This file is indexed.

/usr/include/opencascade/math_BissecNewton.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _math_BissecNewton_HeaderFile
#define _math_BissecNewton_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _math_Status_HeaderFile
#include <math_Status.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_OStream_HeaderFile
#include <Standard_OStream.hxx>
#endif
class StdFail_NotDone;
class math_FunctionWithDerivative;



//! This class implements a combination of Newton-Raphson and bissection <br>
//!  methods to find the root of the function between two bounds. <br>
//! Knowledge of the derivative is required. <br>
class math_BissecNewton  {
public:

  void* operator new(size_t,void* anAddress) 
  {
    return anAddress;
  }
  void* operator new(size_t size) 
  {
    return Standard::Allocate(size); 
  }
  void  operator delete(void *anAddress) 
  {
    if (anAddress) Standard::Free((Standard_Address&)anAddress); 
  }

  
//! A combination of Newton-Raphson and bissection methods is done to find <br>
//! the root of the function F between the bounds Bound1 and Bound2. <br>
//! on the function F. <br>
//! The tolerance required on the root is given by TolX. <br>
//! The solution is found when : <br>
//!    abs(Xi - Xi-1) <= TolX and F(Xi) * F(Xi-1) <= 0 <br>
//! The maximum number of iterations allowed is given by NbIterations. <br>
  Standard_EXPORT   math_BissecNewton(math_FunctionWithDerivative& F,const Standard_Real Bound1,const Standard_Real Bound2,const Standard_Real TolX,const Standard_Integer NbIterations = 100);
  
//! This method is called at the end of each iteration to check if the <br>
//! solution has been found. <br>
//! It can be redefined in a sub-class to implement a specific test to <br>
//! stop the iterations. <br>
  Standard_EXPORT   virtual  Standard_Boolean IsSolutionReached(math_FunctionWithDerivative& F) ;
  //! Tests is the root has been successfully found. <br>
        Standard_Boolean IsDone() const;
  //! returns the value of the root. <br>
//! Exception NotDone is raised if the minimum was not found. <br>
        Standard_Real Root() const;
  //! returns the value of the derivative at the root. <br>
//! Exception NotDone is raised if the minimum was not found. <br>
        Standard_Real Derivative() const;
  //! returns the value of the function at the root. <br>
//! Exception NotDone is raised if the minimum was not found. <br>
        Standard_Real Value() const;
  //! Prints on the stream o information on the current state <br>
//!          of the object. <br>
//!          Is used to redifine the operator <<. <br>
  Standard_EXPORT     void Dump(Standard_OStream& o) const;





protected:

  
  Standard_EXPORT     void Perform(math_FunctionWithDerivative& F,const Standard_Real Bound1,const Standard_Real Bound2,const Standard_Integer NbIterations) ;


math_Status TheStatus;
Standard_Real XTol;
Standard_Real x;
Standard_Real dx;
Standard_Real f;
Standard_Real df;


private:



Standard_Boolean Done;


};


#include <math_BissecNewton.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif