/usr/include/opencascade/math_BissecNewton.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _math_BissecNewton_HeaderFile
#define _math_BissecNewton_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _math_Status_HeaderFile
#include <math_Status.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_OStream_HeaderFile
#include <Standard_OStream.hxx>
#endif
class StdFail_NotDone;
class math_FunctionWithDerivative;
//! This class implements a combination of Newton-Raphson and bissection <br>
//! methods to find the root of the function between two bounds. <br>
//! Knowledge of the derivative is required. <br>
class math_BissecNewton {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! A combination of Newton-Raphson and bissection methods is done to find <br>
//! the root of the function F between the bounds Bound1 and Bound2. <br>
//! on the function F. <br>
//! The tolerance required on the root is given by TolX. <br>
//! The solution is found when : <br>
//! abs(Xi - Xi-1) <= TolX and F(Xi) * F(Xi-1) <= 0 <br>
//! The maximum number of iterations allowed is given by NbIterations. <br>
Standard_EXPORT math_BissecNewton(math_FunctionWithDerivative& F,const Standard_Real Bound1,const Standard_Real Bound2,const Standard_Real TolX,const Standard_Integer NbIterations = 100);
//! This method is called at the end of each iteration to check if the <br>
//! solution has been found. <br>
//! It can be redefined in a sub-class to implement a specific test to <br>
//! stop the iterations. <br>
Standard_EXPORT virtual Standard_Boolean IsSolutionReached(math_FunctionWithDerivative& F) ;
//! Tests is the root has been successfully found. <br>
Standard_Boolean IsDone() const;
//! returns the value of the root. <br>
//! Exception NotDone is raised if the minimum was not found. <br>
Standard_Real Root() const;
//! returns the value of the derivative at the root. <br>
//! Exception NotDone is raised if the minimum was not found. <br>
Standard_Real Derivative() const;
//! returns the value of the function at the root. <br>
//! Exception NotDone is raised if the minimum was not found. <br>
Standard_Real Value() const;
//! Prints on the stream o information on the current state <br>
//! of the object. <br>
//! Is used to redifine the operator <<. <br>
Standard_EXPORT void Dump(Standard_OStream& o) const;
protected:
Standard_EXPORT void Perform(math_FunctionWithDerivative& F,const Standard_Real Bound1,const Standard_Real Bound2,const Standard_Integer NbIterations) ;
math_Status TheStatus;
Standard_Real XTol;
Standard_Real x;
Standard_Real dx;
Standard_Real f;
Standard_Real df;
private:
Standard_Boolean Done;
};
#include <math_BissecNewton.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|