/usr/include/opencascade/gp_XY.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _gp_XY_HeaderFile
#define _gp_XY_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class Standard_OutOfRange;
class gp_Mat2d;
Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_XY);
//! This class describes a cartesian coordinate entity in 2D <br>
//! space {X,Y}. This class is non persistent. This entity used <br>
//! for algebraic calculation. An XY can be transformed with a <br>
//! Trsf2d or a GTrsf2d from package gp. <br>
//! It is used in vectorial computations or for holding this type <br>
//! of information in data structures. <br>
class gp_XY {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Creates XY object with zero coordinates (0,0). <br>
gp_XY();
//! a number pair defined by the XY coordinates <br>
gp_XY(const Standard_Real X,const Standard_Real Y);
//! modifies the coordinate of range Index <br>
//! Index = 1 => X is modified <br>
//! Index = 2 => Y is modified <br>
//! Raises OutOfRange if Index != {1, 2}. <br>
void SetCoord(const Standard_Integer Index,const Standard_Real Xi) ;
//! For this number pair, assigns <br>
//! the values X and Y to its coordinates <br>
void SetCoord(const Standard_Real X,const Standard_Real Y) ;
//! Assigns the given value to the X coordinate of this number pair. <br>
void SetX(const Standard_Real X) ;
//! Assigns the given value to the Y coordinate of this number pair. <br>
void SetY(const Standard_Real Y) ;
//! returns the coordinate of range Index : <br>
//! Index = 1 => X is returned <br>
//! Index = 2 => Y is returned <br>
//! Raises OutOfRange if Index != {1, 2}. <br>
Standard_Real Coord(const Standard_Integer Index) const;
//! For this number pair, returns its coordinates X and Y. <br>
void Coord(Standard_Real& X,Standard_Real& Y) const;
//! Returns the X coordinate of this number pair. <br>
Standard_Real X() const;
//! Returns the Y coordinate of this number pair. <br>
Standard_Real Y() const;
//! Computes Sqrt (X*X + Y*Y) where X and Y are the two coordinates of this number pair. <br>
Standard_Real Modulus() const;
//! Computes X*X + Y*Y where X and Y are the two coordinates of this number pair. <br>
Standard_Real SquareModulus() const;
//! Returns true if the coordinates of this number pair are <br>
//! equal to the respective coordinates of the number pair <br>
//! Other, within the specified tolerance Tolerance. I.e.: <br>
//! abs(<me>.X() - Other.X()) <= Tolerance and <br>
//! abs(<me>.Y() - Other.Y()) <= Tolerance and <br>//! computations <br>
Standard_EXPORT Standard_Boolean IsEqual(const gp_XY& Other,const Standard_Real Tolerance) const;
//! Computes the sum of this number pair and number pair Other <br>
//! <me>.X() = <me>.X() + Other.X() <br>
//! <me>.Y() = <me>.Y() + Other.Y() <br>
void Add(const gp_XY& Other) ;
void operator +=(const gp_XY& Other)
{
Add(Other);
}
//! Computes the sum of this number pair and number pair Other <br>
//! new.X() = <me>.X() + Other.X() <br>
//! new.Y() = <me>.Y() + Other.Y() <br>
gp_XY Added(const gp_XY& Other) const;
gp_XY operator +(const gp_XY& Other) const
{
return Added(Other);
}
//! Real D = <me>.X() * Other.Y() - <me>.Y() * Other.X() <br>
Standard_Real Crossed(const gp_XY& Right) const;
Standard_Real operator ^(const gp_XY& Right) const
{
return Crossed(Right);
}
//! computes the magnitude of the cross product between <me> and <br>
//! Right. Returns || <me> ^ Right || <br>
Standard_Real CrossMagnitude(const gp_XY& Right) const;
//! computes the square magnitude of the cross product between <me> and <br>
//! Right. Returns || <me> ^ Right ||**2 <br>
Standard_Real CrossSquareMagnitude(const gp_XY& Right) const;
