2". <br>
//! Example : <br>
//! In a C++ implementation : <br>
//! Real x1, y1, z1; // are the coordinates of a point in the <br>
//! // local system FromSystem1 <br>
//! Real x2, y2, z2; // are the coordinates of a point in the <br>
//! // local system ToSystem2 <br>
//! gp_Pnt P1 (x1, y1, z1) <br>
//! Trsf T; <br>
//! T.SetTransformation (FromSystem1, ToSystem2); <br>
//! gp_Pnt P2 = P1.Transformed (T); <br>
//! P2.Coord (x2, y2, z2); <br>
Standard_EXPORT void SetTransformation(const gp_Ax3& FromSystem1,const gp_Ax3& ToSystem2) ;
//! Modifies this transformation so that it transforms the <br>
//! coordinates of any point, (x, y, z), relative to a source <br>
//! coordinate system into the coordinates (x', y', z') which <br>
//! are relative to a target coordinate system, but which <br>
//! represent the same point <br>
//! The transformation is from the default coordinate system <br>
//! {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) } <br>
//! to the local coordinate system defined with the Ax3 ToSystem. <br>
//! Use in the same way as the previous method. FromSystem1 is <br>
//! defaulted to the absolute coordinate system. <br>
Standard_EXPORT void SetTransformation(const gp_Ax3& ToSystem) ;
//! Sets transformation by directly specified rotation and translation. <br>
Standard_EXPORT void SetTransformation(const gp_Quaternion& R,const gp_Vec& T) ;
//! Changes the transformation into a translation. <br>
//! V is the vector of the translation. <br>
void SetTranslation(const gp_Vec& V) ;
//! Makes the transformation into a translation where the translation vector <br>
//! is the vector (P1, P2) defined from point P1 to point P2. <br>
void SetTranslation(const gp_Pnt& P1,const gp_Pnt& P2) ;
//! Replaces the translation vector with the vector V. <br>
Standard_EXPORT void SetTranslationPart(const gp_Vec& V) ;
//! Modifies the scale factor. <br>
//! Raises ConstructionError If S is null. <br>
Standard_EXPORT void SetScaleFactor(const Standard_Real S) ;
//! Sets the coefficients of the transformation. The <br>
//! transformation of the point x,y,z is the point <br>
//! x',y',z' with : <br>
//! <br>
//! x' = a11 x + a12 y + a13 z + a14 <br>
//! y' = a21 x + a22 y + a23 z + a24 <br>
//! z' = a31 x + a32 y + a43 z + a34 <br>
//! <br>
//! Tolang and TolDist are used to test for null <br>
//! angles and null distances to determine the form of <br>
//! the transformation (identity, translation, etc..). <br>
//! <br>
//! The method Value(i,j) will return aij. <br>
//! Raises ConstructionError if the determinant of the aij is null. Or if <br>
//! the matrix as not a uniform scale. <br>
Standard_EXPORT void SetValues(const Standard_Real a11,const Standard_Real a12,const Standard_Real a13,const Standard_Real a14,const Standard_Real a21,const Standard_Real a22,const Standard_Real a23,const Standard_Real a24,const Standard_Real a31,const Standard_Real a32,const Standard_Real a33,const Standard_Real a34,const Standard_Real Tolang,const Standard_Real TolDist) ;
//! Returns true if the determinant of the vectorial part of <br>
//! this transformation is negative. <br>
Standard_Boolean IsNegative() const;
//! Returns the nature of the transformation. It can be: an <br>
//! identity transformation, a rotation, a translation, a mirror <br>
//! transformation (relative to a point, an axis or a plane), a <br>
//! scaling transformation, or a compound transformation. <br>
gp_TrsfForm Form() const;
//! Returns the scale factor. <br>
Standard_Real ScaleFactor() const;
//! Returns the translation part of the transformation's matrix <br>
const gp_XYZ& TranslationPart() const;
//! Returns the boolean True if there is non-zero rotation. <br>
//! In the presence of rotation, the output parameters store the axis <br>
//! and the angle of rotation. The method always returns positive <br>
//! value "theAngle", i.e., 0. < theAngle <= PI. <br>
//! Note that this rotation is defined only by the vectorial part of <br>
//! the transformation; generally you would need to check also the <br>
