This file is indexed.

/usr/include/opencascade/gp_XY.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _gp_XY_HeaderFile
#define _gp_XY_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class Standard_OutOfRange;
class gp_Mat2d;


Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_XY);


//!  This class describes a cartesian coordinate entity in 2D <br>
//!  space {X,Y}. This class is non persistent. This entity used <br>
//!  for algebraic calculation. An XY can be transformed with a <br>
//!  Trsf2d or a  GTrsf2d from package gp. <br>
//! It is used in vectorial computations or for holding this type <br>
//! of information in data structures. <br>
class gp_XY  {

public:
  void* operator new(size_t,void* anAddress) 
  {
    return anAddress;
  }
  void* operator new(size_t size) 
  {
    return Standard::Allocate(size); 
  }
  void  operator delete(void *anAddress) 
  {
    if (anAddress) Standard::Free((Standard_Address&)anAddress); 
  }

  //! Creates XY object with zero coordinates (0,0). <br>
      gp_XY();
  //! a number pair defined by the XY coordinates <br>
      gp_XY(const Standard_Real X,const Standard_Real Y);
  
//!  modifies the coordinate of range Index <br>
//!  Index = 1 => X is modified <br>
//!  Index = 2 => Y is modified <br>
//!   Raises OutOfRange if Index != {1, 2}. <br>
        void SetCoord(const Standard_Integer Index,const Standard_Real Xi) ;
  //!  For this number pair, assigns <br>
//!   the values X and Y to its coordinates <br>
        void SetCoord(const Standard_Real X,const Standard_Real Y) ;
  //! Assigns the given value to the X coordinate of this number pair. <br>
        void SetX(const Standard_Real X) ;
  //! Assigns the given value to the Y  coordinate of this number pair. <br>
        void SetY(const Standard_Real Y) ;
  
//!  returns the coordinate of range Index : <br>
//!  Index = 1 => X is returned <br>
//!  Index = 2 => Y is returned <br>
//! Raises OutOfRange if Index != {1, 2}. <br>
        Standard_Real Coord(const Standard_Integer Index) const;
  //! For this number pair, returns its coordinates X and Y. <br>
        void Coord(Standard_Real& X,Standard_Real& Y) const;
  //! Returns the X coordinate of this number pair. <br>
        Standard_Real X() const;
  //! Returns the Y coordinate of this number pair. <br>
        Standard_Real Y() const;
  //! Computes Sqrt (X*X + Y*Y) where X and Y are the two coordinates of this number pair. <br>
        Standard_Real Modulus() const;
  //! Computes X*X + Y*Y where X and Y are the two coordinates of this number pair. <br>
        Standard_Real SquareModulus() const;
  
//!  Returns true if the coordinates of this number pair are <br>
//! equal to the respective coordinates of the number pair <br>
//! Other, within the specified tolerance Tolerance. I.e.: <br>
//!  abs(<me>.X() - Other.X()) <= Tolerance and <br>
//!  abs(<me>.Y() - Other.Y()) <= Tolerance and <br>//! computations <br>
  Standard_EXPORT     Standard_Boolean IsEqual(const gp_XY& Other,const Standard_Real Tolerance) const;
  //! Computes the sum of this number pair and number pair Other <br>
//! <me>.X() = <me>.X() + Other.X() <br>
//! <me>.Y() = <me>.Y() + Other.Y() <br>
        void Add(const gp_XY& Other) ;
      void operator +=(const gp_XY& Other) 
{
  Add(Other);
}
  //! Computes the sum of this number pair and number pair Other <br>
//! new.X() = <me>.X() + Other.X() <br>
//! new.Y() = <me>.Y() + Other.Y() <br>
        gp_XY Added(const gp_XY& Other) const;
      gp_XY operator +(const gp_XY& Other) const
{
  return Added(Other);
}
  
//!  Real D = <me>.X() * Other.Y() - <me>.Y() * Other.X() <br>
        Standard_Real Crossed(const gp_XY& Right) const;
      Standard_Real operator ^(const gp_XY& Right) const
{
  return Crossed(Right);
}
  
//!  computes the magnitude of the cross product between <me> and <br>
//!  Right. Returns || <me> ^ Right || <br>
        Standard_Real CrossMagnitude(const gp_XY& Right) const;
  
//!  computes the square magnitude of the cross product between <me> and <br>
//!  Right. Returns || <me> ^ Right ||**2 <br>
        Standard_Real CrossSquareMagnitude(const gp_XY& Right) const;
  //! divides <me> by a real. <br>
        void Divide(const Standard_Real Scalar) ;
      void operator /=(const Standard_Real Scalar) 
{
  Divide(Scalar);
}
  //! Divides <me> by a real. <br>
        gp_XY Divided(const Standard_Real Scalar) const;
      gp_XY operator /(const Standard_Real Scalar) const
{
  return Divided(Scalar);
}
  //! Computes the scalar product between <me> and Other <br>
        Standard_Real Dot(const gp_XY& Other) const;
      Standard_Real operator *(const gp_XY& Other) const
{
  return Dot(Other);
}
  