//! divides <me> by a real. <br>
void Divide(const Standard_Real Scalar) ;
void operator /=(const Standard_Real Scalar)
{
Divide(Scalar);
}
//! Divides <me> by a real. <br>
gp_XY Divided(const Standard_Real Scalar) const;
gp_XY operator /(const Standard_Real Scalar) const
{
return Divided(Scalar);
}
//! Computes the scalar product between <me> and Other <br>
Standard_Real Dot(const gp_XY& Other) const;
Standard_Real operator *(const gp_XY& Other) const
{
return Dot(Other);
}
//! <me>.X() = <me>.X() * Scalar; <br>
//! <me>.Y() = <me>.Y() * Scalar; <br>
void Multiply(const Standard_Real Scalar) ;
void operator *=(const Standard_Real Scalar)
{
Multiply(Scalar);
}
//! <me>.X() = <me>.X() * Other.X(); <br>
//! <me>.Y() = <me>.Y() * Other.Y(); <br>
void Multiply(const gp_XY& Other) ;
void operator *=(const gp_XY& Other)
{
Multiply(Other);
}
//! <me> = Matrix * <me> <br>
void Multiply(const gp_Mat2d& Matrix) ;
void operator *=(const gp_Mat2d& Matrix)
{
Multiply(Matrix);
}
//! New.X() = <me>.X() * Scalar; <br>
//! New.Y() = <me>.Y() * Scalar; <br>
gp_XY Multiplied(const Standard_Real Scalar) const;
gp_XY operator *(const Standard_Real Scalar) const
{
return Multiplied(Scalar);
}
//! new.X() = <me>.X() * Other.X(); <br>
//! new.Y() = <me>.Y() * Other.Y(); <br>
gp_XY Multiplied(const gp_XY& Other) const;
//! New = Matrix * <me> <br>
gp_XY Multiplied(const gp_Mat2d& Matrix) const;
gp_XY operator *(const gp_Mat2d& Matrix) const
{
return Multiplied(Matrix);
}
//! <me>.X() = <me>.X()/ <me>.Modulus() <br>
//! <me>.Y() = <me>.Y()/ <me>.Modulus() <br>
//! Raises ConstructionError if <me>.Modulus() <= Resolution from gp <br>
void Normalize() ;
//! New.X() = <me>.X()/ <me>.Modulus() <br>
//! New.Y() = <me>.Y()/ <me>.Modulus() <br>
//! Raises ConstructionError if <me>.Modulus() <= Resolution from gp <br>
gp_XY Normalized() const;
//! <me>.X() = -<me>.X() <br>
//! <me>.Y() = -<me>.Y() <br>
void Reverse() ;
//! New.X() = -<me>.X() <br>
//! New.Y() = -<me>.Y() <br>
gp_XY Reversed() const;
gp_XY operator -() const
{
return Reversed();
}
//! Computes the following linear combination and <br>
//! assigns the result to this number pair: <br>
//! A1 * XY1 + A2 * XY2 <br>
void SetLinearForm(const Standard_Real A1,const gp_XY& XY1,const Standard_Real A2,const gp_XY& XY2) ;
//! -- Computes the following linear combination and <br>
//! assigns the result to this number pair: <br>
//! A1 * XY1 + A2 * XY2 + XY3 <br>
void SetLinearForm(const Standard_Real A1,const gp_XY& XY1,const Standard_Real A2,const gp_XY& XY2,const gp_XY& XY3) ;
//! Computes the following linear combination and <br>
//! assigns the result to this number pair: <br>
//! A1 * XY1 + XY2 <br>
void SetLinearForm(const Standard_Real A1,const gp_XY& XY1,const gp_XY& XY2) ;
//! Computes the following linear combination and <br>
//! assigns the result to this number pair: <br>
//! XY1 + XY2 <br>
void SetLinearForm(const gp_XY& XY1,const gp_XY& XY2) ;
//! <me>.X() = <me>.X() - Other.X() <br>
//! <me>.Y() = <me>.Y() - Other.Y() <br>
void Subtract(const gp_XY& Right) ;
void operator -=(const gp_XY& Right)
{
Subtract(Right);
}
//! new.X() = <me>.X() - Other.X() <br>
//! new.Y() = <me>.Y() - Other.Y() <br>
gp_XY Subtracted(const gp_XY& Right) const;
gp_XY operator -(const gp_XY& Right) const
{
return Subtracted(Right);
}
Standard_Real _CSFDB_Getgp_XYx() const { return x; }
void _CSFDB_Setgp_XYx(const Standard_Real p) { x = p; }
Standard_Real _CSFDB_Getgp_XYy() const { return y; }
void _CSFDB_Setgp_XYy(const Standard_Real p) { y = p; }
protected:
private:
Standard_Real x;
Standard_Real y;
};
#include <gp_XY.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|