//! translational part to obtain the axis (gp_Ax1) of rotation. <br>
Standard_EXPORT Standard_Boolean GetRotation(gp_XYZ& theAxis,Standard_Real& theAngle) const;
//! Returns quaternion representing rotational part of the transformation. <br>
Standard_EXPORT gp_Quaternion GetRotation() const;
//! Returns the vectorial part of the transformation. It is <br>
//! a 3*3 matrix which includes the scale factor. <br>
Standard_EXPORT gp_Mat VectorialPart() const;
//! Computes the homogeneous vectorial part of the transformation. <br>
//! It is a 3*3 matrix which doesn't include the scale factor. <br>
//! In other words, the vectorial part of this transformation is equal <br>
//! to its homogeneous vectorial part, multiplied by the scale factor. <br>
//! The coefficients of this matrix must be multiplied by the <br>
//! scale factor to obtain the coefficients of the transformation. <br>
const gp_Mat& HVectorialPart() const;
//! Returns the coefficients of the transformation's matrix. <br>
//! It is a 3 rows * 4 columns matrix. <br>
//! This coefficient includes the scale factor. <br>
//! Raises OutOfRanged if Row < 1 or Row > 3 or Col < 1 or Col > 4 <br>
Standard_Real Value(const Standard_Integer Row,const Standard_Integer Col) const;
Standard_EXPORT void Invert() ;
//! Computes the reverse transformation <br>
//! Raises an exception if the matrix of the transformation <br>
//! is not inversible, it means that the scale factor is lower <br>
//! or equal to Resolution from package gp. <br>
//! Computes the transformation composed with T and <me>. <br>
//! In a C++ implementation you can also write Tcomposed = <me> * T. <br>
//! Example : <br>
//! Trsf T1, T2, Tcomp; ............... <br>
//! Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1) <br>
//! Pnt P1(10.,3.,4.); <br>
//! Pnt P2 = P1.Transformed(Tcomp); //using Tcomp <br>
//! Pnt P3 = P1.Transformed(T1); //using T1 then T2 <br>
//! P3.Transform(T2); // P3 = P2 !!! <br>
gp_Trsf Inverted() const;
gp_Trsf Multiplied(const gp_Trsf& T) const;
gp_Trsf operator *(const gp_Trsf& T) const
{
return Multiplied(T);
}
//! Computes the transformation composed with T and <me>. <br>
//! In a C++ implementation you can also write Tcomposed = <me> * T. <br>
//! Example : <br>
//! Trsf T1, T2, Tcomp; ............... <br>
//! //composition : <br>
//! Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1) <br>
//! // transformation of a point <br>
//! Pnt P1(10.,3.,4.); <br>
//! Pnt P2 = P1.Transformed(Tcomp); //using Tcomp <br>
//! Pnt P3 = P1.Transformed(T1); //using T1 then T2 <br>
//! P3.Transform(T2); // P3 = P2 !!! <br>
//! Computes the transformation composed with <me> and T. <br>
//! <me> = T * <me> <br>
Standard_EXPORT void Multiply(const gp_Trsf& T) ;
void operator *=(const gp_Trsf& T)
{
Multiply(T);
}
//! Computes the transformation composed with <me> and T. <br>
//! <me> = T * <me> <br>
Standard_EXPORT void PreMultiply(const gp_Trsf& T) ;
Standard_EXPORT void Power(const Standard_Integer N) ;
//! Computes the following composition of transformations <br>
//! <me> * <me> * .......* <me>, N time. <br>
//! if N = 0 <me> = Identity <br>
//! if N < 0 <me> = <me>.Inverse() *...........* <me>.Inverse(). <br>
gp_Trsf Powered(const Standard_Integer N) ;
void Transforms(Standard_Real& X,Standard_Real& Y,Standard_Real& Z) const;
//! Transformation of a triplet XYZ with a Trsf <br>
void Transforms(gp_XYZ& Coord) const;
Standard_Real _CSFDB_Getgp_Trsfscale() const { return scale; }
void _CSFDB_Setgp_Trsfscale(const Standard_Real p) { scale = p; }
gp_TrsfForm _CSFDB_Getgp_Trsfshape() const { return shape; }
void _CSFDB_Setgp_Trsfshape(const gp_TrsfForm p) { shape = p; }
const gp_Mat& _CSFDB_Getgp_Trsfmatrix() const { return matrix; }
const gp_XYZ& _CSFDB_Getgp_Trsfloc() const { return loc; }
friend class gp_GTrsf;
protected:
private:
Standard_Real scale;
gp_TrsfForm shape;
gp_Mat matrix;
gp_XYZ loc;
};
#include <gp_Trsf.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|