//!  <me>.X() = <me>.X() * Scalar; <br>
//!  <me>.Y() = <me>.Y() * Scalar; <br>
        void Multiply(const Standard_Real Scalar) ;
      void operator *=(const Standard_Real Scalar) 
{
  Multiply(Scalar);
}
  
//!  <me>.X() = <me>.X() * Other.X(); <br>
//!  <me>.Y() = <me>.Y() * Other.Y(); <br>
        void Multiply(const gp_XY& Other) ;
      void operator *=(const gp_XY& Other) 
{
  Multiply(Other);
}
  //! <me> = Matrix * <me> <br>
        void Multiply(const gp_Mat2d& Matrix) ;
      void operator *=(const gp_Mat2d& Matrix) 
{
  Multiply(Matrix);
}
  
//!  New.X() = <me>.X() * Scalar; <br>
//!  New.Y() = <me>.Y() * Scalar; <br>
        gp_XY Multiplied(const Standard_Real Scalar) const;
      gp_XY operator *(const Standard_Real Scalar) const
{
  return Multiplied(Scalar);
}
  
//!  new.X() = <me>.X() * Other.X(); <br>
//!  new.Y() = <me>.Y() * Other.Y(); <br>
        gp_XY Multiplied(const gp_XY& Other) const;
  //!  New = Matrix * <me> <br>
        gp_XY Multiplied(const gp_Mat2d& Matrix) const;
      gp_XY operator *(const gp_Mat2d& Matrix) const
{
  return Multiplied(Matrix);
}
  
//!  <me>.X() = <me>.X()/ <me>.Modulus() <br>
//!  <me>.Y() = <me>.Y()/ <me>.Modulus() <br>
//! Raises ConstructionError if <me>.Modulus() <= Resolution from gp <br>
        void Normalize() ;
  
//!  New.X() = <me>.X()/ <me>.Modulus() <br>
//!  New.Y() = <me>.Y()/ <me>.Modulus() <br>
//! Raises ConstructionError if <me>.Modulus() <= Resolution from gp <br>
        gp_XY Normalized() const;
  
//!  <me>.X() = -<me>.X() <br>
//!  <me>.Y() = -<me>.Y() <br>
        void Reverse() ;
  
//!  New.X() = -<me>.X() <br>
//!  New.Y() = -<me>.Y() <br>
        gp_XY Reversed() const;
      gp_XY operator -() const
{
  return Reversed();
}
  
//!  Computes  the following linear combination and <br>
//! assigns the result to this number pair: <br>
//!  A1 * XY1 + A2 * XY2 <br>
        void SetLinearForm(const Standard_Real A1,const gp_XY& XY1,const Standard_Real A2,const gp_XY& XY2) ;
  
//!  --  Computes  the following linear combination and <br>
//! assigns the result to this number pair: <br>
//!  A1 * XY1 + A2 * XY2 + XY3 <br>
        void SetLinearForm(const Standard_Real A1,const gp_XY& XY1,const Standard_Real A2,const gp_XY& XY2,const gp_XY& XY3) ;
  
//!  Computes  the following linear combination and <br>
//! assigns the result to this number pair: <br>
//!  A1 * XY1 + XY2 <br>
        void SetLinearForm(const Standard_Real A1,const gp_XY& XY1,const gp_XY& XY2) ;
  
//!   Computes  the following linear combination and <br>
//! assigns the result to this number pair: <br>
//!  XY1 + XY2 <br>
        void SetLinearForm(const gp_XY& XY1,const gp_XY& XY2) ;
  
//!  <me>.X() = <me>.X() - Other.X() <br>
//!  <me>.Y() = <me>.Y() - Other.Y() <br>
        void Subtract(const gp_XY& Right) ;
      void operator -=(const gp_XY& Right) 
{
  Subtract(Right);
}
  
//!  new.X() = <me>.X() - Other.X() <br>
//!  new.Y() = <me>.Y() - Other.Y() <br>
        gp_XY Subtracted(const gp_XY& Right) const;
      gp_XY operator -(const gp_XY& Right) const
{
  return Subtracted(Right);
}
    Standard_Real _CSFDB_Getgp_XYx() const { return x; }
    void _CSFDB_Setgp_XYx(const Standard_Real p) { x = p; }
    Standard_Real _CSFDB_Getgp_XYy() const { return y; }
    void _CSFDB_Setgp_XYy(const Standard_Real p) { y = p; }



protected:




private: 


Standard_Real x;
Standard_Real y;


};


#include <gp_XY.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif